JP2002145665A - Method for preparing transition metal-containing organic zirconium based compound porous body and transition metal-containing organic zirconium based compound porous body - Google Patents

Method for preparing transition metal-containing organic zirconium based compound porous body and transition metal-containing organic zirconium based compound porous body

Info

Publication number
JP2002145665A
JP2002145665A JP2000337868A JP2000337868A JP2002145665A JP 2002145665 A JP2002145665 A JP 2002145665A JP 2000337868 A JP2000337868 A JP 2000337868A JP 2000337868 A JP2000337868 A JP 2000337868A JP 2002145665 A JP2002145665 A JP 2002145665A
Authority
JP
Japan
Prior art keywords
transition metal
based compound
porous body
containing organic
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000337868A
Other languages
Japanese (ja)
Inventor
Takehisa Tsunoda
剛久 角田
Takafumi Iwasa
貴文 岩佐
Tomonori Kanaki
朝則 叶木
Takashi Atokuchi
隆 後口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2000337868A priority Critical patent/JP2002145665A/en
Publication of JP2002145665A publication Critical patent/JP2002145665A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently produce a transition metal-containing organic zirconium based compound porous body by a method only using inexpensive raw materials, by which waste exerting harmful influence on the environment is hardly produced. SOLUTION: In this method for producing a transition metal-containing organic zirconium based compound porous body, hydrogen peroxide is added to an alcohol solution of zirconium sulfate and a transition metal compound to form precipitates consisting essentially of a zirconium oxide compound and a transition metal comound. Then, the precipitates are foamed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃料電池の電解質や
電極、酸素センサー、酸素富化膜、発熱体、バイオセン
サーおよびバイオリアクター等の支持体、触媒および触
媒の担体等に使用しうる遷移金属含有酸化ジルコニウム
系化合物多孔体を得る方法およびその製法で得られた遷
移金属含有酸化ジルコニウム系化合物多孔体に関する。
さらに詳しくは、過酸化水素水というクリーンな試薬を
用い、遷移金属含有酸化ジルコニウム系化合物を発泡さ
せることにより遷移金属含有酸化ジルコニウム系化合物
多孔体を得る方法、およびその製法で得られた遷移金属
含有酸化ジルコニウム系化合物多孔体に関する。
The present invention relates to a transition metal which can be used for electrolytes and electrodes of fuel cells, oxygen sensors, oxygen-enriched membranes, heating elements, supports such as biosensors and bioreactors, catalysts and catalyst carriers. The present invention relates to a method for obtaining a porous zirconium oxide-containing compound and a transition metal-containing porous zirconium oxide compound obtained by the method.
More specifically, a method for obtaining a transition metal-containing zirconium oxide-based compound porous body by foaming a transition metal-containing zirconium oxide-based compound by using a clean reagent called hydrogen peroxide water, and a transition metal-containing compound obtained by the production method thereof The present invention relates to a porous zirconium oxide-based compound.

【0002】[0002]

【従来の技術】酸化ジルコニウム(ジルコニア)および
それらの固溶体、結晶あるいはそれを構成成分とする多
孔体は、耐熱性と耐蝕性に優れるうえ、高い酸素イオン
伝導度および電子伝導度を有することから、燃料電池の
電解質や電極、酸素センサー、酸素富化膜、発熱体、バ
イオセンサーおよびバイオリアクター等の支持体、触媒
および触媒担体等に用いられている。
2. Description of the Related Art Zirconium oxide (zirconia) and a solid solution or crystal thereof or a porous material containing the same are excellent in heat resistance and corrosion resistance and have high oxygen ion conductivity and high electron conductivity. It is used for electrolytes and electrodes of fuel cells, oxygen sensors, oxygen-enriched membranes, heating elements, supports such as biosensors and bioreactors, catalysts and catalyst carriers.

【0003】特に多孔構造を有する酸化ジルコニウムは
軽量であり、急激な温度変化にも耐え、また防音効果も
高いことから、各種炉材料や機械部品材料として期待さ
れている。さらには、多孔構造を有したまま遷移金属を
含有する酸化ジルコニウム化合物系多孔体は、酸塩基触
媒、酸化触媒等への適用が可能である。
[0003] In particular, zirconium oxide having a porous structure is expected to be used as a material for various furnaces and mechanical parts because it is lightweight, withstands rapid temperature changes, and has a high soundproofing effect. Further, the zirconium oxide compound-based porous body containing a transition metal while having a porous structure can be applied to an acid-base catalyst, an oxidation catalyst, and the like.

【0004】従来、酸化ジルコニウム系化合物多孔体の
調製方法として、炭素粉末等の物質をジルコニア粉末と
混合し成形した後、炭素粉末等を空気中で燃焼除去し、
空隙を残すという方法で多孔構造とする方法が主に用い
られている。例えば特許2725732には、ジルコニ
ア粉末とメチルセルロースやヘミセルロースを、特開平
03−257081にはジルコニア粉末と造粒した炭素
粉末をそれぞれ混合し成形、さらに加熱しセルロースや
炭素粉末を燃焼除去し、酸化ジルコニウム系化合物成形
体を得る方法が示されている。また特許2510044
にはジルコニア粉末とポリアクリル酸アンモニウムおよ
びステアリン酸アンモニウムと水を加え、攪拌して発泡
させた状態で乾燥、さらに焼成するという方法で酸化ジ
ルコニウム系化合物多孔体を得る方法が記載されてい
る。
Conventionally, as a method for preparing a porous zirconium oxide-based compound, a substance such as carbon powder is mixed with zirconia powder and molded, and then the carbon powder and the like are burnt and removed in air.
A method of forming a porous structure by leaving a void is mainly used. For example, in Japanese Patent No. 2725732, zirconia powder and methylcellulose or hemicellulose are mixed. In Japanese Patent Application Laid-Open No. 03-257081, zirconia powder and granulated carbon powder are mixed and molded. A method for obtaining a compound molding is shown. Patent 2510044
Discloses a method of adding a zirconia powder, ammonium polyacrylate, ammonium stearate, and water, stirring, foaming, drying, and firing to obtain a porous zirconium oxide-based compound.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の方法においてはジルコニア粉末として、例えば比較的
高価なイットリア含有安定化ジルコニア等を原料として
用いており、そのため得られた酸化ジルコニウム系化合
物多孔体が高価なものとなってしまうという問題があ
る。イットリア含有安定化ジルコニアは1000℃以上
の高温で構造の安定性が必要な場合、好適な材料とはな
るが、常温付近で使用されるバイオセンサーやバイオリ
アクター等の支持体、酵素反応の担体、あるいは500
℃〜600℃程度までの反応で使用される触媒あるいは
触媒担体としてはそのような安定性は必要でなく、より
安価な原料を用いる手法が求められている。
However, in these methods, a relatively expensive yttria-containing stabilized zirconia or the like is used as a raw material as a zirconia powder, so that the obtained porous zirconium oxide-based compound is expensive. There is a problem that it becomes a thing. When yttria-containing stabilized zirconia requires structural stability at a high temperature of 1000 ° C. or higher, it is a suitable material, but a support for a biosensor or a bioreactor used at around room temperature, a carrier for an enzyme reaction, Or 500
Such a stability is not required for a catalyst or a catalyst carrier used in a reaction at about ℃ to 600 ℃, and a method using less expensive raw materials is required.

【0006】さらに従来の方法では、空孔構造を得るた
めには空気を導入しながら高温で有機物を燃焼除去しな
ければならず、エネルギーコストが高くなる上に、燃焼
の際悪臭や大量の二酸化炭素またはタール分を生成して
しまい、環境問題を勘案する場合あまり好ましい方法と
は言えない。
In addition, in the conventional method, in order to obtain a pore structure, organic substances must be burned and removed at a high temperature while introducing air, which increases the energy cost, and also causes a bad smell and a large amount of dioxide during combustion. Since carbon or tar is generated, it is not a very preferable method in consideration of environmental problems.

【0007】さらにはこれら多孔体に遷移金属を含有さ
せる場合、すでに確立されている含浸法、イオン交換
法、CVD法等が適用可能であるが、乾燥や焼成操作を
さらに行なう必要があり工程が多段となり煩雑である。
[0007] Furthermore, when a transition metal is contained in these porous bodies, an already established impregnation method, ion exchange method, CVD method, or the like can be applied. It is multi-stage and complicated.

【0008】本発明の目的は安価な原料のみを用い、か
つ環境に有害な影響を与えるような廃棄物をほとんど生
成しない方法で、遷移金属含有酸化ジルコニウム系化合
物多孔体を効率的に製造する方法に関する。
An object of the present invention is to provide a method for efficiently producing a transition metal-containing porous zirconium oxide-based compound by a method using only inexpensive raw materials and hardly generating waste that has a harmful effect on the environment. About.

【0009】[0009]

【課題を解決するための手段】本発明者らは上記の目的
を達成するために鋭意研究を行った結果、目的とする遷
移金属含有酸化ジルコニウム系化合物多孔体を、ジルコ
ニウム化合物と遷移金属化合物のアルコール溶液および
過酸化水素水から簡便な操作により得る方法を見出し
て、本発明を完成するにいたった。すなわち、本発明の
遷移金属含有酸化ジルコニウム系化合物多孔体の製造方
法はジルコニウム化合物および遷移金属化合物のアルコ
ール溶液に過酸化水素水を加え、この混合物を静置ある
いは還流することにより、酸化ジルコニウム化合物およ
び遷移金属化合物を主成分とする析出物を形成させ、該
析出物を発泡させることを特徴とする遷移金属含有酸化
ジルコニウム系化合物多孔体の製造方法に関する。ま
た、本発明は前記製造方法によって得られる遷移金属含
有酸化ジルコニウム系化合物多孔体に関する。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to achieve the above object, and as a result, have found that a desired zirconium oxide based porous material containing a transition metal can be converted into a zirconium compound and a transition metal compound. The present inventors have found a method for obtaining an alcohol solution and a hydrogen peroxide solution by a simple operation, and have completed the present invention. That is, the method for producing a transition metal-containing zirconium oxide-based compound porous body of the present invention comprises adding an aqueous solution of hydrogen peroxide to an alcohol solution of a zirconium compound and a transition metal compound, and allowing the mixture to stand or reflux to obtain a zirconium oxide compound and The present invention relates to a method for producing a transition metal-containing porous zirconium oxide-based compound, which comprises forming a precipitate containing a transition metal compound as a main component and foaming the precipitate. The present invention also relates to a transition metal-containing zirconium oxide-based compound porous body obtained by the above-mentioned production method.

【0010】[0010]

【発明の実施の形態】遷移金属含有酸化ジルコニウム系
化合物多孔体は、本発明によって例えば以下のようにし
て製造することができる。本発明におけるジルコニウム
化合物としては、特に限定されないが好ましくは、塩化
ジルコニウム、硫酸ジルコニウム、硝酸ジルコニル、塩
化ジルコニルがあげられ、特に好ましくは硫酸ジルコニ
ウム(Zr(SO42)が好適に使用される。ジルコニ
ウム化合物は通常の市販されているものでよく、水和物
の形態のものでも構わない。
BEST MODE FOR CARRYING OUT THE INVENTION A transition metal-containing porous zirconium oxide compound can be produced by the present invention, for example, as follows. The zirconium compound in the present invention is not particularly limited, but preferably includes zirconium chloride, zirconium sulfate, zirconyl nitrate, and zirconyl chloride. Zirconium sulfate (Zr (SO 4 ) 2 ) is particularly preferably used. The zirconium compound may be an ordinary commercially available one, or may be in the form of a hydrate.

【0011】本発明における遷移金属化合物としては、
特に限定されないが、各種遷移金属の硝酸塩、硫酸塩、
塩化物等ハロゲン化物塩、酢酸塩、炭酸塩等の無機塩、
またアセチルアセトネート塩、メチラート等アルコラー
ト化合物、カルボニル錯体等有機金属化合物の、ほとん
どの形状の遷移金属化合物が使用できる。これらの遷移
金属化合物は、単独で使用してもよいが、2種以上の混
合物で使用してもかまわない。硫酸コバルト、硫酸ニッ
ケル、硝酸銅、硝酸ニッケル、硝酸コバルト、酢酸銅、
酢酸ニッケル、酢酸コバルト、塩化銅、塩化コバルト、
塩化ニッケル等が好適に使用される。
The transition metal compound in the present invention includes:
Although not particularly limited, nitrates and sulfates of various transition metals,
Inorganic salts such as halides such as chlorides, acetates and carbonates,
Also, transition metal compounds having almost any shape such as acetylacetonate salts, alcoholate compounds such as methylate, and organometallic compounds such as carbonyl complex can be used. These transition metal compounds may be used alone or in a mixture of two or more. Cobalt sulfate, nickel sulfate, copper nitrate, nickel nitrate, cobalt nitrate, copper acetate,
Nickel acetate, cobalt acetate, copper chloride, cobalt chloride,
Nickel chloride or the like is preferably used.

【0012】本発明においては、ジルコニウム化合物と
遷移金属化合物をアルコール溶媒に溶かして使用する
が、たとえばメタノール溶液では通常ジルコニウムと遷
移金属元素の合計が10-2〜10-1mol/lの濃度の
溶液が好適に使用される。これ以下の濃度でも、析出時
間を十分長くとれば同様の化合物が得ることができる。
In the present invention, the zirconium compound and the transition metal compound are used by dissolving them in an alcohol solvent. For example, in a methanol solution, the total of zirconium and transition metal elements usually has a concentration of 10 -2 to 10 -1 mol / l. Solutions are preferably used. Even at a concentration lower than this, a similar compound can be obtained if the precipitation time is sufficiently long.

【0013】本発明におけるアルコール溶媒としては特
に限定はされないが、メタノール、エタノール、プロパ
ノール、低級アルコールが最も好適に使用される。ま
た、2種以上のアルコールを組み合わせて使用すること
ができ、また、水との混合物でも構わない。溶液中の水
の濃度は特に限定されないが、好ましくは10-6〜10
-1Vol%がよい。
As the alcohol solvent in the present invention,
But not limited to methanol, ethanol,
Nol and lower alcohols are most preferably used. Ma
Use a combination of two or more alcohols
Or a mixture with water. Water in solution
The concentration of is not particularly limited, but is preferably 10-6-10
-1Vol% is good.

【0014】本発明における過酸化水素水としては、特
に限定されないが、30〜35重量%の過酸化水素水が
好適に使用される。過酸化水素水の添加量はmol比で
過酸化水素水:ジルコニウム化合物=1:10〜10:
1、好ましくは1:5〜5:1とするのがよい。過度に
過酸化水素水の添加が少ないと十分な発泡状態が実現で
きなくなり、また、過度に過酸化水素水の添加を多くし
ても発泡の効果の改善はみられず、遷移金属含有酸化ジ
ルコニウム系化合物の析出量が低下する傾向となる。
Although the aqueous hydrogen peroxide in the present invention is not particularly limited, 30 to 35% by weight of aqueous hydrogen peroxide is preferably used. The addition amount of the hydrogen peroxide solution is a molar ratio of the hydrogen peroxide solution: zirconium compound = 1: 10 to 10:
1, preferably 1: 5 to 5: 1. If the amount of the hydrogen peroxide solution is excessively small, a sufficient foaming state cannot be realized, and even if the amount of the hydrogen peroxide solution is excessively increased, the foaming effect is not improved, and the transition metal-containing zirconium oxide is not used. The precipitation amount of the system compound tends to decrease.

【0015】過酸化水素水を添加した混合液を、静置又
は還流処理することにより析出物を析出させることがで
きる。静置は、密閉型容器に原料混合物を仕込み、0℃
から溶媒の沸点までの温度で行いうるが、20℃から5
0℃の範囲が好ましい。静置時間は1時間から一週間、
好ましくは12時間から48時間とするのがよい。還流
は、通常の還流冷却管を取り付けたフラスコを用いて好
適におこなうことができる。還流処理温度は溶媒により
異なる。一般に溶媒の沸点近傍±10℃の範囲が好まし
い。処理時間は特に制限はないが1時間〜10時間、好
ましくは2時間〜5時間である。なお、静置又は還流処
理による析出の際、多孔膜等の有機膜を共存させたり、
シリカ、アルミナ、あるいは、例えばコージュライト、
ステンレス等からなるハニカム等を共存させると、それ
らの上に安定に固定することも可能である。析出物は所
定の温度および湿度において放置する。この時の温度は
0℃から80℃、好ましくは10℃から30℃である。
湿度は0%から100%、好ましくは70%から99%
である。その後、溶媒を除去する目的で真空乾燥をおこ
なう。
[0015] Precipitates can be deposited by allowing the mixed solution to which the hydrogen peroxide solution has been added to stand or reflux. Settle the raw material mixture in a closed container at 0 ° C.
To the boiling point of the solvent, but from 20 ° C to 5
A range of 0 ° C. is preferred. The standing time is from one hour to one week,
Preferably, it is 12 to 48 hours. Reflux can be suitably performed using a flask equipped with a usual reflux condenser. The reflux temperature varies depending on the solvent. Generally, the range of ± 10 ° C. near the boiling point of the solvent is preferable. The processing time is not particularly limited, but is 1 hour to 10 hours, preferably 2 hours to 5 hours. In addition, at the time of precipitation by standing or reflux treatment, or coexist with an organic film such as a porous film,
Silica, alumina, or, for example, cordierite,
When a honeycomb made of stainless steel or the like coexists, it is possible to stably fix the honeycomb on the honeycomb. The precipitate is left at a predetermined temperature and humidity. The temperature at this time is 0 ° C to 80 ° C, preferably 10 ° C to 30 ° C.
Humidity is 0% to 100%, preferably 70% to 99%
It is. Thereafter, vacuum drying is performed for the purpose of removing the solvent.

【0016】次いで発泡処理を行う。発泡は、室温下1
〜10時間放置することによって行うことができ、ま
た、100〜1500℃で1〜10時間加熱処理するこ
とによって行うことができ、あるいは電磁波による高周
波加熱のような手段を採用することができる。高周波加
熱により発泡処理する場合の処理条件は、処理量によっ
ても異なるが、500W程度の家庭用電子レンジを使用
して10g程度を処理する場合には、0.5〜30分程
度加熱すればよい。発泡後、得られた多孔質発泡体を安
定化するために300〜1500℃の温度で1〜72時
間熱処理しても良い。
Next, a foaming treatment is performed. Foaming at room temperature 1
It can be carried out by leaving it to stand for 10 to 10 hours, can be carried out by heating at 100 to 1500 ° C. for 1 to 10 hours, or can be a means such as high-frequency heating by electromagnetic waves. The processing conditions for foaming by high-frequency heating vary depending on the processing amount, but when processing about 10 g using a household microwave oven of about 500 W, heating may be performed for about 0.5 to 30 minutes. . After foaming, a heat treatment may be performed at a temperature of 300 to 1500 ° C. for 1 to 72 hours to stabilize the obtained porous foam.

【0017】以下に実施例を示し、具体的に発明の内容
を説明するが、本発明はこれらの実施例によって何ら限
定されるものではない。
The present invention will be described below in detail with reference to Examples, but the present invention is not limited to these Examples.

【0018】[0018]

【実施例1】4.263gの硫酸ジルコニウム(Zr
(SO42)・4H2O)を200mlのメタノールに
加え、攪拌し溶解させた。この溶液へ硫酸コバルト(C
oSO4・7H2O)0.67gを加えさらに攪拌し完全
に溶解させた。これを混合物Aとする。2.7gの30
%過酸化水素水を5mlのメタノールに加えた。これを
混合物Bとする。混合物Aに混合物Bを約3分かけて滴
下する。この反応液を室温で、さらに3時間攪拌した。
この操作により得た析出物をろ別、回収した析出物を1
5℃、湿度95%の条件で15時間放置した。これを出
力480Wの電子レンジで5分マイクロ波照射し発泡さ
せた。この発泡体の走査型電子顕微鏡写真を図1に、紫
外−可視スペクトルを図2に示す。また、ジルコニウム
とコバルトの量を表1に示す。
Example 1 4.263 g of zirconium sulfate (Zr
(SO 4 ) 2 ) · 4H 2 O) was added to 200 ml of methanol and stirred to dissolve. To this solution, cobalt sulfate (C
further added and stirred oSO 4 · 7H 2 O) 0.67g was completely dissolved. This is designated as mixture A. 2.7 g of 30
% Hydrogen peroxide solution was added to 5 ml of methanol. This is called mixture B. Mixture B is added dropwise to mixture A over about 3 minutes. The reaction was stirred at room temperature for another 3 hours.
The precipitate obtained by this operation is separated by filtration, and
It was left for 15 hours under conditions of 5 ° C. and 95% humidity. This was irradiated with microwaves in a microwave oven with an output of 480 W for 5 minutes to foam. A scanning electron micrograph of this foam is shown in FIG. 1, and an ultraviolet-visible spectrum is shown in FIG. Table 1 shows the amounts of zirconium and cobalt.

【0019】[0019]

【実施例2】4.263gの硫酸ジルコニウム(Zr
(SO42・4H2O)を200mlのメタノールに加
え、攪拌し溶解させた。この溶液へ硫酸ニッケル(Ni
SO4・7H20)0.67gを加えさらに攪拌し完全に
溶解させた。これを混合物Aとする。4.1gの30%
過酸化水素水を10mlのメタノールに加えた。これを
混合物Bとする。混合物Aに混合物Bを約3分かけて滴
下する。この反応液を室温で、さらに3時間攪拌した。
この操作により得た析出物をろ別、回収した析出物を1
5℃、湿度95%の条件で15時間放置した。これを出
力480Wの電子レンジで5分マイクロ波照射し発泡さ
せた。この発泡体の走査型電子顕微鏡写真を図3に、紫
外−可視スペクトルを図4に示す。また、ジルコニウム
とニッケルの量を表1に示す。
Example 2 4.263 g of zirconium sulfate (Zr
(SO 4 ) 2 .4H 2 O) was added to 200 ml of methanol, and the mixture was stirred and dissolved. Nickel sulfate (Ni
(0.67 g of SO 4 .7H 2 0) was added, and the mixture was further stirred and completely dissolved. This is designated as mixture A. 30% of 4.1 g
Hydrogen peroxide solution was added to 10 ml of methanol. This is called mixture B. Mixture B is added dropwise to mixture A over about 3 minutes. The reaction was stirred at room temperature for another 3 hours.
The precipitate obtained by this operation is separated by filtration, and
It was left for 15 hours under conditions of 5 ° C. and 95% humidity. This was irradiated with microwaves in a microwave oven with an output of 480 W for 5 minutes to foam. A scanning electron micrograph of this foam is shown in FIG. 3, and an ultraviolet-visible spectrum is shown in FIG. Table 1 shows the amounts of zirconium and nickel.

【0020】[0020]

【実施例3】2.13gの硫酸ジルコニウム(Zr(S
42・4H2O)を100mlのメタノールに加え、
攪拌し溶解させた。この溶液へ硫酸コバルト(CoSO
4・7H20)0.17gを加えさらに攪拌し完全に溶解
させた。さらにこの溶液をトリエチルアミンでpH7に
調製した。これを混合物Aとする。1.36gの30%
過酸化水素水を5mlのメタノールに加えた。これを混
合物Bとする。混合物Aに混合物Bを約3分かけて滴下
する。この反応液を室温でさらに3時間攪拌し、ろ別、
回収した析出物を15℃、湿度95%の条件で15時間
放置した。これを出力480Wの電子レンジで5分マイ
クロ波照射し発泡させた。この発泡体の走査型電子顕微
鏡写真を図5に、紫外−可視スペクトルを図6に示す。
また、ジルコニウムとコバルトの量を表1に示す。
Example 3 2.13 g of zirconium sulfate (Zr (S
O 4 ) 2 .4H 2 O) is added to 100 ml of methanol,
Stir and dissolve. To this solution, cobalt sulfate (CoSO
4 · 7H 2 0) was further added and stirred 0.17g was completely dissolved. The solution was adjusted to pH 7 with triethylamine. This is designated as mixture A. 1.36g 30%
Hydrogen peroxide solution was added to 5 ml of methanol. This is called mixture B. Mixture B is added dropwise to mixture A over about 3 minutes. The reaction was stirred at room temperature for a further 3 hours, filtered and
The collected precipitate was left for 15 hours at 15 ° C. and 95% humidity. This was irradiated with microwaves in a microwave oven with an output of 480 W for 5 minutes to foam. A scanning electron micrograph of this foam is shown in FIG. 5, and an ultraviolet-visible spectrum is shown in FIG.
Table 1 shows the amounts of zirconium and cobalt.

【0021】[0021]

【実施例4】2.13gの硫酸ジルコニウム(Zr(S
42・4H2O)を100mlのメタノールに加え、
攪拌し溶解させた。この溶液へ硫酸ニッケル(NiSO
4・7H20)0.16gを加えさらに攪拌し完全に溶解
させた。さらにこの溶液をトリエチルアミンでpH7に
調製した。これを混合物Aとする。1.36gの30%
過酸化水素水を5mlのメタノールに加えた。これを混
合物Bとする。混合物Aに混合物Bを約3分かけて滴下
する。この反応液を室温でさらに3時間攪拌し、ろ別、
回収した析出物を15℃、湿度95%の条件で15時間
放置した。これを出力480Wの電子レンジで5分マイ
クロ波照射し発泡させた。この発泡体の紫外−可視スペ
クトルを図7に示す。また、ジルコニウムとニッケルの
量を表1に示す。
Example 4 2.13 g of zirconium sulfate (Zr (S
O 4 ) 2 .4H 2 O) is added to 100 ml of methanol,
Stir and dissolve. Nickel sulfate (NiSO
4 · 7H 2 0) was further added and stirred 0.16g was completely dissolved. The solution was adjusted to pH 7 with triethylamine. This is designated as mixture A. 1.36g 30%
Hydrogen peroxide solution was added to 5 ml of methanol. This is called mixture B. Mixture B is added dropwise to mixture A over about 3 minutes. The reaction was stirred at room temperature for a further 3 hours, filtered and
The collected precipitate was left for 15 hours at 15 ° C. and 95% humidity. This was irradiated with microwaves in a microwave oven with an output of 480 W for 5 minutes to foam. The ultraviolet-visible spectrum of this foam is shown in FIG. Table 1 shows the amounts of zirconium and nickel.

【0022】[0022]

【実施例5】4.26gの硫酸ジルコニウム(Zr(S
42・4H2O)を200mlのメタノールに加え、
攪拌し溶解させた。この溶液へ硝酸銅(Cu(NO32
・3H 20)0.29gを加えさらに攪拌し完全に溶解
させた。さらにこの溶液をトリエチルアミンでpH4.
5に調製した。これを混合物Aとする。2.7gの30
%過酸化水素水を5mlのメタノールに加えた。これを
混合物Bとする。混合物Aに混合物Bを約3分かけて滴
下する。この反応液を室温でさらに3時間攪拌し、ろ
別、回収した析出物を15℃、湿度95%の条件で15
時間放置した。これを出力480Wの電子レンジで5分
マイクロ波照射し発泡させた。この発泡体の紫外−可視
スペクトルを図8に示す。また、ジルコニウムと銅の量
を表1に示す。
Example 5 4.26 g of zirconium sulfate (Zr (S
OFour)Two・ 4HTwoO) to 200 ml of methanol,
Stir and dissolve. Copper nitrate (Cu (NOThree)Two
・ 3H Two0) Add 0.29 g and further stir to completely dissolve
I let it. Further, this solution was adjusted to pH 4.
5 was prepared. This is designated as mixture A. 2.7 g of 30
% Hydrogen peroxide solution was added to 5 ml of methanol. this
Mixture B. The mixture B is dropped on the mixture A in about 3 minutes.
Down. The reaction was stirred at room temperature for a further 3 hours and filtered.
Separately, the collected precipitate is subjected to 15 ° C. and 95% humidity conditions.
Left for hours. This is a microwave oven with an output of 480W for 5 minutes
Microwave irradiation and foaming. UV-visible of this foam
The spectrum is shown in FIG. Also, the amount of zirconium and copper
Are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【比較例】1.07gの硫酸ジルコニウム(Zr(SO
42・4H2O)を100mlのジメチルホルムアミド
に加え、攪拌し加熱溶解させた。この溶液へ硫酸コバル
ト(CoSO4・7H2O)0.085gを加えさらに攪
拌し完全に溶解させた。この溶液へ0.34g過酸化水
素水をジメチルホルムアミド5mlで希釈し添加し、さ
らに3時間攪拌した。この反応溶液を35℃で12時間
静置すると透明の微結晶が得られた。この結晶を溶液よ
りデカンテーションにより分け15℃、湿度95%の条
件で放置すると1時間程度で完全に潮解し液状となっ
た。これを出力480Wの電子レンジで5分マイクロ波
照射したが良好な発泡体は得られなかった。また、得ら
れた白色の生成物も空気中で潮解し液状となった。この
ように、アルコール以外の溶媒を用いて析出物を作製し
発泡操作を行なっても、実施例1〜5のような良好な発
泡体は得ることができないことが分かる。
Comparative Example 1.07 g of zirconium sulfate (Zr (SO
4) 2 · 4H 2 O) was added to dimethylformamide 100 ml, was stirred and heated to dissolve. To this solution was further added and stirred cobalt sulfate (CoSO 4 · 7H 2 O) 0.085g were completely dissolved. To this solution, 0.34 g of hydrogen peroxide was diluted and added with 5 ml of dimethylformamide, and the mixture was further stirred for 3 hours. When this reaction solution was allowed to stand at 35 ° C. for 12 hours, transparent fine crystals were obtained. The crystals were separated from the solution by decantation and left at 15 ° C. and a humidity of 95% for about 1 hour to completely deliquefy and become liquid. This was irradiated with microwaves in a microwave oven with an output of 480 W for 5 minutes, but no good foam was obtained. Also, the obtained white product deliquesces in the air to become liquid. Thus, it can be seen that a good foam as in Examples 1 to 5 cannot be obtained even if a deposit is prepared using a solvent other than alcohol and foaming is performed.

【発明の効果】本発明によれば、調製に煩雑な工程を経
ることなく、簡便に、かつ環境を汚染する物質を副生す
ることなく遷移金属含有酸化ジルコニウム系化合物多孔
体を得ることができる。
According to the present invention, it is possible to obtain a transition metal-containing zirconium oxide-based compound porous body simply and without a complicated process, and without by-producing substances that pollute the environment. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で得られた遷移金属含有酸化ジルコニウ
ム系化合物多孔体の構造を示す、電子顕微鏡写真に代わ
る図である。
FIG. 1 is a diagram instead of an electron micrograph showing the structure of a transition metal-containing zirconium oxide-based compound porous body obtained in the present invention.

【図2】本発明で得られた遷移金属含有酸化ジルコニウ
ム系化合物多孔体の、紫外−可視吸収スペクトルであ
る。
FIG. 2 is an ultraviolet-visible absorption spectrum of a porous transition metal-containing zirconium oxide-based compound obtained in the present invention.

【図3】本発明で得られた遷移金属含有酸化ジルコニウ
ム系化合物多孔体の構造を示す、電子顕微鏡写真に代わ
る図である。
FIG. 3 is a diagram instead of an electron micrograph showing the structure of a porous body of a transition metal-containing zirconium oxide-based compound obtained in the present invention.

【図4】本発明で得られた遷移金属含有酸化ジルコニウ
ム系化合物多孔体の、紫外−可視吸収スペクトルであ
る。
FIG. 4 is an ultraviolet-visible absorption spectrum of the transition metal-containing zirconium oxide-based compound porous body obtained in the present invention.

【図5】本発明で得られた遷移金属含有酸化ジルコニウ
ム系化合物多孔体の構造を示す、電子顕微鏡写真に代わ
る図である。
FIG. 5 is a drawing instead of an electron micrograph showing the structure of the transition metal-containing zirconium oxide-based compound porous body obtained in the present invention.

【図6】本発明で得られた遷移金属含有酸化ジルコニウ
ム系化合物多孔体の、紫外−可視吸収スペクトルであ
る。
FIG. 6 is an ultraviolet-visible absorption spectrum of the transition metal-containing zirconium oxide-based compound porous body obtained in the present invention.

【図7】本発明で得られた遷移金属含有酸化ジルコニウ
ム系化合物多孔体の、紫外−可視吸収スペクトルであ
る。
FIG. 7 is an ultraviolet-visible absorption spectrum of the transition metal-containing zirconium oxide-based compound porous body obtained in the present invention.

【図8】本発明で得られた遷移金属含有酸化ジルコニウ
ム系化合物多孔体の、紫外−可視吸収スペクトルであ
る。
FIG. 8 is an ultraviolet-visible absorption spectrum of the porous transition metal-containing zirconium oxide-based compound obtained in the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/88 H01M 4/88 T 8/02 8/02 Z 8/12 8/12 (72)発明者 後口 隆 千葉県市原市五井南海岸8番の1 宇部興 産株式会社高分子研究所内 Fターム(参考) 4G019 FA15 GA04 4G031 AA12 AA22 AA23 BA01 BA21 BA27 CA09 GA01 4G048 AA01 AA06 AA07 AC06 AC08 AD01 AE05 5H018 AA06 AS02 BB16 DD01 EE12 5H026 AA06 BB08 BB10 EE12 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) H01M 4/88 H01M 4/88 T 8/02 8/02 Z 8/12 8/12 (72) Inventor Takashi Backguchi 8-1 Goi South Coast, Ichihara City, Chiba Prefecture Ube Industries, Ltd. Polymer Research Laboratory F-term (reference) 4G019 FA15 GA04 4G031 AA12 AA22 AA23 BA01 BA21 BA27 CA09 GA01 4G048 AA01 AA06 AA07 AC06 AC08 AD01 AE05 5H018 AA06 AS02 BB16 DD01 EE12 5H026 AA06 BB08 BB10 EE12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ジルコニウム化合物と遷移金属化合物をア
ルコールに溶解した溶液に過酸化水素水を加えた混合物
より析出物を析出させ、該析出物を発泡させることを特
徴とする遷移金属含有酸化ジルコニウム系化合物多孔体
の製造方法。
1. A transition metal-containing zirconium oxide-based system, comprising: depositing a precipitate from a mixture of a solution in which a zirconium compound and a transition metal compound are dissolved in alcohol and adding hydrogen peroxide solution; and foaming the precipitate. A method for producing a compound porous body.
【請求項2】請求項1の記載において、ジルコニウム化
合物が硫酸ジルコニウムである遷移金属含有酸化ジルコ
ニウム系化合物多孔体の製造方法。
2. The method according to claim 1, wherein the zirconium compound is zirconium sulfate.
【請求項3】請求項1及び請求項2記載の製造方法によ
って得られる遷移金属含有酸化ジルコニウム系化合物多
孔体。
3. A transition metal-containing zirconium oxide-based compound porous material obtained by the production method according to claim 1.
JP2000337868A 2000-11-06 2000-11-06 Method for preparing transition metal-containing organic zirconium based compound porous body and transition metal-containing organic zirconium based compound porous body Pending JP2002145665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000337868A JP2002145665A (en) 2000-11-06 2000-11-06 Method for preparing transition metal-containing organic zirconium based compound porous body and transition metal-containing organic zirconium based compound porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000337868A JP2002145665A (en) 2000-11-06 2000-11-06 Method for preparing transition metal-containing organic zirconium based compound porous body and transition metal-containing organic zirconium based compound porous body

Publications (1)

Publication Number Publication Date
JP2002145665A true JP2002145665A (en) 2002-05-22

Family

ID=18813180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000337868A Pending JP2002145665A (en) 2000-11-06 2000-11-06 Method for preparing transition metal-containing organic zirconium based compound porous body and transition metal-containing organic zirconium based compound porous body

Country Status (1)

Country Link
JP (1) JP2002145665A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035437A (en) * 2005-07-27 2007-02-08 Sony Corp Porous conductive material and its manufacturing method, electrode and its manufacturing method, fuel cell and its manufacturing method, and electronic apparatus, moving object, power generation system, co-generation system, and electrode reaction utilization apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035437A (en) * 2005-07-27 2007-02-08 Sony Corp Porous conductive material and its manufacturing method, electrode and its manufacturing method, fuel cell and its manufacturing method, and electronic apparatus, moving object, power generation system, co-generation system, and electrode reaction utilization apparatus
US8419913B2 (en) 2005-07-27 2013-04-16 Sony Corporation Porous electroconductive material and process for production thereof; electrode and process for production thereof; fuel cell and process for production thereof; and electronic instrument, mobile machine, electric power generating system, cogeneration system, and electrode reaction-based apparatus

Similar Documents

Publication Publication Date Title
JP5756525B2 (en) Manufacturing method and use of manganese dioxide nanorods
CN111545192B (en) MOFs-derived perovskite catalyst, preparation method thereof and application of MOFs-derived perovskite catalyst in catalytic degradation of organic pollutants
JPH0760118A (en) Noble metal catalyst involving supporting material for oxygen ion conductivity
CN108686711A (en) A kind of metal organic framework load TiO2Composite catalyst and preparation method thereof
CN105413749B (en) A kind of material load CoB of ZIF 8 method for preparing catalyst
CN109289856B (en) Polyhedral hollow core-shell structure MxM′3-xO4@CeO2Composite material and preparation method thereof
CN108273528A (en) A method of preparing the high iodine oxygen bismuth photochemical catalyst of nano bar-shape
CN104959150B (en) Preferential oxidation CO Au/CuO/CeO2‑TiO2Catalyst and preparation method
CN108940306A (en) A kind of ordered porous PtCu/CeO2Catalyst and its preparation method and application
CN114920228B (en) Transition metal phosphate nano enzyme material and preparation method and application thereof
CN113600142A (en) Preparation method and application of formed layered double hydroxide and derivatives thereof
CN100588461C (en) Process for preparation of catalysts for making synthesis gas through tri-reforming of methane
JP4122426B2 (en) Hydrogen production method
JP2001149779A (en) Selective oxidation catalyst for carbon monoxide in hydrogen-containing gas, carbon monoxide selectively removing method using the catalyst and solid polyelectrolyte type fuel cell system
CN113150291B (en) Glucose modified bimetallic zeolite imidazole ester framework derivative catalyst and preparation method thereof
JP2002145665A (en) Method for preparing transition metal-containing organic zirconium based compound porous body and transition metal-containing organic zirconium based compound porous body
JP2008279439A (en) Catalyst for removing carbon monoxide and/or nitrogen oxide and its production method
CN107482229B (en) Method for preparing CeO without surfactant2Method for preparing/C nano net
CN114100604B (en) LaMnO 3 Catalyst, preparation method and application thereof
JP2001316189A (en) Zirconium oxide based compound porous compact and its manufacturing method
JP2002012426A (en) Zirconium oxide, method of producing the same and catalyst for decomposing nitrogen oxide using the same
CN112916027A (en) Method for preparing iron phosphide/carbon composite material by using yeast biomass
JP4250971B2 (en) Inorganic material and shift catalyst using the same
CN112387276A (en) Supported ruthenium cluster catalyst for ammonia synthesis and preparation method and application thereof
JPWO2019156028A1 (en) Complexes, methods for producing composites, methods for producing catalysts and ammonia