JP2001268942A - Power converter - Google Patents

Power converter

Info

Publication number
JP2001268942A
JP2001268942A JP2000079254A JP2000079254A JP2001268942A JP 2001268942 A JP2001268942 A JP 2001268942A JP 2000079254 A JP2000079254 A JP 2000079254A JP 2000079254 A JP2000079254 A JP 2000079254A JP 2001268942 A JP2001268942 A JP 2001268942A
Authority
JP
Japan
Prior art keywords
capacitor
storage batteries
conductor
semiconductor element
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000079254A
Other languages
Japanese (ja)
Other versions
JP2001268942A5 (en
Inventor
Kaname Sasaki
要 佐々木
Mitsusachi Motobe
光幸 本部
Eiji Fukumoto
英士 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000079254A priority Critical patent/JP2001268942A/en
Publication of JP2001268942A publication Critical patent/JP2001268942A/en
Publication of JP2001268942A5 publication Critical patent/JP2001268942A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/26Structural combinations of electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices with each other

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance power converting efficiency in a power converter to control a temperature rise within the parts and achieve reliability. SOLUTION: In a power converter including a plurality of storage batteries 1 and conductors 2, 3 connecting in parallel such storage batteries 1, the storage batteries are placed so that when reference is made to the positive terminal of one storage battery of the two adjacent storage batteries 1, the negative terminal of the other storage terminal is placed more adjacently in comparison with the positive terminal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、直流電源から得る
直流電力を交流電力に変換、及び制御する電力変換装置
に係わり、特に電力変動を平滑化するために用いられる
蓄電池を複数個用いる電力変換装置に好適なものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power converter for converting and controlling DC power obtained from a DC power supply into AC power, and more particularly to a power converter using a plurality of storage batteries used for smoothing power fluctuations. It is suitable for the device.

【0002】[0002]

【従来の技術】従来の電力変換装置としては、例えば特
開平11−55938 号公報に記載されているように、複数個
のコンデンサを同一極性が相対するように並列配置し、
平板状導体の両端を開放した状態で接続しているものが
ある。
2. Description of the Related Art As a conventional power converter, for example, as described in Japanese Patent Application Laid-Open No. H11-55938, a plurality of capacitors are arranged in parallel so that they have the same polarity.
Some flat conductors are connected with both ends open.

【0003】[0003]

【発明が解決しようとする課題】かかる従来の電力変換
装置は、複数個のコンデンサを接続している平板状導体
が近接して配置されるために、正負極の導体から発生す
る磁気エネルギが相殺され、インダクタンス低減に効果
的である。しかしながら、更なるインダクタンス低減の
ためには、正極側導体を流れる電流流線と負極側導体を
流れる電流流線とが互いに交叉するように配置すること
が望ましい。
In such a conventional power converter, since the flat conductors connecting a plurality of capacitors are arranged close to each other, the magnetic energy generated from the positive and negative conductors is offset. This is effective for reducing inductance. However, in order to further reduce the inductance, it is desirable to arrange the current flow lines flowing through the positive conductor and the negative current conductor so as to cross each other.

【0004】また蓄電池、例えばコンデンサによって発
生する熱は、蓄電池が接続されている導体へ放熱される
ことから、導体を冷却装置として有効に活用することが
望まれる。
Since heat generated by a storage battery, for example, a capacitor, is radiated to a conductor to which the storage battery is connected, it is desired to effectively use the conductor as a cooling device.

【0005】本発明は、電力変換装置を構成する蓄電池
の電極位置を考慮することにより、インダクタンスを低
減すると共に、蓄電池の冷却効率を高め、小型で信頼性
が高い電力変換装置を得ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a compact and highly reliable power converter by reducing the inductance and increasing the cooling efficiency of the storage battery by considering the electrode position of the storage battery constituting the power converter. And

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明の第1の特徴は、半導体素子と前記半導体素子
に接続される複数個の蓄電池を備える電力変換装置にお
いて、前記蓄電池は電気的に並列に接続されており、隣
り合う前記蓄電池間において、一方の蓄電池の正極を基
準にした場合に、他方の蓄電池の負極が正極と比較して
近接するように構成したものである。
A first feature of the present invention to achieve the above object is a power conversion device including a semiconductor element and a plurality of storage batteries connected to the semiconductor element, wherein the storage battery is an electric power converter. Are connected in parallel in such a manner that, between the adjacent storage batteries, when the positive electrode of one storage battery is used as a reference, the negative electrode of the other storage battery is closer than the positive electrode.

【0007】本発明の第2の特徴は、半導体素子と前記
半導体素子に接続される複数個の蓄電池を備える電力変
換装置において、前記蓄電池は電気的に並列に接続され
ており、前記蓄電池としてコンデンサが用いられ、隣り
合う前記コンデンサ間において、一方のコンデンサの正
極を基準にした場合に、他方のコンデンサの負極が正極
と比較して近接するようにコンデンサを配置するように
構成したものである。本発明の第3の特徴は、半導体素
子と前記半導体素子に接続される複数個の蓄電池を備え
る電力変換装置において、前記蓄電池は電気的に並列に
接続されており、前記蓄電池としてコンデンサが用いら
れ、前記半導体素子と前記コンデンサの接続に平板状導
体が用いられ、隣り合う前記コンデンサ間において、一
方のコンデンサの正極を基準にした場合に、他方のコン
デンサの負極が正極と比較して近接するようにコンデン
サを配置するように構成したものである。
A second feature of the present invention is that in a power conversion device including a semiconductor element and a plurality of storage batteries connected to the semiconductor element, the storage batteries are electrically connected in parallel, and a capacitor is used as the storage battery. Is used, and between adjacent capacitors, when the positive electrode of one capacitor is used as a reference, the capacitors are arranged such that the negative electrode of the other capacitor is closer to the positive electrode. A third feature of the present invention is that in a power conversion device including a semiconductor element and a plurality of storage batteries connected to the semiconductor element, the storage batteries are electrically connected in parallel, and a capacitor is used as the storage battery. A flat conductor is used to connect the semiconductor element and the capacitor, and between adjacent capacitors, when the positive electrode of one capacitor is used as a reference, the negative electrode of the other capacitor is closer to the positive electrode. The configuration is such that a capacitor is disposed at

【0008】本発明の第4の特徴は、半導体素子と前記
半導体素子に接続される複数個の蓄電池を備える電力変
換装置において、前記蓄電池は電気的に並列に接続され
ており、前記蓄電池としてコンデンサが用いられ、前記
半導体素子と前記コンデンサの接続に平板状導体が用い
られ、前記平板状導体の正側導体と負側導体が絶縁物を
挟んで近接して配置され、隣り合う前記コンデンサ間に
おいて、一方のコンデンサの正極を基準にした場合に、
他方のコンデンサの負極が正極と比較して近接するよう
にコンデンサを配置するように構成したものである。
According to a fourth feature of the present invention, in a power converter including a semiconductor element and a plurality of storage batteries connected to the semiconductor element, the storage batteries are electrically connected in parallel, and a capacitor is used as the storage battery. Is used, a flat conductor is used to connect the semiconductor element and the capacitor, and a positive conductor and a negative conductor of the flat conductor are arranged close to each other with an insulator interposed therebetween, and between the adjacent capacitors. , Based on the positive electrode of one capacitor,
The capacitor is arranged so that the negative electrode of the other capacitor is closer to the positive electrode than the positive electrode.

【0009】本発明の第5の特徴は、半導体素子と前記
半導体素子に接続される複数個の蓄電池を備える電力変
換装置において、前記蓄電池は電気的に並列に接続され
ており、前記蓄電池として電解コンデンサが用いられ、
前記電解コンデンサ中の陰極箔が前記電解コンデンサの
ケースと熱的に接続されており、隣り合う前記電解コン
デンサ間において、一方の電解コンデンサの正極を基準
にした場合に、他方の電解コンデンサの負極が正極と比
較して近接するように電解コンデンサを配置するように
構成したものである。
A fifth feature of the present invention is that in a power conversion device including a semiconductor element and a plurality of storage batteries connected to the semiconductor element, the storage batteries are electrically connected in parallel, and Capacitors are used,
The cathode foil in the electrolytic capacitor is thermally connected to the case of the electrolytic capacitor, and between adjacent electrolytic capacitors, when the positive electrode of one electrolytic capacitor is used as a reference, the negative electrode of the other electrolytic capacitor is An electrolytic capacitor is arranged so as to be close to the positive electrode.

【0010】本発明の第6の特徴は、半導体素子と前記
半導体素子に接続される複数個の蓄電池を備える電力変
換装置において、前記蓄電池は電気的に並列に接続され
ており、前記蓄電池として電解コンデンサが用いられ、
前記半導体素子と前記コンデンサの接続に平板状導体が
用いられ、前記平板状導体の正側導体と負側導体が絶縁
物を挟んで近接して配置され、前記電解コンデンサ中の
陰極箔が前記電解コンデンサのケースと熱的に接続され
ており、隣り合う前記電解コンデンサ間において、一方
の電解コンデンサの正極を基準にした場合に、他方の電
解コンデンサの負極が正極と比較して近接するように電
解コンデンサを配置するように構成したものである。
A sixth feature of the present invention is that in a power conversion device including a semiconductor element and a plurality of storage batteries connected to the semiconductor element, the storage batteries are electrically connected in parallel, and the storage battery is an electrolytic battery. Capacitors are used,
A flat conductor is used to connect the semiconductor element and the capacitor, and a positive conductor and a negative conductor of the flat conductor are arranged close to each other with an insulator interposed therebetween. It is thermally connected to the case of the capacitor, and between adjacent electrolytic capacitors, when the positive electrode of one electrolytic capacitor is used as a reference, the negative electrode of the other electrolytic capacitor is closer than the positive electrode. It is configured to arrange a capacitor.

【0011】本発明の第7の特徴は、半導体素子と前記
半導体素子に接続される複数個の蓄電池を備える電力変
換装置において、前記蓄電池は電気的に並列に接続され
ており、前記蓄電池として電解コンデンサが用いられ、
前記半導体素子と前記コンデンサの接続に平板状導体が
用いられ、前記平板状導体の正側導体と負側導体が絶縁
物を挟んで近接して配置され、前記電解コンデンサ中の
陰極箔が前記電解コンデンサのケースと熱的に接続され
ており、前記平板状導体の正側導体が負側導体と比較し
て上部に用いられ、隣り合う前記電解コンデンサ間にお
いて、一方の電解コンデンサの正極を基準にした場合
に、他方の電解コンデンサの負極が正極と比較して近接
するように電解コンデンサを配置するように構成したも
のである。
According to a seventh feature of the present invention, in a power conversion device including a semiconductor element and a plurality of storage batteries connected to the semiconductor element, the storage batteries are electrically connected in parallel, and the storage battery is an electrolytic battery. Capacitors are used,
A flat conductor is used to connect the semiconductor element and the capacitor, and a positive conductor and a negative conductor of the flat conductor are arranged close to each other with an insulator interposed therebetween. It is thermally connected to the case of the capacitor, and the positive conductor of the flat conductor is used on the upper side as compared with the negative conductor, and between the adjacent electrolytic capacitors, based on the positive electrode of one electrolytic capacitor. In this case, the electrolytic capacitor is arranged such that the negative electrode of the other electrolytic capacitor is closer to the positive electrode than the positive electrode.

【0012】[0012]

【発明の実施の形態】以下、本発明の各実施例について
図を用いて説明する。なお、各実施例の共通する部分は
省略すると共に、各実施例の図における同一符号は同一
物または相当物を示す。
Embodiments of the present invention will be described below with reference to the drawings. Note that common parts of the embodiments are omitted, and the same reference numerals in the drawings of the embodiments indicate the same or corresponding components.

【0013】まず、本発明の第1実施例について図1〜
図3を用いて説明する。図1は本発明の第1実施例の電
力変換装置における平板状導体と蓄電池の斜視図、図2
は本発明を適用する電力変換装置の回路図、図3は本発
明の第1実施例における導体を流れる電流流線の模式図
である。
First, a first embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. FIG. 1 is a perspective view of a flat conductor and a storage battery in a power converter according to a first embodiment of the present invention.
FIG. 3 is a circuit diagram of a power converter to which the present invention is applied, and FIG. 3 is a schematic diagram of a current flow line flowing through a conductor in the first embodiment of the present invention.

【0014】図2を用いて、電力変換装置における電力
の流れを説明する。101は直流電源、102は蓄電池
であり、複数個が並列に接続されている。また103〜
108は半導体素子、109は負荷である。直流電源10
1が供給する直流電力は、半導体素子103〜108を
用いて三相交流に変換され、負荷109に流される。こ
の時、直流電源101から半導体素子103〜108間
の導体で発生するインダクタンスの低減と、直流電源1
01が電力を供給する際に生じる、周波数が数十kHz
程度の直流電流の変動成分を平滑化するために、蓄電池
102を直流電源と並列となるように接続することが必
須となる。また蓄電池102と半導体素子103〜10
8間のインダクタンスを低減するために、両者の距離は
可能な限り近接していることが望ましい。
The flow of power in the power converter will be described with reference to FIG. 101 is a DC power supply, 102 is a storage battery, a plurality of which are connected in parallel. 103 ~
108 is a semiconductor element, and 109 is a load. DC power supply 10
The DC power supplied by 1 is converted into three-phase AC using the semiconductor elements 103 to 108, and is passed to the load 109. At this time, the inductance generated in the conductor between the DC power supply 101 and the semiconductor elements 103 to 108 is reduced, and the DC power supply 1
The frequency that occurs when 01 supplies power is several tens of kHz.
In order to smooth the fluctuation component of the DC current, it is essential to connect the storage battery 102 in parallel with the DC power supply. The storage battery 102 and the semiconductor elements 103 to 10
In order to reduce the inductance between the two, it is desirable that the distance between them is as close as possible.

【0015】なお図2には半導体素子103〜108の
一例としてIGBT素子を示したが、実施に際しては、
これに限定するものではない。
FIG. 2 shows an IGBT element as an example of the semiconductor elements 103 to 108.
It is not limited to this.

【0016】図1を用いて、電力変換装置における蓄電
池と導体の配置について説明する。1は蓄電池、2は正
極側導体、3は負極側導体、4は絶縁板である。ここで
図1には2個の蓄電池を用いている場合を記載してい
る。
Referring to FIG. 1, the arrangement of the storage battery and the conductor in the power converter will be described. 1 is a storage battery, 2 is a positive conductor, 3 is a negative conductor, and 4 is an insulating plate. FIG. 1 shows a case where two storage batteries are used.

【0017】導体2,3は2個の蓄電池1を並列に接続
し、蓄電池と半導体素子間のインダクタンスを低減して
いる。さらにこの区間におけるインダクタンスを低減す
るためには半導体素子と蓄電池の正極間,陰極間の距離
をそれぞれ短くすることが望ましく、より具体的には図
1に示すように、2個の蓄電池の中で半導体素子に近い
ものの正極が、導体における半導体素子の正極につなが
る端子と近接していることが好ましい。
The conductors 2 and 3 connect the two storage batteries 1 in parallel to reduce the inductance between the storage batteries and the semiconductor elements. Furthermore, in order to reduce the inductance in this section, it is desirable to shorten the distance between the semiconductor element and the positive electrode and the negative electrode of the storage battery. More specifically, as shown in FIG. It is preferable that the positive electrode, which is close to the semiconductor element, is close to a terminal of the conductor connected to the positive electrode of the semiconductor element.

【0018】また蓄電池1としては、コンデンサを用い
ることが可能である。さらに直流電圧が低い場合におい
ては、電解コンデンサを使用することで大容量が得ら
れ、運転状況次第によって負荷から発生する余剰な電気
エネルギーを、一時的に電解コンデンサ内に貯えること
が可能となる。
As the storage battery 1, a capacitor can be used. Further, when the DC voltage is low, a large capacity can be obtained by using the electrolytic capacitor, and it becomes possible to temporarily store excess electric energy generated from the load in the electrolytic capacitor depending on the operating condition.

【0019】導体2,3は電気抵抗を少なくするために
体積抵抗率が小さい素材、具体的には銅で製作すること
が望ましい。また導体のインダクタンスを低減するため
には図1に示すように平板状導体を用いて、正極側導体
2と負極側導体3のそれぞれを流れる電流流線が重なる
ように配置することが望ましい。
The conductors 2 and 3 are desirably made of a material having a small volume resistivity, specifically copper, in order to reduce the electric resistance. In order to reduce the inductance of the conductor, it is desirable to use a flat conductor as shown in FIG. 1 and arrange the current flow lines flowing through the positive conductor 2 and the negative conductor 3 so as to overlap each other.

【0020】正極側導体2と負極側導体3との間は、絶
縁を確保するために絶縁板4を挟んで配置される。イン
ダクタンス低減のためには正極側導体2と負極側導体3
との間の距離は可能な限り近接していることが望まし
く、従って絶縁板4は薄いことが望ましい。そのため絶
縁板4には、一般的には絶縁耐圧が高いセラミックス、
もしくは加工上の容易さからプラスチックスを用いる。
The positive electrode-side conductor 2 and the negative electrode-side conductor 3 are arranged with an insulating plate 4 interposed therebetween to ensure insulation. To reduce inductance, the positive conductor 2 and the negative conductor 3
Is preferably as close as possible, and therefore the insulating plate 4 is desirably thin. Therefore, the insulating plate 4 is generally made of a ceramic having a high withstand voltage,
Alternatively, plastics is used for ease of processing.

【0021】図3を用いて、蓄電池1a,1bから半導
体素子へ流れる電流について説明する。前述の通り、蓄
電池1a,1bと半導体素子の間のインダクタンスを低
減するためには、各々の正極間、及び陰極間の距離を短
くすることが好適である。従って図3に示すように、右
上部に正極側の電力変換用素子接続の端子が配置される
場合、蓄電池1aは上側に正極端子、下側に負極端子を
配置することが望ましい。
The current flowing from the storage batteries 1a, 1b to the semiconductor element will be described with reference to FIG. As described above, in order to reduce the inductance between the storage batteries 1a and 1b and the semiconductor element, it is preferable to reduce the distance between each positive electrode and each cathode. Therefore, as shown in FIG. 3, when the power conversion element connection terminal on the positive electrode side is disposed in the upper right part, it is desirable that the storage battery 1 a has the positive terminal on the upper side and the negative terminal on the lower side.

【0022】一方、蓄電池1bは、蓄電池1aとは逆に
下側に正極端子、上側に負極端子となるように配置す
る。本構造のように端子の向きを互い違いに配置するこ
とによって、導体2,3を流れる正極側電流流線と負極
側電流流線において重なる箇所が生じ、インダクタンス
低減に有効となる。以下、隣り合う蓄電池において、端
子の極性が互い違いとなるように配置する本構造のこと
を千鳥配置構造と称する。
On the other hand, the storage battery 1b is arranged so as to have a positive terminal on the lower side and a negative terminal on the upper side, opposite to the storage battery 1a. By arranging the terminals in a staggered manner as in the present structure, a portion where the current flow lines on the positive electrode side and the current flow line on the negative electrode side flowing through the conductors 2 and 3 overlap with each other is effective in reducing inductance. Hereinafter, this structure in which the terminals of adjacent storage batteries are arranged so that their polarities are alternated is referred to as a staggered structure.

【0023】かかる本発明の第1実施例によれば、電力
変換装置を構成する導体2,3へ接続する複数個の蓄電
池1の接続方法を千鳥配置構造にすることで、蓄電池1
と半導体素子間のインダクタンスが低減でき、半導体素
子内のスイッチング時に生じる跳ね上がり電圧を抑制で
きるため、スナバ回路を削除することが可能になると共
に、高い変換効率が確保できる。
According to the first embodiment of the present invention, the connection method of the plurality of storage batteries 1 connected to the conductors 2 and 3 constituting the power converter is arranged in a staggered arrangement, whereby the storage batteries 1
Since the inductance between the semiconductor element and the semiconductor element can be reduced and the jump voltage generated at the time of switching in the semiconductor element can be suppressed, the snubber circuit can be eliminated and high conversion efficiency can be secured.

【0024】次に、本発明の第2実施例を図4を用いて
説明する。図4は本発明の第2実施例の電力変換装置の
蓄電池と平板状導体の位置関係を示す図である。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a diagram showing a positional relationship between a storage battery and a flat conductor in a power converter according to a second embodiment of the present invention.

【0025】この第2実施例は、第1実施例が蓄電池1
を2個使用するのに対して、3個使用している点にて相
違している。この実施例においては、隣り合う蓄電池1
aと1b,1bと1cとが千鳥配置構造を取って、導体
2,3に接続している。
The second embodiment is different from the first embodiment in that the storage battery 1
Is different from using two, in that three are used. In this embodiment, adjacent storage batteries 1
a and 1b, 1b and 1c are connected to conductors 2 and 3 in a staggered arrangement.

【0026】次に、本発明の第3実施例を図5を用いて
説明する。図5は本発明の第3実施例の電力変換装置の
蓄電池と平板状導体の位置関係を示す図である。
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 5 is a diagram showing a positional relationship between a storage battery and a flat conductor of a power converter according to a third embodiment of the present invention.

【0027】この第3実施例は、蓄電池1を4個使用し
ている点で、第1,2実施例と相違している。この実施
例においては、隣り合う蓄電池1aと1b,1bと1
c,1cと1dとが千鳥配置構造を取って、導体2,3
に接続している。
The third embodiment differs from the first and second embodiments in that four storage batteries 1 are used. In this embodiment, the adjacent storage batteries 1a and 1b, 1b and 1
c, 1c and 1d have a staggered arrangement, and conductors 2, 3
Connected to

【0028】かかる本発明の第2,3実施例によれば、
第1実施例と同様に、電力変換装置を構成する複数個の
蓄電池1の導体2,3への接続方法を千鳥配置構造にす
ることで、蓄電池1と電力変換用素子間のインダクタン
スが低減できる。同時に多数の蓄電池を用いることで、
更なるインダクタンス低減が可能となり、半導体素子内
のスイッチング時に生じる跳ね上がり電圧が抑制できる
ため、高い変換効率が確保できる。
According to the second and third embodiments of the present invention,
As in the first embodiment, the inductance between the storage battery 1 and the power conversion element can be reduced by using a staggered connection method for connecting the plurality of storage batteries 1 constituting the power conversion device to the conductors 2 and 3. . By using many batteries at the same time,
Since the inductance can be further reduced and the jump voltage generated at the time of switching in the semiconductor element can be suppressed, high conversion efficiency can be secured.

【0029】次に、本発明の第4実施例を図3,図6を
用いて説明する。図6は本発明の第4実施例の電力変換
装置の、図3に示すA−A′断面における蓄電池,導
体,絶縁板の断面図である。
Next, a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a cross-sectional view of the storage battery, the conductor, and the insulating plate of the power converter according to the fourth embodiment of the present invention, taken along the line AA 'shown in FIG.

【0030】この第4実施例は第1,2,3実施例と比
較して、蓄電池1としてコンデンサを用い、コンデンサ
を構成する陰極箔53がコンデンサケース51と熱的に
接続されている点にて相違している。通電時にコンデン
サは、陽極箔54と陰極箔53においてジュール損失に
起因する発熱が生じる。陰極箔53がコンデンサケース
51と熱的に接続されているために、陰極箔53で発生
した熱は、コンデンサケース51に放熱され、ケース5
1の表面から電力変換装置内の空気等に放熱される。そ
れに対して陽極箔54で発生した熱は、陽極箔54と陰
極箔53との間に挟まれる絶縁紙52の熱伝導率が0.
1W/(m・K)以下と小さく、断熱材として働くた
め、その大部分が陽極端子56へ放熱される。
The fourth embodiment differs from the first, second and third embodiments in that a capacitor is used as the storage battery 1 and the cathode foil 53 constituting the capacitor is thermally connected to the capacitor case 51. Are different. When electricity is supplied, the capacitor generates heat in the anode foil 54 and the cathode foil 53 due to Joule loss. Since the cathode foil 53 is thermally connected to the capacitor case 51, the heat generated in the cathode foil 53 is radiated to the capacitor case 51 and
The heat is radiated from the surface of the power conversion device 1 to the air in the power converter. On the other hand, the heat generated by the anode foil 54 is such that the thermal conductivity of the insulating paper 52 sandwiched between the anode foil 54 and the cathode foil 53 is 0.
Since it is as small as 1 W / (m · K) or less and works as a heat insulating material, most of the heat is radiated to the anode terminal 56.

【0031】かかる本発明の第4実施例によれば、電力
変換装置を構成する導体2,3へ接続する複数個のコン
デンサの接続方法を千鳥配置構造にして、放熱源である
正極端子間の距離を遠ざけることで、陽極箔54から正
極側導体2への放熱効率が向上し、コンデンサの内部温
度上昇を抑制することが可能となる。その結果、コンデ
ンサの寿命が向上し、信頼性の高い電力変換装置が確保
できる。またコンデンサを小型化でき、電力変換装置全
体としての小型化が可能である。
According to the fourth embodiment of the present invention, the connection method of the plurality of capacitors connected to the conductors 2 and 3 constituting the power conversion device is arranged in a staggered structure, and the connection between the positive terminals as the heat radiation source is performed. By increasing the distance, the heat radiation efficiency from the anode foil 54 to the positive electrode-side conductor 2 is improved, and it is possible to suppress an increase in the internal temperature of the capacitor. As a result, the life of the capacitor is improved, and a highly reliable power converter can be secured. In addition, the size of the capacitor can be reduced, and the size of the entire power converter can be reduced.

【0032】[0032]

【発明の効果】本発明によれば、導体に接続される蓄電
池の極配置を千鳥配置構造にすることにより、蓄電池と
電力変換用素子間のインダクタンスを低減できると共
に、蓄電池内部温度の上昇を抑制でき、高い変換効率と
共に信頼性が高く、かつ小型な電力変換装置を得ること
ができる。
According to the present invention, by staggering the pole arrangement of the storage battery connected to the conductor, the inductance between the storage battery and the power conversion element can be reduced, and the rise in the internal temperature of the storage battery is suppressed. It is possible to obtain a small and highly reliable power conversion device with high conversion efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の電力変換装置における、
蓄電池と平板状導体を示す斜視図である。
FIG. 1 shows a power converter according to a first embodiment of the present invention.
It is a perspective view which shows a storage battery and a flat conductor.

【図2】本発明の第1実施例の電力変換装置における回
路図である。
FIG. 2 is a circuit diagram of the power converter according to the first embodiment of the present invention.

【図3】本発明の第1実施例の電力変換装置の平板状導
体において、蓄電池から電力変換素子への電流流線を示
す模式図である。
FIG. 3 is a schematic diagram showing current flow lines from a storage battery to a power conversion element in the flat conductor of the power conversion device according to the first embodiment of the present invention.

【図4】本発明の第2実施例の電力変換装置における、
蓄電池と平板状導体の位置関係を示す図である。
FIG. 4 shows a power conversion device according to a second embodiment of the present invention.
It is a figure which shows the positional relationship of a storage battery and a flat conductor.

【図5】本発明の第3実施例の電力変換装置における、
蓄電池と平板状導体の位置関係を示す図である。
FIG. 5 is a diagram showing a power converter according to a third embodiment of the present invention;
It is a figure which shows the positional relationship of a storage battery and a flat conductor.

【図6】本発明の第4実施例の電力変換装置における、
図3の電力変換装置のA−A′断面における蓄電池と平
板状導体の断面図である。
FIG. 6 shows a power conversion device according to a fourth embodiment of the present invention.
FIG. 4 is a cross-sectional view of a storage battery and a flat conductor taken along the line AA ′ of the power converter in FIG. 3.

【符号の説明】[Explanation of symbols]

1…蓄電池、2…正極側導体、3…負極側導体、4…絶
縁板、51…コンデンサケース、52…絶縁紙、53…
陰極箔、54…陽極箔、55…コンデンサキャップ、5
6…正極端子、57…負極端子、58…取付用ネジ、1
01…直流電源、102…蓄電池、103…インバー
タ、109…負荷。
DESCRIPTION OF SYMBOLS 1 ... Storage battery, 2 ... Positive side conductor, 3 ... Negative side conductor, 4 ... Insulating plate, 51 ... Capacitor case, 52 ... Insulating paper, 53 ...
Cathode foil, 54 ... Anode foil, 55 ... Capacitor cap, 5
6 ... Positive terminal, 57 ... Negative terminal, 58 ... Mounting screw, 1
01 ... DC power supply, 102 ... storage battery, 103 ... inverter, 109 ... load.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福本 英士 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5H007 AA01 AA06 AA07 BB06 CA01 CC01 CC23 HA03 HA04 5H740 BA11 BB05 BB09 BB10 MM10 NN17 PP04  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Eiji Fukumoto 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in Hitachi Research Laboratory, Hitachi Ltd. 5H007 AA01 AA06 AA07 BB06 CA01 CC01 CC23 HA03 HA04 5H740 BA11 BB05 BB09 BB10 MM10 NN17 PP04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】半導体素子と前記半導体素子に接続される
複数個の蓄電池を備える電力変換装置において、前記蓄
電池は電気的に並列に接続されており、隣り合う前記蓄
電池間において、一方の蓄電池の正極に、他方の蓄電池
の負極がその正極と比較して近接するように複数個の蓄
電池を配置することを特徴とする電力変換装置。
In a power converter including a semiconductor element and a plurality of storage batteries connected to the semiconductor element, the storage batteries are electrically connected in parallel, and one of the storage batteries is connected between the adjacent storage batteries. A power converter, wherein a plurality of storage batteries are arranged on a positive electrode such that a negative electrode of the other storage battery is close to the positive electrode.
【請求項2】半導体素子と前記半導体素子に接続される
複数個の蓄電池を備える電力変換装置において、前記蓄
電池は電気的に並列に接続されており、前記蓄電池とし
てコンデンサが用いられ、隣り合う前記コンデンサ間に
おいて、一方のコンデンサの正極を基準にした場合に、
他方のコンデンサの負極が正極と比較して近接するよう
にコンデンサを配置することを特徴とする電力変換装
置。
2. A power converter comprising a semiconductor element and a plurality of storage batteries connected to the semiconductor element, wherein the storage batteries are electrically connected in parallel, a capacitor is used as the storage battery, Between the capacitors, based on the positive electrode of one capacitor,
A power converter wherein a capacitor is arranged such that a negative electrode of the other capacitor is closer to a positive electrode than a positive electrode.
【請求項3】半導体素子と前記半導体素子に接続される
複数個の蓄電池を備える電力変換装置において、前記蓄
電池は電気的に並列に接続されており、前記蓄電池とし
てコンデンサが用いられ、前記半導体素子と前記コンデ
ンサの接続に平板状導体が用いられ、隣り合う前記コン
デンサ間において、一方のコンデンサの正極を基準にし
た場合に、他方のコンデンサの負極が正極と比較して近
接するようにコンデンサを配置することを特徴とする電
力変換装置。
3. A power converter comprising a semiconductor element and a plurality of storage batteries connected to the semiconductor element, wherein the storage batteries are electrically connected in parallel, and a capacitor is used as the storage battery. A flat conductor is used to connect the capacitor and the capacitor, and the capacitors are arranged so that when the positive electrode of one capacitor is used as a reference between the adjacent capacitors, the negative electrode of the other capacitor is closer to the positive electrode. A power conversion device characterized in that:
【請求項4】半導体素子と前記半導体素子に接続される
複数個の蓄電池を備える電力変換装置において、前記蓄
電池は電気的に並列に接続されており、前記蓄電池とし
てコンデンサが用いられ、前記半導体素子と前記コンデ
ンサの接続に平板状導体が用いられ、前記平板状導体の
正側導体と負側導体が絶縁物を挟んで近接して配置さ
れ、隣り合う前記コンデンサ間において、一方のコンデ
ンサの正極を基準にした場合に、他方のコンデンサの負
極が正極と比較して近接するようにコンデンサを配置す
ることを特徴とする電力変換装置。
4. A power converter comprising a semiconductor element and a plurality of storage batteries connected to the semiconductor element, wherein the storage batteries are electrically connected in parallel, and a capacitor is used as the storage battery. A flat conductor is used for connection of the capacitor and the positive conductor and the negative conductor of the flat conductor are arranged close to each other with an insulator interposed therebetween. A power converter, wherein a capacitor is arranged such that a negative electrode of the other capacitor is closer to a positive electrode than a positive electrode when the reference is used.
【請求項5】半導体素子と前記半導体素子に接続される
複数個の蓄電池を備える電力変換装置において、前記蓄
電池は電気的に並列に接続されており、前記蓄電池とし
て電解コンデンサが用いられ、前記電解コンデンサ中の
陰極箔が前記電解コンデンサのケースと熱的に接続され
ており、隣り合う前記電解コンデンサ間において、一方
の電解コンデンサの正極を基準にした場合に、他方の電
解コンデンサの負極が正極と比較して近接するように電
解コンデンサを配置することを特徴とする電力変換装
置。
5. A power converter comprising a semiconductor element and a plurality of storage batteries connected to the semiconductor element, wherein the storage batteries are electrically connected in parallel, and an electrolytic capacitor is used as the storage battery, The cathode foil in the capacitor is thermally connected to the case of the electrolytic capacitor, and between the adjacent electrolytic capacitors, when the positive electrode of one electrolytic capacitor is used as a reference, the negative electrode of the other electrolytic capacitor is connected to the positive electrode. An electric power converter, wherein an electrolytic capacitor is arranged so as to be relatively close to each other.
【請求項6】半導体素子と前記半導体素子に接続される
複数個の蓄電池を備える電力変換装置において、前記蓄
電池は電気的に並列に接続されており、前記蓄電池とし
て電解コンデンサが用いられ、前記半導体素子と前記コ
ンデンサの接続に平板状導体が用いられ、前記平板状導
体の正側導体と負側導体が絶縁物を挟んで近接して配置
され、前記電解コンデンサ中の陰極箔が前記電解コンデ
ンサのケースと熱的に接続されており、隣り合う前記電
解コンデンサ間において、一方の電解コンデンサの正極
を基準にした場合に、他方の電解コンデンサの負極が正
極と比較して近接するように電解コンデンサを配置する
ことを特徴とする電力変換装置。
6. A power converter comprising a semiconductor element and a plurality of storage batteries connected to the semiconductor element, wherein the storage batteries are electrically connected in parallel, and an electrolytic capacitor is used as the storage battery. A flat conductor is used to connect the element and the capacitor, the positive conductor and the negative conductor of the flat conductor are arranged close to each other with an insulator interposed therebetween, and the cathode foil in the electrolytic capacitor is a negative electrode of the electrolytic capacitor. The electrolytic capacitor is thermally connected to the case, and between the adjacent electrolytic capacitors, when the positive electrode of one electrolytic capacitor is used as a reference, the electrolytic capacitor is so positioned that the negative electrode of the other electrolytic capacitor is closer than the positive electrode. A power converter, which is arranged.
【請求項7】半導体素子と前記半導体素子に接続される
複数個の蓄電池を備える電力変換装置において、前記蓄
電池は電気的に並列に接続されており、前記蓄電池とし
て電解コンデンサが用いられ、前記半導体素子と前記コ
ンデンサの接続に平板状導体が用いられ、前記平板状導
体の正側導体と負側導体が絶縁物を挟んで近接して配置
され、前記電解コンデンサ中の陰極箔が前記電解コンデ
ンサのケースと熱的に接続されており、前記平板状導体
の正側導体が負側導体と比較して上部に用いられ、隣り
合う前記電解コンデンサ間において、一方の電解コンデ
ンサの正極を基準にした場合に、他方の電解コンデンサ
の負極が正極と比較して近接するように電解コンデンサ
を配置することを特徴とする電力変換装置。
7. A power converter comprising a semiconductor element and a plurality of storage batteries connected to the semiconductor element, wherein the storage batteries are electrically connected in parallel, an electrolytic capacitor is used as the storage battery, A flat conductor is used to connect the element and the capacitor, the positive conductor and the negative conductor of the flat conductor are arranged close to each other with an insulator interposed therebetween, and the cathode foil in the electrolytic capacitor is a negative electrode of the electrolytic capacitor. When the positive conductor of the plate-shaped conductor is thermally connected to a case, and is used at an upper portion as compared with the negative conductor, and between the adjacent electrolytic capacitors, based on the positive electrode of one electrolytic capacitor. A power conversion device, wherein the electrolytic capacitor is arranged so that the negative electrode of the other electrolytic capacitor is closer to the positive electrode than the positive electrode.
JP2000079254A 2000-03-16 2000-03-16 Power converter Pending JP2001268942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000079254A JP2001268942A (en) 2000-03-16 2000-03-16 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000079254A JP2001268942A (en) 2000-03-16 2000-03-16 Power converter

Publications (2)

Publication Number Publication Date
JP2001268942A true JP2001268942A (en) 2001-09-28
JP2001268942A5 JP2001268942A5 (en) 2006-12-21

Family

ID=18596523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000079254A Pending JP2001268942A (en) 2000-03-16 2000-03-16 Power converter

Country Status (1)

Country Link
JP (1) JP2001268942A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262623A (en) * 2005-03-17 2006-09-28 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion unit and power conversion device
US7742303B2 (en) 2006-07-21 2010-06-22 Hitachi, Ltd. Electric power converter
EP2234129A2 (en) 2005-11-17 2010-09-29 Hitachi Ltd. Capacitor module, power converter, vehicle-mounted electrical-mechanical systems
EP2015626A3 (en) * 2007-06-22 2010-11-03 Hitachi Ltd. Mounting structure of a power converter
JP2012152104A (en) * 2012-05-16 2012-08-09 Hitachi Automotive Systems Ltd Power converter
JP2013220029A (en) * 2013-08-02 2013-10-24 Hitachi Automotive Systems Ltd Power conversion apparatus
JP2016139702A (en) * 2015-01-28 2016-08-04 株式会社明電舎 Attachment structure of capacitor and power converter
CN107403783A (en) * 2017-08-30 2017-11-28 扬州国扬电子有限公司 A kind of parallel pole combination, power model and power modules

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262623A (en) * 2005-03-17 2006-09-28 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion unit and power conversion device
US8411454B2 (en) 2005-11-17 2013-04-02 Hitachi, Ltd. Power converter
US8243463B2 (en) 2005-11-17 2012-08-14 Hitachi, Ltd. Capacitor module
US8369100B2 (en) 2005-11-17 2013-02-05 Hitachi, Ltd. Power converter
EP2234129A2 (en) 2005-11-17 2010-09-29 Hitachi Ltd. Capacitor module, power converter, vehicle-mounted electrical-mechanical systems
US7974101B2 (en) 2005-11-17 2011-07-05 Hitachi, Ltd. Power converter
US8422244B2 (en) 2005-11-17 2013-04-16 Hitachi, Ltd. Power converter
EP3300239A1 (en) 2006-07-21 2018-03-28 Hitachi, Ltd. Electric power converter
US7742303B2 (en) 2006-07-21 2010-06-22 Hitachi, Ltd. Electric power converter
EP2605392A2 (en) 2006-07-21 2013-06-19 Hitachi Ltd. Electric power converter
US7952876B2 (en) 2006-07-21 2011-05-31 Hitachi, Ltd. Electric power converter
EP2605392B1 (en) 2006-07-21 2017-11-15 Hitachi, Ltd. Electric power converter
EP3300239B1 (en) * 2006-07-21 2022-02-02 Hitachi Astemo, Ltd. Electric power converter
EP2015626A3 (en) * 2007-06-22 2010-11-03 Hitachi Ltd. Mounting structure of a power converter
US8054633B2 (en) 2007-06-22 2011-11-08 Hitachi, Ltd. Power converter
JP2012152104A (en) * 2012-05-16 2012-08-09 Hitachi Automotive Systems Ltd Power converter
JP2013220029A (en) * 2013-08-02 2013-10-24 Hitachi Automotive Systems Ltd Power conversion apparatus
JP2016139702A (en) * 2015-01-28 2016-08-04 株式会社明電舎 Attachment structure of capacitor and power converter
CN107403783A (en) * 2017-08-30 2017-11-28 扬州国扬电子有限公司 A kind of parallel pole combination, power model and power modules
CN107403783B (en) * 2017-08-30 2023-10-31 扬州国扬电子有限公司 Parallel electrode combination, power module and power module

Similar Documents

Publication Publication Date Title
US5671134A (en) Inverter unit and inverter apparatus
CN104852602A (en) Capacitor bank, laminated bus, and power supply apparatus
JP2019067759A (en) Battery module for main battery
US20030091884A1 (en) Power tap device, fuel cell stack, and method of dividing a fuel cell stack
JP2001143769A (en) Cell module and power supply
EP4096053B1 (en) Battery control circuit, battery and electronic device
CN102195047B (en) The current equalizing electrode plate of tool insulation shunting conductive structure
TW201414046A (en) Structure of lithium battery
WO2010049764A1 (en) Annular capacitor with power conversion components
JP2012134339A (en) Resin seal type capacitor
JP2001268942A (en) Power converter
CN201345503Y (en) Composite bus bar
KR20140104435A (en) Electrical energy storage module and method for producing an electrical energy storage module
US9595704B2 (en) Electrical energy storage module and method for producing an electrical energy storage module
US20100321859A1 (en) Annular Capacitor with power conversion components arranged and attached in manners uniquely allowed by the ring shaped form factor
US10374439B2 (en) Circuit arrangement having charge storage units
US20190287722A1 (en) Power Capacitor Module With Cooling Arrangement
JPH1094256A (en) Power-conversion element module
JP2003047259A (en) Power converter
CN210896990U (en) Direct current capacitor packaging structure
CN212278128U (en) Laminated busbar structure with low parasitic inductance and suitable for parallel connection of devices
CN109039098B (en) High-efficiency energy-saving frequency converter device
CN111277150A (en) Laminated busbar structure with low parasitic inductance and suitable for parallel connection of devices
CN213845053U (en) Novel filter capacitor combined module
CN220023415U (en) Laminated busbar structure for static var generator power unit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061102

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216