JP2002289772A - High heat resistant semiconductor device and power converter using it - Google Patents

High heat resistant semiconductor device and power converter using it

Info

Publication number
JP2002289772A
JP2002289772A JP2001092732A JP2001092732A JP2002289772A JP 2002289772 A JP2002289772 A JP 2002289772A JP 2001092732 A JP2001092732 A JP 2001092732A JP 2001092732 A JP2001092732 A JP 2001092732A JP 2002289772 A JP2002289772 A JP 2002289772A
Authority
JP
Japan
Prior art keywords
electrode
chip
semiconductor
main
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001092732A
Other languages
Japanese (ja)
Inventor
Hironori Kodama
弘則 児玉
Katsunori Asano
勝則 浅野
Yoshitaka Sugawara
良孝 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2001092732A priority Critical patent/JP2002289772A/en
Publication of JP2002289772A publication Critical patent/JP2002289772A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

PROBLEM TO BE SOLVED: To provide a high heat resistant semiconductor device with high reliability for suppressing the occurrence of thermal stress for use in a wide temperature range. SOLUTION: The high heat resistant semiconductor device juxtaposes and assembles one or a plurality of semiconductor chips 1 having a first main electrode on a first main face and a second main electrode on a second main face in a flat package insulated from the outside by an insulation outer cylinder 7 between a pair of common electrodes 5, 6, conductive intermediate electrodes 3, 4 are interposed every chip between at least one main electrode of the semiconductor chip and the common electrodes of a package side opposed thereto, and the intermediate electrode and the semiconductor chip are mutually positioned by a heat resistant insulation guide member 10 by making each outer periphery reference in the semiconductor device locked with an insertion structure performed on the opposite faces of them.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一個もしくは複数
個の半導体チップを並列に接続して、一つのパッケージ
に組み込んだ高耐熱半導体素子、およびこれを用いた電
力変換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly heat-resistant semiconductor device in which one or a plurality of semiconductor chips are connected in parallel and incorporated in one package, and a power converter using the same.

【0002】[0002]

【従来の技術】Si半導体エレクトロニクスの技術を駆使
して主回路電流を制御するパワーエレクトロニクスの技
術は、その性能向上と共に幅広い分野で応用され、さら
にその適用拡大がなされつつある。ダイオード、サイリ
スタの他、MOS構造ゲートへの入力信号により主電流を
制御するためのMOS制御デバイスであるMOS型電界効果ト
ランジスタ(以下MOSFETと略す)や、絶縁ゲート型バイ
ポーラトランジスタ(以下IGBTと略す)等が注目され、
パワースイッチングデバイスとしてモータPWM制御イ
ンバータの応用等に幅広く使われている。
2. Description of the Related Art Power electronics technology for controlling main circuit current by making full use of Si semiconductor electronics technology has been applied in a wide range of fields along with its performance improvement, and its application is being expanded. In addition to diodes and thyristors, MOS-type field-effect transistors (hereinafter abbreviated as MOSFETs), which are MOS control devices for controlling the main current by an input signal to a MOS-structured gate, and insulated-gate bipolar transistors (hereinafter abbreviated as IGBTs) Etc. are noticed,
It is widely used as a power switching device for applications such as motor PWM control inverters.

【0003】しかしながら、近年では、Siデバイスの限
界にせまる高性能デバイスの開発もなされてきており、
さらなる飛躍的なパワーデバイスの性能向上を目指し
て、Siに代わるSiC、GaN、ダイヤモンド等の新しい半導
体材料を用いたパワーデバイスの検討も始まっている。
なかでもSiCは、最も有望なデバイスとして注目され、
研究開発が進められている。SiCは、Siに比べて絶縁破
壊電界が大きく、さらにバンドギャップが広いため、高
温での半導体動作が可能である、等の特徴を有するた
め、特に大電力制御用に好適な高耐圧化や、高温での使
用、すなわち冷却系を簡略化したシステムの実現等が期
待されている。
[0003] However, in recent years, high-performance devices which have reached the limits of Si devices have been developed.
In order to further improve the performance of power devices, studies on power devices using new semiconductor materials such as SiC, GaN, and diamond instead of Si have begun.
Among them, SiC is attracting attention as the most promising device,
R & D is underway. Since SiC has a larger breakdown electric field and a wider band gap than Si, it is possible to operate a semiconductor at a high temperature, and so on. It is expected to be used at a high temperature, that is, to realize a system in which a cooling system is simplified.

【0004】従来のSi半導体パワーデバイス実装形態で
は、低電力容量用の1チップを放熱板上にマウントした
後、全体を樹脂モールドしたデイスクリート素子や、よ
り大きな容量向けのモジュール構造と呼ばれるIGBT等の
パッケージ形態が主流となっている。
[0004] In a conventional Si semiconductor power device mounting form, after mounting one chip for low power capacity on a heat sink, the whole is resin-molded, or a discrete element such as IGBT called module structure for larger capacity. Package form is the mainstream.

【0005】前記モジュール構造では、一般に放熱体兼
用の金属ベース上に絶縁板を介して半導体チップの第二
主面の主電極を半田付けし、第一主面上の主電極(エミ
ッタ電極)、および制御電極(ゲート電極)は、樹脂製
ケースに装備されたエミッタ、およびゲート用の外部導
出端子との間をアルミ等の導線でワイヤボンディング
し、パッケージ外部へ引き出している。また、パッケー
ジ内部には、チップの信頼性を確保するため、シリコー
ンゲルを充填している。
In the module structure, a main electrode on a second main surface of a semiconductor chip is generally soldered on a metal base also serving as a heat radiator via an insulating plate, and a main electrode (emitter electrode) on the first main surface is formed. The control electrode (gate electrode) is wire-bonded between an emitter provided in a resin case and an external lead-out terminal for a gate with a conductive wire such as aluminum, and is led out of the package. The inside of the package is filled with silicone gel in order to ensure the reliability of the chip.

【0006】一方、パワーデバイスの別の実装形態とし
て、外部電極を平型素子の両面に形成した素子が開発さ
れており、ダイオード、サイリスタ、GTO(gate turn−
offthyristor)、IGBT(insulated gate bipolar trans
istor)に適用されている。特に前記IGBTの平型素子で
は、複数のSiチップをパッケージ内に並列に組み込み、
その主面に形成されたエミッタ電極、コレクタ電極をそ
れぞれパッケージ側に設けた上下の電極板に面接続させ
て引き出すようにした加圧接触構造のパッケージが提案
されており、特に大容量のデバイスに好適な実装形態で
ある。
On the other hand, as another mounting form of the power device, an element in which external electrodes are formed on both sides of a flat element has been developed, and a diode, a thyristor, a GTO (gate turn-on) has been developed.
offthyristor), IGBT (insulated gate bipolar trans)
istor). In particular, in the IGBT flat element, a plurality of Si chips are incorporated in a package in parallel,
A package with a pressure contact structure in which the emitter electrode and the collector electrode formed on the main surface are surface-connected to the upper and lower electrode plates provided on the package side, respectively, and pulled out, has been proposed. This is a preferred implementation.

【0007】例えば、特開平8−088240号公報において
は、実施例に21個のSi半導体チップ(9個のIGBTと1
2個のダイオード)を搭載した平型IGBTパッケージが開
示されている。
[0007] For example, in Japanese Patent Application Laid-Open No. H08-088240, in the embodiment, 21 Si semiconductor chips (9 IGBTs and 1
A flat IGBT package having two diodes) is disclosed.

【0008】このパッケージ構造の代表例を図10に示
す。
FIG. 10 shows a typical example of this package structure.

【0009】半導体チップ21,22の第二主面(コレ
クタ側)は、パッケージの共通電極(Cu)23上に設け
られた1枚の大型の電極用基板(Mo)24に搭載され、
第一主面(エミッタ側)はチップ21,22ごとに分離
した個別の小型の圧接板(Mo)25,26を介して、パ
ッケージの共通電極(Cu)27に接続する構造となって
いる。半導体チップ21,22のパッケージ内での位置
決めは、各半導体チップ21,22の外周部分に設置し
た樹脂製のチップフレーム28、およびこれと一体型の
外部フレーム29を用いて一括で行われている。すなわ
ち、各半導体チップの外周部分に設置した樹脂製のチッ
プフレーム28を互いに突合せて各チップを同一平面に
整列配置し、さらにこれらの配列されたチップ群の最外
周部を樹脂製の一体型外部フレーム29で囲んで位置を
決めると同時に、さらにこの外部フレーム29が電極用
基板(Mo)24、または共通電極(Cu)23,27の外
周部を基準として位置決めされることで、最終的に各チ
ップのパッケージ内部での位置が決定される構造となっ
ている。
The second main surfaces (collector side) of the semiconductor chips 21 and 22 are mounted on one large electrode substrate (Mo) 24 provided on the common electrode (Cu) 23 of the package,
The first main surface (emitter side) is configured to be connected to a common electrode (Cu) 27 of a package via individual small pressure contact plates (Mo) 25 and 26 separated for each chip 21 and 22. The positioning of the semiconductor chips 21 and 22 in the package is performed collectively by using a resin chip frame 28 installed on the outer peripheral portion of each of the semiconductor chips 21 and 22 and an external frame 29 integrated therewith. . That is, the resin chip frames 28 installed on the outer peripheral portion of each semiconductor chip are abutted against each other to arrange the respective chips on the same plane, and the outermost peripheral portion of the arranged chip group is integrated with a resin-made integrated external device. At the same time as the position is determined by surrounding the frame 29, the outer frame 29 is finally positioned with reference to the outer peripheral portions of the electrode substrate (Mo) 24 or the common electrodes (Cu) 23 and 27. The structure is such that the position of the chip inside the package is determined.

【0010】なお、この種半導体装置に関連する従来技
術は、前掲公開公報以外に、WO98/43301号に記載され
ている。
The prior art relating to this type of semiconductor device is described in WO98 / 43301 in addition to the above-mentioned publication.

【0011】[0011]

【発明が解決しようとする課題】SiC、GaN、ダイヤモン
ド等の高耐熱半導体を用いて、その性能を最大限に活か
すために高温で使用しようとする場合に、前記のような
従来のSi半導体で用いられている実装形態のままでは、
以下の点で改善の余地がある。
When a high-heat-resistant semiconductor such as SiC, GaN, or diamond is used at a high temperature in order to maximize its performance, the conventional Si semiconductor as described above is used. With the implementation used,
There is room for improvement in the following points.

【0012】すなわち、高耐熱半導体素子を高温で動作
させて使用する場合には、−40℃近辺の環境温度から
300℃以上の高温での稼働温度域までの、Siの場合
(稼働温度150℃以下)に比べて格段に広い温度領域
での動作が必要となる。したがって、このような広い動
作温度領域によって発生する温度差が従来に比べて非常
に大きくなり、これに伴って非常に大きな熱ストレスが
繰返し発生する。例えば、SiCチップの熱膨張係数は、
その他の従来使用されている実装部材の熱膨張係数に比
べて非常に小さいため、従来の実装方式ではSiCチップ
とその周辺に配置される実装部材との熱膨張差が大き
く、チップへの熱ストレスによる悪影響を低減すること
が非常に大きな課題となる。
That is, when the high heat-resistant semiconductor element is used by operating at a high temperature, the temperature of the Si element (operating temperature of 150 ° C.) from the ambient temperature around −40 ° C. to the operating temperature range of 300 ° C. or higher. Operation in a much wider temperature range is required as compared to the following. Therefore, the temperature difference generated by such a wide operating temperature range becomes very large as compared with the related art, and accordingly, a very large thermal stress is repeatedly generated. For example, the thermal expansion coefficient of a SiC chip is
Since the thermal expansion coefficient of other mounting components is very small compared to other conventional mounting components, the conventional mounting method has a large difference in thermal expansion between the SiC chip and the mounting components placed around it. It is a very important task to reduce the adverse effects due to the above.

【0013】前記の熱ストレスは、特に素子が高耐圧
化、大容量化するにつれてますます大きくなる。すなわ
ち、高耐圧の要求に応えるためにチップ耐圧を上げてゆ
くと、チップでのエネルギー損失が大きくなり、チップ
温度がますます高くなる。また、大容量化を目的とし
て、実装するチップ数を増やして素子の電流容量を大き
くする場合には、素子自体のサイズが大きくなり、パッ
ケージ構成部材のサイズも大きくなる。これにより同じ
温度差でも部材の大きさが大きくなることによって各部
材端部での熱変形量が大きくなり、チップおよびパッケ
ージ構成部材間の発生熱ストレスが大きくなる他に、位
置ずれ量が非常に大きくなることの悪影響がよりシビア
に影響するようになる。前記の従来例で示したように、
位置決めのための部材がパッケージ全体と同じ大きさの
部材で決定されるような実装方式の場合には、広い動作
温度領域によってチップとパッケージ構成部材間の熱変
形量の差が大きくなる、すなわちチップとパッケージ構
成部材間の熱膨張差による位置ずれ量が非常に大きくな
り、大きな熱ストレスが発生する。したがって、高耐圧
で大電流容量の大形パッケージの実現が困難となる。
The above-mentioned thermal stress becomes more and more particularly as the element has a higher withstand voltage and a larger capacity. That is, if the chip withstand voltage is increased to meet the demand for high withstand voltage, energy loss at the chip increases, and the chip temperature further increases. When the current capacity of the device is increased by increasing the number of chips to be mounted for the purpose of increasing the capacity, the size of the device itself and the size of the package component also increase. As a result, even if the temperature difference is the same, the size of the member increases, so that the amount of thermal deformation at the end of each member increases, and the thermal stress generated between the chip and the package component increases, and the amount of misalignment becomes extremely large. The adverse effect of the growth becomes more severe. As shown in the above conventional example,
In the case of a mounting method in which a member for positioning is determined by a member having the same size as the entire package, the difference in the amount of thermal deformation between the chip and the package component becomes large due to a wide operating temperature range, that is, the chip The amount of misalignment due to the difference in thermal expansion between the components and the package components becomes very large, and a large thermal stress occurs. Therefore, it is difficult to realize a large package having a high withstand voltage and a large current capacity.

【0014】さらに前掲特開平8−088240号では、実装
部品として樹脂部品を多用している等の材料自体の耐熱
性の点で改善の余地がある。これを解決する手段とし
て、セラミックス等の耐熱性が高く、熱膨張係数の小さ
な材料を樹脂の代わりに用いて位置決め部材を作製する
ことが考えられるが、作製コストが非常に高くなった
り、部品が大きくなると割れ等の信頼性上の問題が発生
する。また、その他の金属部材等からなるパッケージ構
成部材とセラミック部品との間での熱膨張係数差に起因
する熱ストレスの問題も発生する。
Further, in the above-mentioned Japanese Patent Application Laid-Open No. 08-088240, there is room for improvement in the heat resistance of the material itself, such as the frequent use of resin parts as mounting parts. As a means to solve this, it is conceivable to manufacture the positioning member by using a material having high heat resistance such as ceramics and a small coefficient of thermal expansion instead of the resin. If it becomes larger, reliability problems such as cracks occur. In addition, there is also a problem of thermal stress caused by a difference in thermal expansion coefficient between the package component made of other metal members and the ceramic component.

【0015】なお、前掲WO98/43301号には、半導体チ
ップと共通電極との相互位置を、各チップ毎に独立させ
た構造が示されている。
The above-mentioned WO 98/43301 shows a structure in which the mutual positions of the semiconductor chip and the common electrode are made independent for each chip.

【0016】しかし、WO98/43301号では、SiC等の高耐
熱素子を300℃以上の高温で動作させて使用する場合
に、半導体チップとその周辺に配置される実装部材との
熱膨張差が大きく、チップへの熱ストレスによる悪影響
について認識しておらず、また従来、各実装部材間を接
合する接合剤として、300℃以上の高温に耐え得る接
合剤は中々見当らない。
However, in WO98 / 43301, when a high heat-resistant element such as SiC is operated at a high temperature of 300 ° C. or higher, the difference in thermal expansion between the semiconductor chip and a mounting member arranged around the chip is large. However, there has been no recognition of the adverse effect of thermal stress on the chip, and there has been no known bonding agent that can withstand a high temperature of 300 ° C. or more as a bonding agent for bonding between mounting members.

【0017】本発明の目的は、一個もしくは複数個の半
導体チップを一つの平型パッケージに組み込んだ高耐熱
半導体素子を対象に、従来にない広い温度範囲での使用
に対して熱ストレスの発生を抑えた信頼性の高い高耐熱
半導体素子を提供することにある。
An object of the present invention is to provide a heat-resistant semiconductor device in which one or a plurality of semiconductor chips are incorporated in a single flat package, and to reduce the generation of thermal stress for use in a wide temperature range, which has not been achieved conventionally. It is an object of the present invention to provide a highly reliable semiconductor device having a high heat resistance and a high reliability.

【0018】また、Si半導体素子を用いた従来の電力変
換器に比べて、より高性能な電力変換器を提供すること
にある。
Another object of the present invention is to provide a power converter having higher performance than a conventional power converter using a Si semiconductor device.

【0019】[0019]

【課題を解決するための手段】本発明の高耐熱半導体素
子は、一対の共通電極の間を絶縁性外筒により外部絶縁
した平型パッケージの中に、第一主面に第一の主電極、
第二主面に第二の主電極を有する一個もしくは複数個の
半導体チップを並置して組み込み、前記半導体チップの
少なくとも一方の主電極とこれに対向するパッケージ側
の共通電極との間に、各チップ毎に導電性の中間電極を
介装し、前記中間電極と共通電極とを、その両者の対向
面に施した嵌め込み構造で係止させた半導体素子であっ
て、前記中間電極と半導体チップを、各々の外周を基準
として、耐熱性の絶縁ガイド部材により相互に位置決め
したことを特徴とする。
A highly heat-resistant semiconductor device according to the present invention comprises a first main electrode provided on a first main surface in a flat package having a pair of common electrodes externally insulated by an insulating outer cylinder. ,
One or a plurality of semiconductor chips having a second main electrode on a second main surface are juxtaposed and incorporated, and at least one main electrode of the semiconductor chip and a common electrode on a package side facing the main electrode, A semiconductor element in which a conductive intermediate electrode is interposed for each chip, and the intermediate electrode and the common electrode are locked by a fitting structure provided on opposing surfaces of the two. Characterized in that they are positioned with respect to each other by a heat-resistant insulating guide member.

【0020】また、本発明の電力変換器は、前記記載の
高耐熱半導体素子を主変換素子として用いたことを特徴
とする。
Further, a power converter according to the present invention is characterized in that the high heat-resistant semiconductor element described above is used as a main conversion element.

【0021】[0021]

【発明の実施の形態】本発明の代表的な実施形態を図面
に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical embodiment of the present invention will be described with reference to the drawings.

【0022】図1は平型半導体素子の断面の一例を示し
たもので、複数個のSiCチップ1を組み込んだ例であ
る。図には、平型半導体素子2の左端の最外部から中央
に向かった途中までの断面を示している。
FIG. 1 shows an example of a cross section of a flat semiconductor device, in which a plurality of SiC chips 1 are incorporated. The figure shows a cross section from the leftmost outermost part of the flat semiconductor element 2 to the middle toward the center.

【0023】SiCチップ1には両主面に各々主電極が形
成されている。SiCチップ1には、放熱と電気的接続を
兼ねた中間電極3,4がチップ1の主電極と接する形で
配置されており、これが素子2の外部電極となる第1の
共通電極5と第2の共通電極6に挟まれている。これら
の一対の共通電極5,6の間は、セラミック製の絶縁性
の外筒7により外部絶縁され、さらに共通電極5,6と
絶縁外筒7の間は、金属板8によりパッケージ内部をシ
ール封止したハーメチック構造となっている。ただし、
このハーメチック構造は用途によっては必ずしも必要な
い。
Main electrodes are formed on both main surfaces of the SiC chip 1, respectively. On the SiC chip 1, intermediate electrodes 3, 4 having both heat dissipation and electrical connection are arranged so as to be in contact with the main electrode of the chip 1. It is sandwiched between two common electrodes 6. The pair of common electrodes 5 and 6 are externally insulated by a ceramic insulating outer cylinder 7, and the interior of the package is sealed by a metal plate 8 between the common electrodes 5 and 6 and the insulating outer cylinder 7. It has a hermetically sealed structure. However,
This hermetic structure is not always necessary for some applications.

【0024】図2は、第一の共通電極5を取り除いて上
側から見た全体図を示しており、図中に示したA−A'
位置は図1の断面位置に対応している。
FIG. 2 is an overall view from the upper side with the first common electrode 5 removed, and AA 'shown in the figure.
The position corresponds to the cross-sectional position in FIG.

【0025】SiCチップ1をパッケージ内の所定の位置
に位置決めする構成を以下に説明する。
A configuration for positioning the SiC chip 1 at a predetermined position in the package will be described below.

【0026】SiCチップ1上に配置する丸型の中間電極
3の上面中央に穴が形成され、一方、共通電極5のSiC
チップ1に対向する側にも、SiCチップ1を配置するべ
き所定位置に穴が形成されている。中間電極3に形成さ
れた穴と共通電極5に形成された穴に位置決め用部品9
を嵌め込むことにより、この中間電極3がその中央を基
準として共通電極5に対して位置決めされる。さらに、
中間電極3とSiCチップ1は、各々の外周を基準として
耐熱性の絶縁ガイド部品10により相互に位置決めされ
ることにより、各チップ1は各々独立にパッケージ内の
所定の位置に位置決めされる。
A hole is formed at the center of the upper surface of the round intermediate electrode 3 arranged on the SiC chip 1, while the SiC
Also on the side facing the chip 1, holes are formed at predetermined positions where the SiC chip 1 is to be arranged. Positioning parts 9 are inserted into holes formed in the intermediate electrode 3 and holes formed in the common electrode 5.
Is fitted, the intermediate electrode 3 is positioned with respect to the common electrode 5 with reference to the center thereof. further,
The intermediate electrode 3 and the SiC chip 1 are positioned relative to each other by a heat-resistant insulating guide component 10 with respect to each outer periphery, so that each chip 1 is independently positioned at a predetermined position in the package.

【0027】図3、図4は本発明の平型半導体素子の別
の実施例を示したもので、複数個のSiCダイオードチッ
プ11を組み込んだ例である。図3は、平型半導体素子
2の左端の最外部から中央に向かった途中までの断面を
示している。
FIGS. 3 and 4 show another embodiment of the flat semiconductor device of the present invention, in which a plurality of SiC diode chips 11 are incorporated. FIG. 3 shows a cross section from the leftmost outermost portion of the flat semiconductor element 2 to the middle thereof.

【0028】SiCダイオードチップ11には、SiC基板の
一方の側にアノード電極、他方の面にカソード電極が形
成されており、さらに中間電極3,4が前記チップ11
の主電極と接する形で配置されており、これが素子2の
外部電極となる第1の共通電極5と第2の共通電極6に
挟まれている。図4は、第一の共通電極6を取り除いて
下側から見た全体図を示しており、図中に示したA−
A'位置は図3に示した断面位置に対応している。
The SiC diode chip 11 has an anode electrode formed on one side of the SiC substrate and a cathode electrode formed on the other surface.
Are arranged so as to be in contact with the main electrode of the element 2, and this is sandwiched between the first common electrode 5 and the second common electrode 6, which are external electrodes of the element 2. FIG. 4 shows an overall view from the lower side with the first common electrode 6 removed.
The position A 'corresponds to the sectional position shown in FIG.

【0029】SiCダイオードチップ11に配置する中間
電極4の下面中央に穴が形成され、一方、共通電極6の
SiCダイオードチップ11に対向する側にも、チップ1
1を配置するべき所定位置に穴が形成されている。中間
電極4に形成された穴と共通電極6に形成された穴に位
置決め用部品9を嵌め込むことにより、この中間電極4
がその中央を基準として共通電極6に対して位置決めさ
れる。さらに、中間電極4とSiCダイオードチップ11
が、各々の外周を基準として耐熱性の絶縁ガイド部品1
0により相互に位置決めされることにより、各チップ1
1は各々独立にパッケージ内の所定の位置に位置決めさ
れる。
A hole is formed in the center of the lower surface of the intermediate electrode 4 arranged on the SiC diode chip 11, while the hole of the common electrode 6
The chip 1 is also placed on the side facing the SiC diode chip 11.
A hole is formed at a predetermined position where 1 is to be arranged. By fitting the positioning component 9 into the hole formed in the intermediate electrode 4 and the hole formed in the common electrode 6,
Are positioned with respect to the common electrode 6 with respect to the center thereof. Further, the intermediate electrode 4 and the SiC diode chip 11
Is a heat-resistant insulating guide part 1 based on each outer circumference.
0, each chip 1
1 are independently positioned at predetermined positions in the package.

【0030】一般に、半導体素子の動作等によってパッ
ケージ内に温度変化を受けると、構成部材間の熱膨張係
数差によって構成部材相互の位置ずれ(横ずれ)が起
き、しかもその大きさは構成部品の大きさが大きい程、
発生する位置ずれ量、および応力が大きくなる。
In general, when a temperature change occurs in a package due to the operation of a semiconductor device or the like, a positional displacement (lateral displacement) between components occurs due to a difference in thermal expansion coefficient between the components, and the size of the components is large. The larger the
The generated displacement and stress increase.

【0031】ところが前記の構造では、位置決め用部品
9が完全にチップ毎に独立して動ける状態になってお
り、さらに各々の実装用構成部品の大きさが小さい。し
たがって例えば共通電極5,6が熱膨張により寸法変化
し、これに設けられた位置決め穴の位置が変化したとし
ても、位置決め用部品9がこの穴の移動に合わせて他の
位置決め用部品9とは独立に移動し、同時にこの位置決
め用部品9によって位置が決められている中間電極およ
び半導体チップは、各々の外周を基準として耐熱性の絶
縁ガイド部品10により相互に位置決めされることによ
り、この位置決め用部品9と一緒に動くことになるの
で、大きな変位差、すなわちストレスが発生しない。さ
らに半導体チップの中央を基準軸として半導体チップお
よび中間電極の位置を決める場合には、個別の半導体チ
ップや中間電極の熱膨張変化(歪)はこの中心軸を中心
にして発生するので、チップ周辺方向に向かってチップ
中心に対称な分布で熱応力が発生する。しかも実装用構
成部品の大きさが小さいので、チップのサイズの小さな
範囲に限定された応力しか発生しない。したがって、本
方式によりチップに対するダメージを大幅に低減でき、
安定性を高めることができる。さらに好ましくは、二つ
の共通電極5,6を同一の材料で構成することにより、
二つの共通電極面の面方向の温度変化に伴う寸法変化は
全く同じとできるので、この二つの共通電極5,6に挟
まれた部品に対するストレスをより低減できる。
However, in the above structure, the positioning components 9 are completely movable independently for each chip, and the size of each mounting component is small. Therefore, for example, even if the dimensions of the common electrodes 5 and 6 change due to thermal expansion and the position of the positioning hole provided therein changes, the positioning component 9 is different from the other positioning components 9 in accordance with the movement of the hole. The intermediate electrode and the semiconductor chip, which move independently and are simultaneously positioned by the positioning component 9, are positioned relative to each other by the heat-resistant insulating guide component 10 with respect to the outer periphery of the intermediate electrode and the semiconductor chip. Since it moves together with the component 9, a large displacement difference, that is, no stress occurs. Further, when the positions of the semiconductor chip and the intermediate electrode are determined with the center of the semiconductor chip as a reference axis, the thermal expansion change (strain) of the individual semiconductor chip and the intermediate electrode occurs around this central axis. Thermal stress is generated in a distribution symmetrical with respect to the chip center toward the direction. Moreover, since the size of the mounting component is small, only a stress limited to a small range of the chip size is generated. Therefore, this method can greatly reduce the damage to the chip,
Stability can be increased. More preferably, by configuring the two common electrodes 5 and 6 with the same material,
Since the dimensional change due to the temperature change in the surface direction of the two common electrode surfaces can be made exactly the same, the stress on the components sandwiched between the two common electrodes 5 and 6 can be further reduced.

【0032】一方、従来例に見られる一体のパッケージ
全体にわたる大型の部品で位置決めする場合には、パッ
ケージ全体で見た中央を中心に周辺に向かって発生応力
の大きさが変化するため、各々のチップ毎に見るとチッ
プの一端から他端に向かって変化する広い応力分布が発
生するし、特にパッケージの周辺部に配置されたチップ
程、大きな応力が発生する。
On the other hand, in the case of positioning with a large part over the entire integrated package as seen in the conventional example, the magnitude of the generated stress changes from the center to the periphery as viewed in the entire package. When viewed from chip to chip, a wide stress distribution changes from one end of the chip to the other end, and a larger stress is generated particularly in a chip arranged at the periphery of the package.

【0033】これに対し、本発明よれば、チップに発生
する応力が大幅に低減され、素子の信頼性が非常に向上
する。これは搭載チップ数が多く、パッケージのサイズ
が大きい場合に特に有効である。
On the other hand, according to the present invention, the stress generated in the chip is greatly reduced, and the reliability of the device is greatly improved. This is particularly effective when the number of mounted chips is large and the package size is large.

【0034】また本発明では、半導体チップの相対位置
もズレることがなく、各々のチップのパッケージ内での
位置関係を広い温度範囲にわたって高信頼で、かつ高精
度に保つことができる。しかも、高価な耐熱性部品のサ
イズや使用部品点数を少なくできるので低コストでき
る。
Further, according to the present invention, the relative positions of the semiconductor chips do not shift, and the positional relationship of each chip in the package can be maintained with high reliability and accuracy over a wide temperature range. In addition, the size of expensive heat-resistant parts and the number of parts used can be reduced, so that the cost can be reduced.

【0035】前記位置決め用部品9は、導電性のもので
も、絶縁性のものでもよく、耐熱性および、中間電極お
よび共通電極との熱膨張係数差を勘案して、必要とする
位置決め精度との関係で決定すればよい。すなわち、高
精度な位置決めが必要な場合には、特に中間電極と同じ
材料、若くは中間電極との熱膨張係数差が小さい耐熱材
料を選択することが好ましい。
The positioning component 9 may be conductive or insulative. The positioning component 9 has a required positioning accuracy in consideration of heat resistance and a difference in thermal expansion coefficient between the intermediate electrode and the common electrode. What is necessary is just to determine by a relationship. That is, when high-precision positioning is required, it is particularly preferable to select the same material as the intermediate electrode, or a heat-resistant material having a small difference in thermal expansion coefficient from the intermediate electrode.

【0036】さらにSiCチップ、中間電極、および共通
電極は互いに接合されておらず、特に広い動作温度範囲
で使用する場合においても、過大な熱ストレスの発生を
さらに低減できるので望ましい。
Further, the SiC chip, the intermediate electrode, and the common electrode are not bonded to each other, and it is desirable that the generation of excessive thermal stress can be further reduced even when used in a wide operating temperature range.

【0037】上記実施例では、高耐熱半導体としてSiC
半導体の例で示したが、本発明は、SiC以外のGaN、ダイ
ヤモンド等のSiよりも高温で動作可能な高耐熱半導体に
ついても同様に実施可能である。
In the above embodiment, SiC was used as the high heat-resistant semiconductor.
Although shown in the example of the semiconductor, the present invention can be similarly applied to a high heat-resistant semiconductor that can operate at a higher temperature than Si such as GaN and diamond other than SiC.

【0038】前記耐熱性の絶縁ガイド部材10として
は、高耐熱半導体チップと中間電極の高精度の位置決め
と、熱応力の発生を抑えて構成部品の信頼性を高めるた
めに、高耐熱半導体に近い熱膨張係数を有する材料、特
に高強度のセラミック材料を用いることが好ましい。炭
化ケイ素、窒化ケイ素、窒化アルミニウム、ムライト、
またはこれらを主体とする複合材料からなる絶縁ガイド
部品を用いることが特に好ましい。
The heat-resistant insulating guide member 10 is close to a high-heat-resistant semiconductor in order to accurately position the high-heat-resistant semiconductor chip and the intermediate electrode and suppress the generation of thermal stress to increase the reliability of the component. It is preferable to use a material having a coefficient of thermal expansion, particularly a high-strength ceramic material. Silicon carbide, silicon nitride, aluminum nitride, mullite,
Alternatively, it is particularly preferable to use an insulating guide part made of a composite material mainly composed of these.

【0039】次に、図5〜図8に他の位置決め方式の例
を説明する。図はいずれも1チップの領域のみの縦方向
の実装を切り出して示した断面図である。
Next, an example of another positioning method will be described with reference to FIGS. Each of the figures is a cross-sectional view of a vertical mounting of only one chip region.

【0040】図5は、中間電極12の共通電極5に接す
る面の中央に突起が形成されており、一方、この中間電
極12に対向する共通電極5の所定位置には穴が形成さ
れており、これらを直接嵌合することにより、中間電極
12と共通電極5の相互の位置を決める方式を示してい
る。
FIG. 5 shows that a projection is formed at the center of the surface of the intermediate electrode 12 in contact with the common electrode 5, while a hole is formed at a predetermined position of the common electrode 5 facing the intermediate electrode 12. A method is shown in which the mutual positions of the intermediate electrode 12 and the common electrode 5 are determined by directly fitting them.

【0041】本方式によれば、部品点数を減らして、組
立も簡略化できる。
According to the present system, the number of parts can be reduced and the assembly can be simplified.

【0042】図6は、中間電極13の共通電極5に接す
る面の中央に穴が形成されており、一方、この中間電極
に対向する共通電極5の所定位置には突起が形成された
例を示した。
FIG. 6 shows an example in which a hole is formed at the center of the surface of the intermediate electrode 13 in contact with the common electrode 5, while a projection is formed at a predetermined position of the common electrode 5 facing the intermediate electrode. Indicated.

【0043】中間電極13に設けられた穴と共通電極5
に設けられた突起を直接嵌合することにより、中間電極
と共通電極の相互位置を決めることが可能になるので、
前記と同様、部品点数の削減と組立の簡略化が図れる。
The hole provided in the intermediate electrode 13 and the common electrode 5
By directly fitting the projections provided on the, it is possible to determine the mutual position of the intermediate electrode and the common electrode,
As described above, the number of parts can be reduced and assembly can be simplified.

【0044】図7は、中間電極14の共通電極5に接す
る面の中央に貫通穴が形成されており、一方、この中間
電極に対向する共通電極5の所定位置には径の異なる穴
が形成されており、これらを各々の穴径に合った外径を
有する位置決め部品15を用いて中間電極14と共通電
極5の相互の位置を決める方式を示している。
FIG. 7 shows that a through hole is formed at the center of the surface of the intermediate electrode 14 in contact with the common electrode 5, while holes having different diameters are formed at predetermined positions of the common electrode 5 facing the intermediate electrode. A method of determining the mutual positions of the intermediate electrode 14 and the common electrode 5 using a positioning component 15 having an outer diameter corresponding to each hole diameter is shown.

【0045】位置決め部品15は、絶縁性でも導電性で
も良く、耐熱性、加工性、コスト等を勘案して最適なも
のを選択すればよい。
The positioning component 15 may be either insulative or conductive, and an optimal one may be selected in consideration of heat resistance, workability, cost, and the like.

【0046】図8は、前記と同様に位置決め部品15を
用いて中間電極14、およびチップ1の位置を決め、位
置決め部品15を耐熱性の絶縁材料で構成し、さらにこ
の絶縁位置決め部品の内部にチップ1の動作を外部信号
により制御するための制御配線16を形成することによ
り、チップ1の制御信号配線を形成する例を示した。
FIG. 8 shows the positioning of the intermediate electrode 14 and the chip 1 using the positioning component 15 in the same manner as described above, and the positioning component 15 is made of a heat-resistant insulating material. The example in which the control signal wiring of the chip 1 is formed by forming the control wiring 16 for controlling the operation of the chip 1 by an external signal has been described.

【0047】具体的には、まずチップ1上の制御用電極
パッド17からチップ主面に垂直に制御用電極配線16
を引き出す。この制御用電極配線16の周囲には、前記
位置決め部品15および他の耐熱性電気絶縁部品(図示
せず)が設置されて中間電極14、および共通電極5と
の電気的な絶縁を保っている。
Specifically, first, the control electrode pads 17 on the chip 1 are connected to the control electrode wirings 16 vertically to the chip main surface.
Pull out. The positioning component 15 and other heat-resistant electrical insulation components (not shown) are provided around the control electrode wiring 16 to maintain electrical insulation from the intermediate electrode 14 and the common electrode 5. .

【0048】前記のように、本方式では、各半導体チッ
プの制御電極から配線を引き出すための方式が、平型パ
ッケージ内での各半導体チップの平面内の位置を決定す
る方式を兼ねる構造となっており、位置決めのための新
たな部品は必要なく、部品数を大幅に削減できる。
As described above, in the present system, the system for drawing out the wiring from the control electrode of each semiconductor chip also has a structure which also serves as the system for determining the position of each semiconductor chip in the plane in the flat package. No new parts are required for positioning, and the number of parts can be greatly reduced.

【0049】さらに、半導体素子の動作等によってパッ
ケージ内に温度変化が発生し、共通電極5が熱膨張変化
してこれに設けられた位置決め穴の位置が変化した場合
でも、絶縁用部材15がこの穴の移動に合わせて移動
し、同時に絶縁用部材15によって位置が決められてい
る中間電極14およびチップ1も一緒に動くことになる
ので、制御用電極配線16とチップ1の相対位置はズレ
ることがない。したがって、制御用電極パッド17と制
御用電極配線16間の接続信頼性も向上する。
Further, even when a temperature change occurs in the package due to the operation of the semiconductor element and the like, the thermal expansion of the common electrode 5 causes a change in the position of the positioning hole provided therein, so that the insulating member 15 remains in place. Since the intermediate electrode 14 and the chip 1 whose positions are determined by the insulating member 15 move together with the movement of the hole, the relative positions of the control electrode wiring 16 and the chip 1 are shifted. There is no. Therefore, the connection reliability between the control electrode pad 17 and the control electrode wiring 16 is also improved.

【0050】中間電極に設ける制御配線引出し部分は、
前記のように中央に貫通穴を形成するのが最も好ましい
が、チップ1側に形成する制御電極パッド17の位置、
形状、数によっては、偏心させたり、電極端部に切欠き
形状、矩型状に形成したり、複数個の穴を形成してもよ
い。さらに穴、および絶縁部材の外形形状も丸型に限定
されるものではなく、角型でもよい。中間電極の外形形
状は丸型、角型、いずれでもよいが、図の上側に設置す
る中間電極についてはチップ終端部に形成された耐圧構
造部分への接触を避けられる構造が好ましい。また制御
電極部分との接触も避けることができる構造が必要で、
チップに接する面の形状はリング状の他、くし歯状、一
本歯状、さいの目状等、電極パッドの位置、形状、数に
合わせた物を用いるのがよい。一方、図の下側に設置す
る中間電極については平面状でできるだけチップの主電
極と広くコンタクトできる構造が好ましい。
The control wiring lead-out portion provided on the intermediate electrode is as follows:
It is most preferable to form a through hole in the center as described above, but the position of the control electrode pad 17 formed on the chip 1 side,
Depending on the shape and the number of the electrodes, the electrode may be eccentric, may be formed in a notch shape or a rectangular shape at the end of the electrode, or may have a plurality of holes. Further, the outer shape of the hole and the insulating member is not limited to a round shape, but may be a square shape. The outer shape of the intermediate electrode may be round or square, but it is preferable that the intermediate electrode provided on the upper side of the drawing has a structure capable of avoiding contact with the pressure-resistant structure formed at the end of the chip. Also, a structure that can avoid contact with the control electrode part is required,
The shape of the surface in contact with the chip is preferably ring-shaped, comb-shaped, single-toothed, dice-shaped, or the like that matches the position, shape, and number of electrode pads. On the other hand, it is preferable that the intermediate electrode provided on the lower side of the drawing has a planar shape and can be in contact with the main electrode of the chip as widely as possible.

【0051】加圧する際の素子全体の圧力分布を安定化
させるためには、搭載するチップ数を少なくとも3個以
上とすることが好ましく、しかも搭載する複数のチップ
が素子中心からみて均等に配置されていることが望まし
い。
In order to stabilize the pressure distribution of the entire device during pressurization, it is preferable that the number of mounted chips is at least three or more, and a plurality of mounted chips are arranged uniformly when viewed from the center of the device. Is desirable.

【0052】実施例では、共通電極、あるいはパッケー
ジの外形が丸型の例を示したが、4角形の半導体装置も
当然可能であり、この場合は絶縁性の外筒も4角形がよ
い。パッケージング材料の製造コスト等の種々の他の要
因も勘案して望ましい形状を選択すればよい。
In the embodiment, the example in which the outer shape of the common electrode or the package is round is shown. However, a quadrangular semiconductor device is of course possible, and in this case, the insulating outer cylinder is preferably quadrangular. The desired shape may be selected in consideration of various other factors such as the manufacturing cost of the packaging material.

【0053】本発明は第一主面に第一の主電極と第二主
面に第二の主電極を有する高耐熱半導体素子全般を対象
としており、PNダイオード、ショットキーダイオー
ド、SID等の各種ダイオードの他、絶縁ゲート形トラン
ジスタ(MOSトランジスタ)、絶縁ゲート形サイリスタ
(MOS制御サイリスタ)等の制御電極付き半導体素子等
に対しても同様に実施できる。
The present invention is directed to a general high heat-resistant semiconductor device having a first main electrode on a first main surface and a second main electrode on a second main surface, and includes various types of PN diodes, Schottky diodes, SIDs and the like. In addition to the diode, the present invention can be similarly applied to a semiconductor element with a control electrode such as an insulated gate transistor (MOS transistor) and an insulated gate thyristor (MOS control thyristor).

【0054】また、本発明の実装方式は、ダイオードチ
ップのみを多数個平型パッケージに位置決めして実装し
た素子、MOSFET等のスイッチング半導体のみからなる平
型半導体素子、およびダイオードチップとスイッチング
半導体チップを複数個逆並列に並べた平型半導体素子、
等の各種素子に適用できる。
Further, the mounting method of the present invention includes a device in which only a plurality of diode chips are positioned and mounted in a flat package, a flat semiconductor device including only a switching semiconductor such as a MOSFET, and a diode chip and a switching semiconductor chip. A plurality of flat semiconductor elements arranged in antiparallel,
And the like.

【0055】図9には、本発明の高耐熱平型半導体素子
を用いた電力用自励式変換器として、1ブリッジ分の構
成回路図の例を示す。
FIG. 9 shows an example of a circuit diagram for one bridge as a power self-excited converter using the high heat-resistant flat semiconductor device of the present invention.

【0056】主変換素子となるSiC MOSFET18とSiCダ
イオード19が逆並列に配置され、さらにn個直列に接
続された構成となっている。これらMOSFETとダイオード
は、多数のSiC半導体チップを並列実装した平型半導体
素子を示している。前述の逆導通型SiC平型半導体素子
を用いた場合には、図中のMOSFET18とダイオード19
がまとめて一つのパッケージに収められた形となる。
The structure is such that the SiC MOSFET 18 and the SiC diode 19, which are the main conversion elements, are arranged in anti-parallel, and n pieces are connected in series. These MOSFETs and diodes represent flat semiconductor elements in which many SiC semiconductor chips are mounted in parallel. When the above-described reverse conducting SiC flat semiconductor device is used, the MOSFET 18 and the diode 19 shown in FIG.
Are packaged together in a single package.

【0057】なお、前記平型半導体素子は、電力系統に
用いられる自励式変換器、ミル用変換器や、可変速揚水
発電、圧延機、ビル内変電所設備、電鉄用変電設備、ナ
トリウム硫黄(NaS)電池システム等の変換器にも用い
ることができる。
The flat type semiconductor element is a self-excited converter, a converter for a mill, a variable speed pumped water generator, a rolling mill, a substation facility in a building, a substation facility for an electric railway, a sodium sulfur ( NaS) It can also be used for converters such as battery systems.

【0058】本実施例によれば、半導体素子を構成する
異なる部材間での熱膨張差等に起因する相互の位置ず
れ、部材間のストレス等に起因する問題の発生を抑え、
かつ高精度な位置決めが可能であり、チップ間を詰めて
実装密度を上げることができるので、従来にない広い温
度範囲での使用に対しても熱ストレスの発生を抑えた信
頼性の高い素子を実現できる。
According to the present embodiment, it is possible to suppress the occurrence of a problem caused by a mutual displacement due to a difference in thermal expansion or the like between different members constituting the semiconductor element, a stress between members, and the like.
In addition, high-precision positioning is possible, and the packing density can be increased by reducing the space between chips. realizable.

【0059】さらに、前記したごとき高い信頼性を有す
る高耐熱半導体素子を用いることにより、Si半導体素子
を用いた従来の電力変換器に比べて、より高性能な電力
変換器が実現できる。すなわち、本発明の半導体素子を
用いた電力変換器は、Si半導体素子を用いた場合に比べ
て、特に高耐圧化した場合に損失が大幅に低減できるの
で、一層の省エネルギー化が実現できる。さらに素子の
高温での使用が可能となるため、冷却等の負担が軽減で
き、変換器がコンパクトにできるので、コストを大幅に
低減できる。
Further, by using a highly heat-resistant semiconductor element having high reliability as described above, a higher-performance power converter can be realized as compared with a conventional power converter using a Si semiconductor element. That is, the power converter using the semiconductor element of the present invention can greatly reduce the loss, especially when the withstand voltage is increased, as compared with the case where the Si semiconductor element is used, so that further energy saving can be realized. Furthermore, since the element can be used at a high temperature, the burden of cooling and the like can be reduced, and the converter can be made compact, so that the cost can be significantly reduced.

【0060】[0060]

【発明の効果】本発明によれば、一個もしくは複数個の
高耐熱半導体チップを一つの平型パッケージに組み込ん
だ半導体装置を対象に、従来にない広い温度範囲での使
用に対して熱ストレスの発生を抑えた信頼性の高い高耐
熱半導体素子を得ることができる。
According to the present invention, a semiconductor device in which one or a plurality of high heat-resistant semiconductor chips are incorporated in one flat package is subjected to a thermal stress against use in a wider temperature range than ever before. It is possible to obtain a highly reliable heat-resistant semiconductor element in which generation is suppressed.

【0061】また、Si半導体素子を用いた従来の電力変
換器に比べて、より高性能な電力変換器を提供すること
ができる。
Further, it is possible to provide a power converter having higher performance than a conventional power converter using a Si semiconductor element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の半導体素子の一部縦断
面図である。
FIG. 1 is a partial longitudinal sectional view of a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の半導体素子の横断面図
である。
FIG. 2 is a cross-sectional view of the semiconductor device according to the first embodiment of the present invention.

【図3】本発明の第2の実施例の半導体素子の一部縦断
面図である。
FIG. 3 is a partial longitudinal sectional view of a semiconductor device according to a second embodiment of the present invention.

【図4】本発明の第2の実施例の半導体素子の横断面図
である。
FIG. 4 is a cross-sectional view of a semiconductor device according to a second embodiment of the present invention.

【図5】本発明の第3の実施例を示す1チップ部分の拡
大縦断面図である。
FIG. 5 is an enlarged vertical sectional view of a one-chip portion showing a third embodiment of the present invention.

【図6】本発明の第4の実施例を示す1チップ部分の拡
大縦断面図である。
FIG. 6 is an enlarged vertical sectional view of a one-chip portion showing a fourth embodiment of the present invention.

【図7】本発明の第5の実施例を示す1チップ部分の拡
大縦断面図である。
FIG. 7 is an enlarged vertical sectional view of a one-chip portion showing a fifth embodiment of the present invention.

【図8】本発明の第6の実施例を示す1チップ部分の拡
大縦断面図である。
FIG. 8 is an enlarged vertical sectional view of a one-chip portion showing a sixth embodiment of the present invention.

【図9】本発明の半導体素子を用いた変換器の1ブリッ
ジ分の構成回路図である。
FIG. 9 is a configuration circuit diagram of one bridge of a converter using the semiconductor element of the present invention.

【図10】従来の半導体装置の縦断面図である。FIG. 10 is a longitudinal sectional view of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1…SiCチップ、2…平型半導体素子、3,4…中間電
極、5,6…共通電極、7…絶縁外筒、8…金属板、
9,15…位置決め用部品、10…絶縁ガイド部品、1
1…SiCダイオードチップ、12,13,14…中間電
極、16…制御配線、17…制御用電極パッド、18…
SiC MOSFET、19…SiCダイオード、20…スナバ。
DESCRIPTION OF SYMBOLS 1 ... SiC chip, 2 ... flat semiconductor element, 3,4 ... intermediate electrode, 5,6 ... common electrode, 7 ... insulating outer cylinder, 8 ... metal plate,
9, 15 ... positioning parts, 10 ... insulation guide parts, 1
DESCRIPTION OF SYMBOLS 1 ... SiC diode chip, 12, 13, 14 ... Intermediate electrode, 16 ... Control wiring, 17 ... Control electrode pad, 18 ...
SiC MOSFET, 19 ... SiC diode, 20 ... Snubber.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅野 勝則 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 菅原 良孝 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 Fターム(参考) 5F005 GA02 GA04  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Katsunori Asano 3-3-22 Nakanoshima, Kita-ku, Osaka-shi, Osaka Inside Kansai Electric Power Co., Inc. (72) Yoshitaka Sugawara 3-3-1 Nakanoshima, Kita-ku, Osaka, Osaka No.22 Kansai Electric Power Co., Inc. F-term (reference) 5F005 GA02 GA04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一対の共通電極の間を絶縁性外筒により
外部絶縁した平型パッケージの中に、第一主面に第一の
主電極、第二主面に第二の主電極を有する一個もしくは
複数個の半導体チップを並置して組み込み、 前記半導体チップの少なくとも一方の主電極とこれに対
向するパッケージ側の共通電極との間に、各チップ毎に
導電性の中間電極を介装し、 前記中間電極と共通電極とを、その両者の対向面に施し
た嵌め込み構造で係止させた半導体素子であって、 前記中間電極と半導体チップを、各々の外周を基準とし
て、耐熱性の絶縁ガイド部材により相互に位置決めした
ことを特徴とする高耐熱半導体素子。
1. A flat package in which a pair of common electrodes is externally insulated by an insulating outer cylinder, and has a first main electrode on a first main surface and a second main electrode on a second main surface. One or a plurality of semiconductor chips are juxtaposed and incorporated, and a conductive intermediate electrode is interposed for each chip between at least one main electrode of the semiconductor chip and a common electrode on the package side opposed thereto. A semiconductor element in which the intermediate electrode and the common electrode are locked by a fitting structure provided on opposing surfaces thereof, wherein the intermediate electrode and the semiconductor chip are heat-resistant insulating A highly heat-resistant semiconductor element characterized by being mutually positioned by a guide member.
【請求項2】 前記耐熱性の絶縁ガイド部材は、炭化ケ
イ素、窒化ケイ素、窒化アルミニウム、ムライト、また
はこれらを主体とする複合材料から成る請求項1に記載
の高耐熱半導体素子。
2. The high heat-resistant semiconductor device according to claim 1, wherein the heat-resistant insulating guide member is made of silicon carbide, silicon nitride, aluminum nitride, mullite, or a composite material mainly composed of these.
【請求項3】 前記一個もしくは複数個の半導体チップ
の少なくとも一つ以上が、第一主面に第一の主電極と制
御電極、第二主面に第二の主電極を有し、外部からの制
御信号による主電流制御機能を有する請求項1または2
に記載の高耐熱半導体素子。
3. At least one or more of the one or more semiconductor chips has a first main electrode and a control electrode on a first main surface, and a second main electrode on a second main surface. 3. A main current control function according to the control signal of claim 1.
2. A high heat-resistant semiconductor element according to item 1.
【請求項4】 前記中間電極と共通電極とを係止させる
嵌め込み構造部品の少なくとも一つ以上が、前記制御信
号のチップへの配線の位置決め機能を有する請求項3に
記載の高耐熱半導体素子。
4. The high heat resistant semiconductor device according to claim 3, wherein at least one of the fitting structural components for locking the intermediate electrode and the common electrode has a function of positioning a wiring of the control signal to the chip.
【請求項5】 前記一個もしくは複数個の半導体チップ
の少なくとも一つ以上がダイオードである請求項1〜4
のいずれか1項に記載の高耐熱半導体素子。
5. The semiconductor device according to claim 1, wherein at least one of said one or more semiconductor chips is a diode.
The highly heat-resistant semiconductor device according to any one of the above items.
【請求項6】 請求項1〜5のいずれか1項に記載の高
耐熱半導体素子を主変換素子として用いたことを特徴と
する電力変換器。
6. A power converter using the highly heat-resistant semiconductor element according to claim 1 as a main conversion element.
JP2001092732A 2001-03-28 2001-03-28 High heat resistant semiconductor device and power converter using it Pending JP2002289772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001092732A JP2002289772A (en) 2001-03-28 2001-03-28 High heat resistant semiconductor device and power converter using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001092732A JP2002289772A (en) 2001-03-28 2001-03-28 High heat resistant semiconductor device and power converter using it

Publications (1)

Publication Number Publication Date
JP2002289772A true JP2002289772A (en) 2002-10-04

Family

ID=18947148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001092732A Pending JP2002289772A (en) 2001-03-28 2001-03-28 High heat resistant semiconductor device and power converter using it

Country Status (1)

Country Link
JP (1) JP2002289772A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205814A (en) * 2009-03-02 2010-09-16 Panasonic Corp Semiconductor device and method of manufacturing same
JP2012089563A (en) * 2010-10-15 2012-05-10 Sanken Electric Co Ltd Semiconductor module
JP2014068525A (en) * 2012-09-24 2014-04-17 General Electric Co <Ge> Power conversion system
JP2021190651A (en) * 2020-06-04 2021-12-13 三菱電機株式会社 Power module
CN115662975A (en) * 2022-10-27 2023-01-31 北京智慧能源研究院 Power chip packaging structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205814A (en) * 2009-03-02 2010-09-16 Panasonic Corp Semiconductor device and method of manufacturing same
JP2012089563A (en) * 2010-10-15 2012-05-10 Sanken Electric Co Ltd Semiconductor module
JP2014068525A (en) * 2012-09-24 2014-04-17 General Electric Co <Ge> Power conversion system
JP2021190651A (en) * 2020-06-04 2021-12-13 三菱電機株式会社 Power module
CN115662975A (en) * 2022-10-27 2023-01-31 北京智慧能源研究院 Power chip packaging structure

Similar Documents

Publication Publication Date Title
US10483216B2 (en) Power module and fabrication method for the same
KR100430772B1 (en) A semiconductor device
WO2013172291A1 (en) Power module semiconductor device
EP2722879A1 (en) Semiconductor unit and semiconductor device using same
JP6371610B2 (en) Power module and manufacturing method thereof
CN108735692B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
US20060055027A1 (en) Semiconductor device
JP2019067949A (en) Semiconductor device
JP6591808B2 (en) Power module and inverter device
US11532600B2 (en) Semiconductor module
US9385107B2 (en) Multichip device including a substrate
EP3113223A1 (en) Power semiconductor module
CN111599796B (en) Semiconductor module and power conversion device using the same
JP2013179229A (en) Power module semiconductor device
WO2017138402A1 (en) Semiconductor device, power module, method for manufacturing semiconductor device and method for manufacturing power module
JP4195398B2 (en) Semiconductor device and power device using the same
WO2017183580A1 (en) Semiconductor device, power module, and method for manufacturing same
Wang et al. Status and trend of power semiconductor module packaging for electric vehicles
JP2002289772A (en) High heat resistant semiconductor device and power converter using it
JP2015142066A (en) Power module and manufacturing method of the same
JP4751380B2 (en) Semiconductor device
JP2014116478A (en) Semiconductor module, semiconductor module manufacturing method and power conversion apparatus
JP2015026667A (en) Semiconductor module
JP2018060928A (en) Power module and power conversion apparatus
JP3809550B2 (en) High heat resistant semiconductor element and power converter using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520