JP2001186691A - Power supply adjusting device using capacitor recharging device - Google Patents

Power supply adjusting device using capacitor recharging device

Info

Publication number
JP2001186691A
JP2001186691A JP37199799A JP37199799A JP2001186691A JP 2001186691 A JP2001186691 A JP 2001186691A JP 37199799 A JP37199799 A JP 37199799A JP 37199799 A JP37199799 A JP 37199799A JP 2001186691 A JP2001186691 A JP 2001186691A
Authority
JP
Japan
Prior art keywords
capacitor
charging
power supply
load
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP37199799A
Other languages
Japanese (ja)
Other versions
JP3695688B2 (en
Inventor
Michio Okamura
廸夫 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKAMURA KENKYUSHO KK
Jeol Ltd
Okamura Laboratory Inc
Power System Co Ltd
Original Assignee
OKAMURA KENKYUSHO KK
Jeol Ltd
Okamura Laboratory Inc
Power System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKAMURA KENKYUSHO KK, Jeol Ltd, Okamura Laboratory Inc, Power System Co Ltd filed Critical OKAMURA KENKYUSHO KK
Priority to JP37199799A priority Critical patent/JP3695688B2/en
Publication of JP2001186691A publication Critical patent/JP2001186691A/en
Application granted granted Critical
Publication of JP3695688B2 publication Critical patent/JP3695688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve charging and discharging quickly, improve reliability and efficiency, reduce loss, extend life, feed power when power fails, and level a load. SOLUTION: The power supply adjusting device is provided with a capacitor- recharging device 3 that has a circuit for bypassing a charge current and consists of a plurality of capacitors where parallel monitors for controlling charge voltage and current are connected in parallel, charging means 1 and 2 for charging the capacitor-recharging device 3 by an input power supply, discharging means 4-6 for discharging by controlling an output current from the capacitor-recharging device 3, a connection means 7 that is connected between an input power supply and a load for supplying the output of the discharging means 5 to the load, and a control means 8 for monitoring the feed system between the charging means 2 and the discharging means 6. Thus, connection is made to the input power supply and the load by the charging or discharging of the capacitor-recharging device 3 for feeding power when power fails or leveling the load.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、入力電源と負荷に
接続して停電時の給電を行ったり負荷の平準化を行った
りするキャパシタ蓄電装置を用いた電源調整装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply adjusting device using a capacitor power storage device connected to an input power supply and a load to supply power at the time of a power failure or level the load.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】無停電
電源は、これまでその蓄電素子として二次電池(鉛電
池、ニッケルカドミウム電池など)を用いるのが通常で
あった。しかし、無停電電源の多くの目的が比較的短時
間の停電バックアップであるのに対し、これまで知られ
ている限り全ての二次電池は1分間あるいは数十秒の短
時間放電には適していないため、余分に大きな容量を搭
載してその一部を使うような方法が採られていた。ま
た、その特性から、放電の回復のための充電には長時間
を有し、その間に再度停電した場合の対策や、大電流で
大深度放電を行った後の二次電池の信頼性などの問題が
生じていた。
2. Description of the Related Art Uninterruptible power supplies have conventionally used secondary batteries (lead batteries, nickel cadmium batteries, etc.) as storage elements. However, while many purposes of uninterruptible power supplies are backups of power failures in a relatively short period of time, all rechargeable batteries known so far are suitable for short-time discharge of one minute or tens of seconds. For this reason, a method was adopted in which an extra large capacity was used and a part of the capacity was used. Also, due to its characteristics, charging for recovery of discharge takes a long time, and measures such as measures to be taken in the event of a power failure again during that time, and reliability of the secondary battery after performing deep discharge with large current, etc. There was a problem.

【0003】二次電池以外の、充放電時間が短く、寿命
が無限に長い蓄電素子があれば理想的な無停電電源が得
られる。例えばフライホィール、電解コンデンサ、電気
二重相キャパシタなどを用いた、それぞれ特徴のある無
停電電源が提案されてきた。しかし、机上プランだけな
ら容量の十分大きなコンデンサを考えることも可能であ
るが、現実に製造できる電解コンデンサのエネルギー密
度の制約から、停電補償時間は数100msに留まり、
二次電池に置き換わるには至っていない。
[0003] An ideal uninterruptible power supply can be obtained by using a power storage element other than a secondary battery, which has a short charge / discharge time and an infinitely long life. For example, unique uninterruptible power supplies using a flywheel, an electrolytic capacitor, an electric double-phase capacitor, and the like have been proposed. However, if it is only a desk plan, it is possible to consider a capacitor with a sufficiently large capacity. However, due to the limitation of the energy density of the electrolytic capacitor that can be actually manufactured, the power failure compensation time is limited to several hundred ms,
It has not been replaced with a secondary battery.

【0004】フライホィールは、短時間の蓄電には有望
で寿命も長いが、低回転数ではエネルギー密度が低く、
エネルギー密度を増そうと回転数を高めるとフライホィ
ールの破壊に対する安全性から、防護処置などが必要と
なるため、急速に普及するには至っていない。
[0004] Flywheels are promising for short-term power storage and have a long life, but at low rotational speeds, the energy density is low.
If the rotational speed is increased to increase the energy density, safety measures against the destruction of the flywheel require protective measures and the like, so it has not yet spread rapidly.

【0005】また、従来の二次電池を用いた無停電電源
には、多くの工夫がなされ特許出願されているが、その
根本問題である二次電池の充放電時間や寿命、出力密度
に関係する部分は十分に改善されていない。
[0005] In addition, the conventional uninterruptible power supply using a secondary battery has been devised with many contrivances, and a patent application has been made. The part to do is not sufficiently improved.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するものであって、短時間の充放電が可能で、高信頼
性、高効率、低損失、長寿命で停電時の給電、負荷の平
準化を行えるようにするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is capable of charging and discharging in a short time, providing high reliability, high efficiency, low loss, long life, and power supply during a power failure. This is to enable load leveling.

【0007】そのために本発明は、入力電源と負荷に接
続して停電時の給電を行ったり負荷の平準化を行ったり
するキャパシタ蓄電装置を用いた電源調整装置であっ
て、充電電流をバイパスする回路を有し充電電圧・電流
を制御する並列モニタを並列に接続した複数のキャパシ
タからなるキャパシタ蓄電装置と、前記入力電源より前
記キャパシタ蓄電装置に充電を行う充電手段と、前記キ
ャパシタ蓄電装置から出力電流を制御して放電を行う放
電手段と、前記入力電源と負荷との間の給電系に接続し
て前記放電手段の出力を負荷に給電する接続手段と、前
記入力電源と負荷との間の給電系を監視して前記充電手
段及び放電手段を制御する制御手段とを備えたことを特
徴とするものである。
[0007] Therefore, the present invention is a power supply adjustment device using a capacitor power storage device that is connected to an input power supply and a load to supply power during a power failure or level the load, and bypasses a charging current. A capacitor storage device comprising a plurality of capacitors connected in parallel with a parallel monitor for controlling charging voltage and current having a circuit; charging means for charging the capacitor storage device from the input power source; and an output from the capacitor storage device. A discharging unit that controls and discharges a current, a connecting unit that is connected to a power supply system between the input power supply and the load, and supplies an output of the discharging unit to the load, and a connection unit between the input power supply and the load. And control means for monitoring the power supply system and controlling the charging means and the discharging means.

【0008】また、前記充電手段は、AC/DCコンバ
ータ、初期化電圧を設定し、前記各キャパシタを前記初
期化電圧に充電する初期化機能を有し、前記放電手段
は、DC/ACインバータや出力電流を一定に制御する
電流ポンプを有し、前記キャパシタ蓄電装置は、充電電
圧に応じてキャパシタの直並列切り換えを行うバンク切
り換え回路を有し、前記制御手段は、負荷の変動を検出
して前記充電手段及び放電手段を制御し前記キャパシタ
蓄電装置の充放電を行うことにより負荷の平準化を行
い、入力電源の停電を検出して前記放電手段を制御し前
記キャパシタ蓄電装置から給電を行うことを特徴とする
ものである。
The charging means has an AC / DC converter, an initialization function for setting an initialization voltage, and charging each of the capacitors to the initialization voltage. The discharging means includes a DC / AC inverter, A current pump for controlling the output current to be constant; the capacitor power storage device having a bank switching circuit for performing a series / parallel switching of the capacitor in accordance with a charging voltage; Controlling the charging means and the discharging means to perform charging and discharging of the capacitor power storage device, leveling the load, detecting a power outage of an input power supply, controlling the discharging means, and supplying power from the capacitor power storage device. It is characterized by the following.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しつつ説明する。図1は本発明に係るキャパシタ
蓄電装置を用いた電源調整装置の実施の形態を示す図で
あり、1はAC/DCコンバータ、2は充電制御回路、
3はキャパシタ蓄電装置、4は電流ポンプ、5はDC/
ACインバータ、6は出力制御回路、7は接続回路、8
は制御装置を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a power supply adjusting device using a capacitor power storage device according to the present invention, wherein 1 is an AC / DC converter, 2 is a charging control circuit,
3 is a capacitor power storage device, 4 is a current pump, 5 is DC /
AC inverter, 6 is an output control circuit, 7 is a connection circuit, 8
Indicates a control device.

【0010】図1において、キャパシタ蓄電装置3は、
多数の直並列接続されるキャパシタCとそれら各キャパ
シタCに並列接続される並列モニタからなり、瞬時的な
充放電が可能な蓄電装置である。キャパシタCは、例え
ば電気二重層キャパシタであり、並列モニタは、キャパ
シタCに並列に接続して充電電流をバイパスする回路を
有し充電電圧・電流を制御するものである。AC/DC
コンバータ1は、入力電源の受電系とキャパシタ蓄電装
置3との間に接続され入力電源の交流を直流に変換して
キャパシタ蓄電装置3の充電を行うものであり、充電制
御回路2は、AC/DCコンバータ1が単なる整流回路
ではなく、キャパシタ蓄電装置3に効率よく充電するた
め、キャパシタ蓄電装置3から見て電流源と見なせるよ
うにAC/DCコンバータ1を制御して充電制御を行う
ものである。電流ポンプ4は、複数のキャパシタC及び
並列モニタを含むキャパシタ蓄電装置3から放電する出
力電流の制御を行うものであり、DC/ACインバータ
5は、直流を交流に変換してキャパシタ蓄電装置3を放
電し、そのDC/ACインバータ5を制御して放電を制
御するのが出力制御回路6である。
In FIG. 1, a capacitor power storage device 3 includes:
The power storage device includes a number of capacitors C connected in series and parallel and a parallel monitor connected in parallel to each of the capacitors C, and is capable of instantaneous charging and discharging. The capacitor C is, for example, an electric double layer capacitor, and the parallel monitor has a circuit connected in parallel with the capacitor C to bypass the charging current, and controls the charging voltage / current. AC / DC
Converter 1 is connected between the power receiving system of the input power supply and capacitor power storage device 3 to convert AC of the input power supply to DC to charge capacitor power storage device 3. In order for the DC converter 1 to charge the capacitor power storage device 3 efficiently rather than a simple rectifier circuit, the charging control is performed by controlling the AC / DC converter 1 so that the DC / DC converter 1 can be regarded as a current source when viewed from the capacitor power storage device 3. . The current pump 4 controls the output current discharged from the capacitor power storage device 3 including the plurality of capacitors C and the parallel monitor. The DC / AC inverter 5 converts the direct current into the alternating current to change the capacitor power storage device 3. The output control circuit 6 discharges and controls the DC / AC inverter 5 to control the discharge.

【0011】接続回路7は、入力電源と負荷との間の給
電系にDC/ACインバータ5を接続して負荷の変動に
応じてDC/ACインバータ5の出力を制御することに
より負荷平準化装置として使用し、停電時には入力電源
を切り離してDC/ACインバータ5から負荷へ給電を
行い無停電電源として使用するように切り換えるもので
ある。常時DC/ACインバータ5を入力電源と負荷と
の間の給電系に接続しておくことにより、常時は負荷平
準化装置として使用し、停電時はDC/ACインバータ
5から負荷に給電することもできるので、接続回路7に
よる切り換えを省いてもよい。制御装置8は、入力電源
と負荷との間の給電系を監視し、負荷の変動や停電に応
じて充電制御回路2及び出力制御回路6を制御するもの
であり、負荷の変動を検出してキャパシタ蓄電装置3の
充放電を制御することにより負荷の平準化を行ったりす
るように充電制御回路2及び出力制御回路6を制御し、
入力電源の停電を検出してキャパシタ蓄電装置3から給
電を行うように出力制御回路6を制御する。
The connection circuit 7 connects the DC / AC inverter 5 to a power supply system between the input power supply and the load, and controls the output of the DC / AC inverter 5 according to a change in the load. In the event of a power failure, the input power is cut off to supply power from the DC / AC inverter 5 to the load and switch to use as an uninterruptible power supply. By always connecting the DC / AC inverter 5 to the power supply system between the input power supply and the load, the DC / AC inverter 5 can always be used as a load leveling device, and in the event of a power failure, the DC / AC inverter 5 can supply power to the load. Therefore, the switching by the connection circuit 7 may be omitted. The control device 8 monitors the power supply system between the input power supply and the load, and controls the charging control circuit 2 and the output control circuit 6 in response to a load change or power failure. Controlling the charge control circuit 2 and the output control circuit 6 so as to level the load by controlling the charge and discharge of the capacitor power storage device 3;
The output control circuit 6 is controlled so that a power failure of the input power supply is detected and power is supplied from the capacitor power storage device 3.

【0012】キャパシタ蓄電装置3として、例えば耐電
圧が2〜3V、内部抵抗2ΩF、エネルギー密度5Wh
/lit以上のキャパシタセルに並列モニタを接続し、
必要な電圧、電力となるようにこれらを直並列に接続し
て構成すると、最小30秒〜1分間の短時間充電、30
秒以上最短放電時間1分程度の停電全負荷に対応可能
で、高効率で低損失、長寿命で高い信頼性の高信頼蓄電
装置を実現できる。したがって、電力供給の正常時に充
電し、異常時又は必要時に放電する1分間の無停電電源
及び負荷平準化装置が実現できる。しかも、寿命判定な
どを必要とせず、メンテナンスフリーで、完全密閉でガ
ス漏れがなく、充電電圧から正確な残量予測も可能であ
る。
The capacitor power storage device 3 has, for example, a withstand voltage of 2 to 3 V, an internal resistance of 2 ΩF, and an energy density of 5 Wh.
Connect a parallel monitor to a capacitor cell of / lit or more,
If these are connected in series and parallel so that the required voltage and electric power are obtained, a short time charge of a minimum of 30 seconds to 1 minute,
It is possible to realize a highly reliable power storage device that can cope with a full power failure with a minimum discharge time of about 1 second or more and a short discharge time of about 1 minute, and has high efficiency, low loss, long life, and high reliability. Therefore, it is possible to realize a one-minute uninterruptible power supply and a load leveling device that charge when the power supply is normal and discharge when abnormal or necessary. In addition, there is no need to judge the service life, etc., and it is maintenance-free, completely sealed, has no gas leakage, and can accurately predict the remaining amount from the charging voltage.

【0013】例えば1kWの契約電力で尖頭負荷が2k
Wある装置を使った場合、その不足電力を充電しておい
た本装置から供給することができる。このような用途で
は、尖頭電力の発生毎に放電し、次の発生に間に合うよ
うに充電するという激しい充放電サイクルを伴うので、
二次電池では劣化が激しく実用化するのは困難であった
が、本発明のキャパシタ蓄電装置を使用することによ
り、短時間の充放電サイクルに対応でき、しかも高信頼
性、長寿命で使用することができる。
[0013] For example, a peak load is 2k with a contract power of 1kW.
When a certain device is used, the insufficient power can be supplied from the charged device. In such applications, there is an intense charge / discharge cycle that discharges each time the peak power is generated and charges it in time for the next generation,
Although the secondary battery was severely degraded and was difficult to put into practical use, the use of the capacitor power storage device of the present invention makes it possible to cope with a short charge-discharge cycle, and is used with high reliability and long life. be able to.

【0014】図2は本発明に係る電源調整装置に用いる
キャパシタ蓄電装置の構成例を示す図であり、CA1〜
CA3、CB1〜CB3はキャパシタ、SS、SA1〜
SA3、SB1〜SB3はスイッチを示す。
FIG. 2 is a diagram showing an example of the configuration of a capacitor power storage device used in the power supply adjusting device according to the present invention.
CA3, CB1 to CB3 are capacitors, SS, SA1 to
SA3 and SB1 to SB3 indicate switches.

【0015】図2において、キャパシタCA1〜CA3
とCB1〜CB3は、それぞれ同数ずつ直列接続した2
組のキャパシタ群A、Bを構成するものである。なお、
それぞれのキャパシタCA1〜CA3、CB1〜CB3
は、複数個を直列あるいはそれをさらに並列に接続した
バンクであってもよい。スイッチSSは、2組のキャパ
シタ群A、Bを直列接続する直列接続スイッチ手段であ
る。スイッチSA1〜SA3は、一方のキャパシタ群A
とスイッチSSとの直列接続点を他方のキャパシタ群
Bの直列接続他端及びそれぞれのキャパシタCB1〜
CB3の直列接続点に接続する、一方のスイッチ手段群
であり、スイッチSB1〜SB3は、他方のキャパシタ
群BとスイッチSSとの直列接続点を一方のキャパシ
タ群Aの直列接続他端及びそれぞれのキャパシタの直
列接続点に接続する、他方のスイッチ手段群である。
In FIG. 2, capacitors CA1 to CA3
And CB1 to CB3 are connected in series by the same number, respectively.
It constitutes a set of capacitor groups A and B. In addition,
Capacitors CA1 to CA3, CB1 to CB3
May be a bank in which a plurality of banks are connected in series or further in parallel. The switch SS is a series connection switch means for connecting the two sets of capacitor groups A and B in series. The switches SA1 to SA3 are connected to one of the capacitor groups A
And the switch SS are connected in series to the other end of the other capacitor group B and the respective capacitors CB1 to CB1.
One switch means group connected to the series connection point of CB3, and switches SB1 to SB3 connect the series connection point of the other capacitor group B and the switch SS to the other end of the series connection of one capacitor group A and the other end thereof. This is the other switch means group connected to the series connection point of the capacitors.

【0016】次に、切り換え接続を説明すると、図2
(A)に示すようにスイッチSSのみをオンにすること
により、図2(D)に示すようにキャパシタCA1〜C
A3、CB1〜CB3を直列接続とし、図2(B)に示
すようにスイッチSSをオフにして一方のスイッチ手段
群のスイッチSA3及びこれに対応する他方のスイッチ
手段群のスイッチSB3をオンにすることにより、図2
(E)に示すように一方のキャパシタ群Aの中央側接続
キャパシタCA3と他方のキャパシタ群Bの中央側接続
キャパシタCB3とを並列接続とする。同様に、図2
(C)に示すように一方のスイッチ手段群のスイッチS
A2及びこれに対応する他方のスイッチ手段群のスイッ
チSB2をオンにし、他のスイッチは全てオフにするこ
とにより、図2(F)に示すように一方のキャパシタ群
Aの中央側接続キャパシタCA3、CA2の直列回路と
他方のキャパシタ群Bの中央側接続キャパシタCB3、
CB2の直列回路とを並列接続とする。さらに、一方の
スイッチ手段群のスイッチSA1及びこれに対応する他
方のスイッチ手段群のスイッチSB1をオンにし、他の
スイッチは全てオフにすることにより、図2(G)に示
すように一方のキャパシタ群AのキャパシタCA1〜C
A3の直列回路と他方のキャパシタ群BのキャパシタC
B1〜CB3の直列回路とを並列接続とする。
Next, the switching connection will be described.
By turning on only the switch SS as shown in FIG. 2A, the capacitors CA1 to CA1 as shown in FIG.
A3, CB1 to CB3 are connected in series, and as shown in FIG. 2B, the switch SS is turned off and the switch SA3 of one switch means group and the switch SB3 corresponding to the other switch means group are turned on. As a result, FIG.
As shown in (E), the center connection capacitor CA3 of one capacitor group A and the center connection capacitor CB3 of the other capacitor group B are connected in parallel. Similarly, FIG.
As shown in (C), the switch S of one switch means group
A2 and the switch SB2 of the other switch means group corresponding thereto are turned on, and all the other switches are turned off. As a result, as shown in FIG. A series circuit of CA2 and a central connection capacitor CB3 of the other capacitor group B;
The CB2 series circuit is connected in parallel. Further, by turning on the switch SA1 of one switch means group and the switch SB1 corresponding to the other switch means group and turning off all other switches, one capacitor as shown in FIG. Capacitors CA1-C of group A
A3 series circuit and capacitor C of the other capacitor group B
The series circuits B1 to CB3 are connected in parallel.

【0017】上記のように一方のスイッチ手段群のいず
れか1つのスイッチSA1〜SA3及びこれと反対側の
他方のスイッチ手段群のスイッチSB1〜SB3又はス
イッチSSのいずれかを選択的に接続して、図2(D)
〜(G)のように複数のキャパシタCA1〜CA3、C
B1〜CB3の接続を切り換え制御すると、電圧を調整
し充放電に伴う電圧の変動を押さえることができる。
As described above, any one of the switches SA1 to SA3 of one switch means group and one of the switches SB1 to SB3 or the switches SS of the other switch means group on the opposite side are selectively connected. , FIG. 2 (D)
To (G), a plurality of capacitors CA1 to CA3, C
When the connection of B1 to CB3 is switched and controlled, the voltage can be adjusted and the fluctuation of the voltage due to charging and discharging can be suppressed.

【0018】例えば図2(D)に示すようにキャパシタ
CA1〜CA3、CB1〜CB3を全て直列に接続して
充電を開始する場合には、充電側の端子電圧が所定値ま
で上昇すると、図2(E)に示す接続に切り換えること
により、キャパシタCA3、CB3の電圧分低下させ
る。さらに充電により再び充電側の端子電圧が所定値ま
で上昇すると、図2(F)、(G)に示す接続に順次切
り換えることにより、充電側の端子電圧を所定値より上
昇しないように押さえることができる。
For example, when charging is started by connecting all the capacitors CA1 to CA3 and CB1 to CB3 in series as shown in FIG. 2D, when the terminal voltage on the charging side rises to a predetermined value, By switching to the connection shown in (E), the voltage is reduced by the voltage of the capacitors CA3 and CB3. Further, when the charging-side terminal voltage rises again to a predetermined value due to charging, the connection is sequentially switched to the connection shown in FIGS. 2F and 2G, whereby the charging-side terminal voltage can be suppressed so as not to rise above the predetermined value. it can.

【0019】また、図2(G)に示す接続から放電を開
始し負荷に給電を行う場合には、出力電圧が所定値まで
低下すると、図2(F)に示す接続に切り換えることに
より出力電圧の低下を補い、さらに出力電圧が所定値ま
で低下すると、図2(E)、(D)に示す接続に切り換
えることにより、出力電圧を所定値より低下しないよう
に押さえることができる。
When the discharge is started from the connection shown in FIG. 2G and power is supplied to the load, when the output voltage drops to a predetermined value, the output voltage is switched to the connection shown in FIG. When the output voltage further decreases to a predetermined value, switching to the connection shown in FIGS. 2E and 2D can suppress the output voltage so as not to drop below the predetermined value.

【0020】しかも、充放電の際の全電流を負担するの
は、キャパシタCA1〜CA3、CB1〜CB3を全て
直列に接続するスイッチSSのみであり、その他のスイ
ッチSA1〜SA3、SB1〜SB3は、全電流の1/
2の電流容量ですむ。さらに、いずれの段階でもキャパ
シタに直列に接続されるスイッチは1個だけとなるの
で、スイッチに半導体を用いたときに問題となるスイッ
チのオン電圧による損失も最小限にできる。
Moreover, only the switch SS connecting all the capacitors CA1 to CA3 and CB1 to CB3 in series bears the entire current during charging and discharging, and the other switches SA1 to SA3 and SB1 to SB3 1 / of the total current
Only 2 current capacity is needed. Further, since only one switch is connected in series to the capacitor at any stage, the loss due to the ON voltage of the switch, which is a problem when a semiconductor is used for the switch, can be minimized.

【0021】図3は直並列切り換え回路を有するキャパ
シタ蓄電装置の他の実施の形態を示す図であり、CM、
CA1〜CAn、CB1〜CBnはキャパシタ、SA、
SBは切り換えスイッチ、SS1、SS2、SSA1〜
SSA3、SSB1〜SSB3は制御整流素子、SD
1、SD2、SDA1〜SDA3、SDB1〜SDB3
は整流素子、A1は制御回路、21は充電回路、22は
出力制御回路、23は負荷を示す。
FIG. 3 is a diagram showing another embodiment of a capacitor power storage device having a series / parallel switching circuit.
CA1 to CAn, CB1 to CBn are capacitors, SA,
SB is a changeover switch, SS1, SS2, SSA1 to
SSA3, SSB1 to SSB3 are control rectifiers, SD
1, SD2, SDA1 to SDA3, SDB1 to SDB3
Denotes a rectifying element, A1 denotes a control circuit, 21 denotes a charging circuit, 22 denotes an output control circuit, and 23 denotes a load.

【0022】図3(A)において、キャパシタCMは、
負荷の定格電圧の範囲で充放電される出力用の主キャパ
シタバンクであり、キャパシタCA1〜CAn、CB1
〜CBnは、負荷電圧の許容変動幅の範囲で電圧調整用
に充放電される調整用キャパシタとして、キャパシタC
Mに直列接続され、直並列接続の切り換えにより電圧の
調整を行うものである。切り換えスイッチSA、SB
は、キャパシタCMに直列に接続したキャパシタCA1
〜CAn、CB1〜CBnを2組のキャパシタ群に分け
て直並列接続の切り換えを行うものである。
In FIG. 3A, a capacitor CM is
A main capacitor bank for output that is charged and discharged in the range of the rated voltage of the load, and includes capacitors CA1 to CAn and CB1.
To CBn are adjusting capacitors charged and discharged for voltage adjustment in the range of the allowable variation range of the load voltage.
M is connected in series, and the voltage is adjusted by switching between series and parallel connections. Changeover switches SA, SB
Is a capacitor CA1 connected in series with the capacitor CM.
.. CAn and CB1 to CBn are divided into two sets of capacitor groups to switch the series / parallel connection.

【0023】制御回路A1は、キャパシタCMにおける
充放電状態(端子電圧)を検出し、その充放電状態に応
じて切り換えスイッチSA、SBを制御してキャパシタ
CA1〜CAn、CB1〜CBnの直並列接続の切り換
えを行う制御手段である。切り換えスイッチSA、SB
は、この制御回路A1によりキャパシタCA1〜CA
n、CB1〜CBnが全て直列接続となる実線のポジシ
ョンから一方のキャパシタ群AのキャパシタCA1〜C
Anの直列回路と他方のキャパシタ群BのキャパシタC
B1〜CBnの直列回路とが並列接続となる点線のポジ
ションまで段階的に切り換え制御される。
The control circuit A1 detects the charging / discharging state (terminal voltage) of the capacitor CM and controls the changeover switches SA and SB according to the charging / discharging state to connect the capacitors CA1 to CAn and CB1 to CBn in series / parallel. This is a control means for switching over. Changeover switches SA, SB
Are controlled by the control circuit A1.
n, CB1 to CBn are connected in series from the position of the solid line to the capacitors CA1 to CA of one of the capacitor groups A.
An series circuit and capacitor C of the other capacitor group B
The switching is controlled stepwise to a dotted line position where the series circuit of B1 to CBn is connected in parallel.

【0024】充電回路21は、電源よりキャパシタC
M、CA1〜CAn、CB1〜CBnに定電流充電する
ものであり、キャパシタCMに直列接続されたキャパシ
タCA1〜CAn、CB1〜CBnの直並列接続の切り
換えが段階的に制御され、最終的に一方のキャパシタ群
AのキャパシタCA1〜CAnの直列回路と他方のキャ
パシタ群BのキャパシタCB1〜CBnの直列回路とが
並列接続され定格電圧まで充電されて充電を終了する。
出力制御回路22は、例えば既に知られた電流ホンプの
ようにキャパシタCM、CA1〜CAn、CB1〜CB
nから負荷23に供給する電流を制御、調節したり、負
荷23から逆に電流源(充電回路)としてキャパシタC
M、CA1〜CAn、CB1〜CBnを充電する、つま
り負荷23が発電機となる回生制動の場合の切り換えを
行ったりするものである。したがって、出力制御回路2
2としては、電子スイッチや、降圧チョッパ、昇圧チョ
ッパ、その他のDC/DCコンバータが用いられるが、
キャパシタCA1〜CAn、CB1〜CBnの接続切り
換えの制御により、負荷23から見て調整の必要のない
範囲に電圧が安定化される場合には省くこともでき、特
に必要不可欠な構成要素というものではない。勿論、キ
ャパシタCA1〜CAn、CB1〜CBnの接続切り換
えの制御により、電圧変動範囲が小さくなれば、これと
コンバータを組み合わせることにより、コンバータを高
効率に設計でき、電圧安定性の高い電源を実現すること
もできる。
The charging circuit 21 uses a capacitor C
M, CA1 to CAn and CB1 to CBn are charged at a constant current, and switching of the series / parallel connection of the capacitors CA1 to CAn and CB1 to CBn connected in series to the capacitor CM is controlled in a stepwise manner. The series circuit of the capacitors CA1 to CAn of the capacitor group A and the series circuit of the capacitors CB1 to CBn of the other capacitor group B are connected in parallel and charged to the rated voltage, and the charging is completed.
The output control circuit 22 includes capacitors CM, CA1 to CAn, and CB1 to CB, for example, as in a known current pump.
n from the load 23 to the load 23, and the capacitor C as a current source (charging circuit) from the load 23
M, CA1 to CAn and CB1 to CBn are charged, that is, switching is performed in the case of regenerative braking in which the load 23 is a generator. Therefore, the output control circuit 2
As 2, electronic switches, step-down choppers, step-up choppers, and other DC / DC converters are used.
By controlling the connection switching of the capacitors CA1 to CAn and CB1 to CBn, it is possible to omit the case where the voltage is stabilized in a range that does not need to be adjusted when viewed from the load 23. Particularly, indispensable components are Absent. Of course, if the voltage fluctuation range is reduced by controlling the connection switching of the capacitors CA1 to CAn and CB1 to CBn, the converter can be designed with high efficiency by combining this with the converter, thereby realizing a power supply with high voltage stability. You can also.

【0025】切り換え回路を構成するスイッチSA、S
Bは、図3(B)に示すようにサイリスタなどの半導体
からなる単方向の制御整流素子SS1、SS2、SSA
1〜SSA3、SSB1〜SSB3とダイオードからな
る整流素子SD1、SD2、SDA1〜SDA3、SD
B1〜SDB3との逆並列回路を用いることができる。
このうち、少なくとも一方のキャパシタ群Aの直列接続
1端と他方のキャパシタ群Bの直列接続他端との間を接
続する回路は、制御整流素子SSA1と整流素子SDA
1により構成し、他方のキャパシタ群Bの直列接続1端
と一方のキャパシタ群Aの直列接続他端との間を接続す
る回路は、制御整流素子SSB1と整流素子SDB1に
より構成する。そして、放電方向の整流素子SDA1、
SDB1には逆方向(充電方向)の制御整流素子SSA
1、SSB1を並列接続する。これ以外の回路には、充
電方向の制御整流素子SS2、SSA3、SSB3と逆
方向の制御整流素子SS1、SSA2、SSB2とを直
列接続し、それぞれに逆方向の整流素子SD2、SDA
3、SDB3、整流素子SD1、SDA2、SDB2を
並列接続する。勿論、これらの回路としては、サイリス
タ(制御整流素子)を逆並列接続した回路やトライアッ
ク(双方向制御整流素子)を接続した回路でもよい。
Switches SA, S constituting a switching circuit
B is a unidirectional control rectifier SS1, SS2, SSA made of a semiconductor such as a thyristor as shown in FIG.
1 to SSA3, SSB1 to SSB3, and rectifying elements SD1, SD2, SDA1 to SDA3, SD
An anti-parallel circuit with B1 to SDB3 can be used.
Among these, a circuit that connects between one end of the series connection of at least one capacitor group A and the other end of the series connection of the other capacitor group B is a control rectifying element SSA1 and a rectifying element SDA.
1 and a circuit connecting between one end of the series connection of the other capacitor group B and the other end of the series connection of the one capacitor group A is made up of the control rectifier SSB1 and the rectifier SDB1. And the rectifying element SDA1 in the discharge direction,
SDB1 has a control rectifier SSA in the reverse direction (charging direction).
1. Connect SSB1 in parallel. In the other circuits, the control rectifiers SS2, SSA3, SSB3 in the charging direction and the control rectifiers SS1, SSA2, SSB2 in the opposite direction are connected in series, and the rectifiers SD2, SDA in the opposite direction are respectively connected.
3, SDB3, and rectifiers SD1, SDA2, SDB2 are connected in parallel. Of course, these circuits may be circuits in which thyristors (control rectifiers) are connected in anti-parallel or circuits in which triacs (bidirectional control rectifiers) are connected.

【0026】上記のようにサイリスタやトライアック、
ダイオードを組み合わせて切り換え回路を構成すること
により、突入電流に強く、長時間でのオンロス、ゲート
ロスを少なくすることができる。しかも、接続の切り換
え時に主極にキャパシタの電圧が逆バイアスとして加わ
るので、ターンオフの制御が特別に必要でなくなり、ゲ
ート制御回路を簡素化することができる。例えば図3
(B)の回路において、充電時には、制御整流素子SS
2のみをオンにし他の全てをオフにした状態からスター
トする。そして、充電が進むに従ってまず制御整流素子
SSA3、SSB3をオンにすることにより、制御整流
素子SS2が逆バイアスでオフになる。次に制御整流素
子SSA1、SSB1をオンにすることにより、制御整
流素子SSA3、SSB3が逆バイアスでオフになる。
放電時には、制御整流素子を全てオフにした状態から整
流素子SDA1、SDB1が導通して放電をスタート
し、制御整流素子SSA2、SSB2をオンにし、次に
制御整流素子SS1をオンにすることにより、キャパシ
タCA1〜CAn、CB1〜CBnを全て直列接続する
まで切り換え制御することができる。
As described above, thyristors and triacs,
By forming a switching circuit by combining diodes, it is possible to withstand inrush current and reduce on-loss and gate loss for a long time. In addition, since the voltage of the capacitor is applied to the main pole as a reverse bias when the connection is switched, turn-off control is not particularly required, and the gate control circuit can be simplified. For example, FIG.
In the circuit of (B), at the time of charging, the control rectifier element SS
Start with only 2 turned on and all others turned off. Then, as the charging proceeds, the control rectifiers SSA3 and SSB3 are first turned on, so that the control rectifier SS2 is turned off by the reverse bias. Next, by turning on the control rectifiers SSA1 and SSB1, the control rectifiers SSA3 and SSB3 are turned off by the reverse bias.
At the time of discharging, the rectifying elements SDA1 and SDB1 are turned on to start discharging from the state where all the control rectifying elements are turned off, and the control rectifying elements SSA2 and SSB2 are turned on, and then the control rectifying element SS1 is turned on. Switching can be controlled until all of the capacitors CA1 to CAn and CB1 to CBn are connected in series.

【0027】図4は直並列切り換え回路を有するキャパ
シタ蓄電装置のさらに他の実施の形態を示す図であり、
コンデンサ電池を電圧の低下にしたがって並列接続から
直列接続に切り換えるものである。この蓄電装置では、
既に本発明者が提案しているものであって(特開平11
−215695号公報参照)、例えば図4(A)に示す
コンデンサ電池C1、C2の直並列切り換え回路を、図
4(B)に示すようにさらに多段に縦続接続し充放電状
態に応じ段階的に切り換え制御すると、段数に見合って
電圧の変動幅を小さくすることができる。この場合に
は、並列接続から直列接続に切り換える際、コンデンサ
電池C1、C2の電圧が不均一になっていると、コンデ
ンサ電池C1とC2との間で大きなクロスカーレントが
流れるので、図4(C)に示すようにこのようなクロス
カーレントを防ぐための保護回路A1、A2、それに対
応できるスイッチング素子Q1〜Q3が必要になる。
FIG. 4 is a diagram showing still another embodiment of a capacitor power storage device having a series / parallel switching circuit.
The capacitor battery is switched from parallel connection to series connection as the voltage drops. In this power storage device,
This has already been proposed by the present inventor (Japanese Unexamined Patent Publication No.
For example, a series / parallel switching circuit for the capacitor batteries C1 and C2 shown in FIG. 4A is further cascaded in multiple stages as shown in FIG. By performing the switching control, the fluctuation range of the voltage can be reduced in accordance with the number of stages. In this case, when switching from parallel connection to series connection, if the voltages of the capacitor batteries C1 and C2 are not uniform, a large cross current flows between the capacitor batteries C1 and C2. As shown in C), protection circuits A1 and A2 for preventing such cross current and switching elements Q1 to Q3 corresponding thereto are required.

【0028】また、上記のように接続切り換え(バンク
切り換え)で電圧の変動幅を小さくしてこれと電流ポン
プとを併用することも効果的である。図5はバンク切り
換え方式と電流ポンプの併用例を説明するための図であ
る。電流ポンプの調整能力、接続切り換えの段数等に応
じて、バンク切り換えなしで電流ポンプだけ、逆に電流
ポンプ成しでバンク切り換えだけでも対応できるが、バ
ンク切り換えと小さな電流ポンプとの併用も効果的であ
る。例えば1段のバンク切り換えを行う系の放電に伴う
出力電圧は図5(A)に示すように変換する。その出力
に電流ポンプを図5(B)に示すように接続すると、ス
イッチS2とインダクタL1で構成される電流ポンプの
定格は、出力容量の100%、つまり出力が100kW
のスイッチングコンバータが必要になる。それに対し
て、図5(C)に示すようにキャパシタバンクに直列に
なるようにスイッチングコンバータを接続し、キャパシ
タバンクの出力にスイッチングコンバータの出力の和が
系の最終出力となるようにすると、電流ポンプの定格
は、図5(A)のupで示した部分のエネルギーだけを
受け持てばよいことになる。つまり、最大でも出力の5
0%で済む。バンク切り換えがもっと多段になり変動が
少ないか、あるいは負荷の要求がもっと出力の変動を許
容するものである場合には、この形式の電流ポンプの定
格容量は、30〜25%などと小さくすることが可能と
なる。
As described above, it is also effective to reduce the fluctuation range of the voltage by switching the connection (switching the bank) and use this together with the current pump. FIG. 5 is a diagram for explaining an example in which the bank switching method and the current pump are used together. Depending on the adjustment capability of the current pump, the number of stages of connection switching, etc., it is possible to handle only the current pump without bank switching, or conversely only bank switching with the current pump, but it is also effective to use bank switching and a small current pump together It is. For example, an output voltage associated with a discharge in a system that performs one-stage bank switching is converted as shown in FIG. When a current pump is connected to the output as shown in FIG. 5B, the rating of the current pump composed of the switch S2 and the inductor L1 is 100% of the output capacity, that is, the output is 100 kW.
Switching converter is required. On the other hand, if the switching converter is connected so as to be in series with the capacitor bank as shown in FIG. 5C and the sum of the output of the switching converter and the output of the switching converter becomes the final output of the system, the current The rating of the pump only needs to cover the energy of the portion indicated by up in FIG. 5A. In other words, the maximum output is 5
0% is enough. If the bank switching is more cascaded and less variable, or if the load requirements allow more variation in output, the rated capacity of this type of current pump should be as small as 30-25%. Becomes possible.

【0029】多数の電気二重層キャパシタ単セルを直列
に接続した場合、個々のキャパシタに着目すると、その
分担電圧は、その静電容量と漏れ電流のばらつきによっ
て時間の経過と共に不均一になっていく、そこに充電す
ると静電容量に反比例して充電が追加され、さらに漏れ
電流のばらつきによって放電する。こうしてキャパシタ
の負担電圧は、最終的に漏れ電流に比例した電圧に落ち
つく。漏れ電流を定量的に品質管理し少ないばらつき例
えば10%未満に抑えるのは困難であり、通常は2倍以
上のばらつきが生じ、負担電圧が高いものから劣化して
いく。そこで、最悪のばらつきを考慮して各キャパシタ
が耐えられるほどの低い負担電圧で我慢しないと、キャ
パシタの劣化を招き本来の高い信頼性が得られなくな
る。並列モニタ、さらに並列モニタを使用したキャパシ
タの初期化は、上記のような負担電圧が無制限にばらつ
くのを防ぐことができ、きわめて有効である。次に、並
列モニタを使用したキャパシタ蓄電装置の初期化につい
て説明する。図6は初期化用と満充電検出用に別々のコ
ンパレータを有する並列モニタの構成例を示す図であ
る。図中、11は充電器、12、13はコンパレータ、
14、15はオアゲート、Cはキャパシタ、Dはダイオ
ード、Rsは抵抗、Trはトランジスタ、S1は初期化
スイッチ、Vful 、Vini は設定電圧を示す。
When a large number of electric double layer capacitor single cells are connected in series, focusing on the individual capacitors, the shared voltage becomes non-uniform over time due to variations in capacitance and leakage current. When the battery is charged, the charge is added in inverse proportion to the capacitance, and the battery is discharged due to a variation in leakage current. In this way, the burden voltage of the capacitor finally reaches a voltage proportional to the leakage current. It is difficult to quantitatively control the quality of the leakage current and suppress it to a small variation, for example, less than 10%. Usually, the variation is twice or more, and the leakage voltage is degraded from a high burden voltage. In view of the worst variation, unless the capacitors bear a burden voltage low enough to withstand each capacitor, the capacitors are deteriorated and the original high reliability cannot be obtained. The parallel monitor and the initialization of the capacitor using the parallel monitor can prevent the above-mentioned burden voltage from varying indefinitely, and are extremely effective. Next, initialization of the capacitor power storage device using the parallel monitor will be described. FIG. 6 is a diagram showing a configuration example of a parallel monitor having separate comparators for initialization and full charge detection. In the figure, 11 is a charger, 12 and 13 are comparators,
14 and 15 are OR gates, C is a capacitor, D is a diode, Rs is a resistor, Tr is a transistor, S1 is an initialization switch, and Vful and Vini are set voltages.

【0030】図6において、並列モニタは、初期化用と
満充電検出用に別々のコンパレータ12、13を有す
る。初期化用のコンパレータ12は、第1の設定電圧V
ini で充電電流をバイパスするようにキャパシタCに並
列接続したトランジスタTrを動作させるものである。
満充電検出用のコンパレータ13は、第1の設定電圧V
ini より高い初期化終了を判定する第2の設定電圧Vfu
l を検出する電圧検出手段として用いるものである。ト
ランジスタTrと抵抗Rは、キャパシタCの初期化を行
う際に、キャパシタCの端子電圧が設定電圧Vini 以上
になると充電電流のバイパス回路を構成し、そのバイパ
ス電流を制限する、つまり充電電流の一部をバイパスす
るものであり、その電流を設定するのが抵抗Rである。
初期化スイッチS1は、キャパシタCの初期化動作のオ
ン/オフを行うものであり、初期化モードが選択された
ときオンにする。
In FIG. 6, the parallel monitor has separate comparators 12 and 13 for initialization and full charge detection. The initialization comparator 12 outputs the first set voltage V
The transistor Tr connected in parallel with the capacitor C is operated so that the charging current is bypassed by ini.
The comparator 13 for detecting full charge detects the first set voltage V
second set voltage Vfu for determining initialization end higher than ini
It is used as voltage detecting means for detecting l. When the capacitor C is initialized, the transistor Tr and the resistor R constitute a charging current bypass circuit when the terminal voltage of the capacitor C becomes equal to or higher than the set voltage Vini, thereby limiting the bypass current. The resistor R sets the current.
The initialization switch S1 turns on / off the initialization operation of the capacitor C, and is turned on when the initialization mode is selected.

【0031】充電器11は、直列接続された複数のキャ
パシタCに対する充電を行うものであり、いずれかのキ
ャパシタCから満充電電圧が検出されたことを条件に充
電を停止する。また、充電器11は、初期化充電を行う
場合、初期化スイッチS1をオンにして充電を開始し、
各キャパシタの初期化用のコンパレータ12の出力Bを
オア論理処理して取り出すことにより、複数のキャパシ
タのうちのいずれかで充電電流のバイパス動作が開始し
たことを判定し、満充電検出用のコンパレータ13の出
力Fをオア論理処理して取り出すことにより、複数のキ
ャパシタのうちのいずれかが満充電に達したことを判定
して、初期化充電を終了する。オアゲート14は、コン
パレータ12のバイパス動作信号Bをオア論理処理する
ものであり、オアゲート15は、コンパレータ13の満
充電検出信号Fのオア論理処理を行って充電器11に定
電流充電の停止信号とするものである。
The charger 11 charges a plurality of capacitors C connected in series, and stops charging on condition that a full charge voltage is detected from any of the capacitors C. When performing the initialization charging, the charger 11 turns on the initialization switch S1 to start charging,
The output B of the comparator 12 for initialization of each capacitor is OR-processed and taken out to determine that the charging current bypass operation has started in any of the plurality of capacitors, and the comparator for full charge detection is determined. By performing OR logic processing on the output F of 13 and extracting it, it is determined that one of the plurality of capacitors has reached full charge, and the initialization charge is terminated. The OR gate 14 performs OR logic processing of the bypass operation signal B of the comparator 12, and the OR gate 15 performs OR logic processing of the full charge detection signal F of the comparator 13, and outputs to the charger 11 a constant current charging stop signal and a stop signal. Is what you do.

【0032】したがって、設定電圧Vful がキャパシタ
の満充電電圧に、設定電圧Vini が設定電圧Vful より
低い電圧にそれぞれ設定される。そして、初期化スイッ
チS1がオンのときの充電では、早く設定電圧Vini ま
で充電されたキャパシタより順次トランジスタTrと抵
抗Rからなるバイパス回路により充電電流の一部がバイ
パスされて充電速度を落とし、いずれかのキャパシタが
満充電になると、充電器11により定電流による充電を
停止し、必要に応じて緩和充電を行う。
Therefore, the set voltage Vful is set to the full charge voltage of the capacitor, and the set voltage Vini is set to a voltage lower than the set voltage Vful. In the charging when the initialization switch S1 is turned on, a part of the charging current is bypassed by the bypass circuit including the transistor Tr and the resistor R sequentially from the capacitor charged to the set voltage Vini earlier, and the charging speed is reduced. When such a capacitor is fully charged, the charger 11 stops charging with a constant current, and performs relaxed charging as necessary.

【0033】次に、充放電時の動作及び本発明で行う初
期化について説明する。図7はキャパシタの使い方に見
る充放電のスタイルと初期化のポイントの例を示す図、
図8は初期化時の充電カーブと通常の充放電カーブの例
を示す図である。
Next, the operation at the time of charging and discharging and the initialization performed in the present invention will be described. FIG. 7 is a diagram showing an example of the charging / discharging style and the points of initialization seen in the use of the capacitor.
FIG. 8 is a diagram showing an example of a charge curve at the time of initialization and a normal charge / discharge curve.

【0034】初期化を行うことのできる時期を充放電ト
レースの上で示したのが図7である。キャパシタに並列
に設けたダイオードを利用して初期化を行う、1つの
コンパレータにより満充電で初期化を行う、使いなが
ら充電の途中で少しずつ初期化を行う、使いながら放
電中に初期化を行う、使いながら充放電をしていない
ときに初期化を行うなど、幾つもの初期化のポイント
がある。一般化していえば、いつも満充電状態で停電を
待機するパソコン用無停電電源、8分目で電圧変動率改
善など少電力出入と停電待機に対応可能とする無停電電
源、いつも充放電サイクルにある太陽電池による常夜灯
など、用途に応じていずれか、あるいはその幾つかを実
行できるように並列モニタを制御すれば、広汎な用途、
動作条件に対応できる。
FIG. 7 shows the time when the initialization can be performed on the charge / discharge trace. Performs initialization using a diode provided in parallel with a capacitor. Performs initialization with full charge using one comparator. Performs little by little initialization during charging while using. Initializes while discharging while using. There are a number of points for initialization, such as initialization when the battery is not being charged or discharged while being used. Generally speaking, there is an uninterruptible power supply for personal computers that always waits for a power outage in a fully charged state, an uninterruptible power supply that can respond to low power input / output and standby for a power outage by improving the voltage fluctuation rate in the eighth minute, and is always in a charge / discharge cycle. If the parallel monitor is controlled so that one or several of them can be executed depending on the application, such as a night light by a solar cell, a wide range of applications,
Compatible with operating conditions.

【0035】本発明では、使用する並列モニタに図6で
示したように初期化用と満充電検出用に別々にコンパレ
ータを用い、これらの制御と電圧の設定値を変え、の
ような充放電をしていないときに初期化を行う。この場
合、充放電をしていないときとして、例えば大電流の充
放電状態にないこと、充電レベルVnが一定の範囲内に
入っていること、所定以上のバラツキがあることを初期
化条件として初期化信号Sをオンにし、同時に初期化専
用の充電を開始する。平常の充電レベル、つまり充放電
の制御中心値Vnと初期化の設定電圧Vini ×直列接続
されたキャパシタセルの数nとの関係は、コンパレータ
の誤差やバラツキを見込んでVnの方が少し低くなるよ
うに設定する。つまり、Vnの方が低目にしないと、初
期化がほとんど完了した状態で無駄に初期化電流が消費
され、あまり大幅に低くすると初期化が完了しても電圧
が完全に揃わないことになるからである。
In the present invention, as shown in FIG. 6, comparators are separately used for initialization and full charge detection as shown in FIG. Perform initialization when not performed. In this case, when the battery is not charged / discharged, for example, the battery is not in a charge / discharge state with a large current, the charge level Vn is within a certain range, and there is a variation exceeding a predetermined value. The initialization signal S is turned on, and at the same time, a dedicated charging for initialization is started. The normal charge level, that is, the relationship between the charge / discharge control center value Vn and the initial setting voltage Vini × the number n of the capacitor cells connected in series, is slightly lower in consideration of errors and variations in the comparator. Set as follows. That is, unless Vn is set to a lower value, the initialization current is wastefully consumed in a state where the initialization is almost completed, and if the voltage is too low, the voltages are not completely uniform even if the initialization is completed. Because.

【0036】キャパシタのバラツキは、満充電信号Fが
出力されたときの充電レベルで判定する。例えば使いは
じめで初期化が済んでいない段階では、蓄電容量は10
0%ではなく、バラツキが大きいほど蓄電容量が少ない
段階で満充電信号Fが出力される。したがって、その時
の充電レベルが満充電の設定電圧Vful ×nに比べてど
れほど低いかによって、初期化の不完全な程度(バラツ
キの程度)を判定することができる。この判定は、設定
電圧Vini の充電レベルにおいても同様に可能である。
つまり、キャパシタのいずれかが所定の充電電圧に達し
たときの全充電電圧がその所定の充電電圧のn倍と比較
すると、その差によりバラツキの程度を判定することが
できる。この初期化では、バラツキが大きいほど少なく
とも1個の並列モニタのバイパスが始まったことをバイ
パス動作信号Bで検出してから満充電信号Fが検出され
るまでの時間が長くなり、バイパストランジスタTrの
発熱が大きくなる。このようなバイパストランジスタT
rの発熱が好ましくない場合、バイパス動作信号Bで検
出してから一定の時間経過すると、一旦初期化をオフに
して冷却時間を設け、オンオフ(間欠動作)をさせるよ
うにしてもよいし、初期化専用の充電電流を小さくして
もよい。また、発熱の程度を判断しながら、初期化電流
を調整信号ADで調整してもよい。
The variation of the capacitor is determined based on the charge level when the full charge signal F is output. For example, at the stage of initial use and not yet initialized, the storage capacity is 10
The full charge signal F is output at a stage where the storage capacity is smaller as the variation is larger than 0%. Therefore, the degree of incomplete initialization (the degree of variation) can be determined based on how low the charge level at that time is compared to the full charge set voltage Vful × n. This determination is also possible at the charging level of the set voltage Vini.
That is, when the total charging voltage when any one of the capacitors reaches the predetermined charging voltage is compared with n times the predetermined charging voltage, the degree of variation can be determined from the difference. In this initialization, the larger the variation, the longer the time from when the bypass operation signal B detects the start of bypass of at least one parallel monitor by the bypass operation signal B to when the full charge signal F is detected, so that the bypass transistor Tr Fever increases. Such a bypass transistor T
When the heat generation of r is not preferable, after a certain period of time has elapsed from the detection by the bypass operation signal B, the initialization may be temporarily turned off to provide a cooling time to perform on / off (intermittent operation). The charging current dedicated to the conversion may be reduced. The initialization current may be adjusted by the adjustment signal AD while determining the degree of heat generation.

【0037】上記のように充放電をしていないときに初
期化を行うようにすることにより、特に、ハイブリッド
電気自動車に使用する場合、初期化の最中にブレーキや
アクセルが踏まれて大電流の充放電が始まると、初期化
条件を解除して初期化信号Sをオフにすることができ
る。この場合、初期化が不完全であると、蓄電容量が1
00%活用できないが、それなりのレベルで使用できる
ので、次に初期化条件が整ったときにまた初期化を行え
ばよい。
By performing the initialization when the battery is not charged or discharged as described above, especially when the battery is used in a hybrid electric vehicle, the brake or the accelerator is depressed during the initialization and a large current is applied. , The initialization condition is released and the initialization signal S can be turned off. In this case, if the initialization is incomplete, the storage capacity becomes 1
Although it cannot be used at the level of 00%, it can be used at a reasonable level, so that the initialization may be performed again when the initialization conditions are next satisfied.

【0038】キャパシタが全放電あるいは電圧ゼロで初
期化された状態から一定電流で充電(定電流充電)を開
始すると、初期化モードが選択されていない状態、つま
り初期化スイッチS1がオフの状態では、充電電流のバ
イアス回路が動作しないので、図8の左端に示すA、B
のように容量の差に応じた傾斜で電圧が上昇する。そし
て、直列に接続されているキャパシタの1つ、例えば容
量の小さい方のキャパシタCA がt1で設定電圧Vful
に達すると、コンパレータ13の満充電検出信号Fが
「H」になるので、オアゲート15の出力信号Sが
「H」になって、充電器11は、定電流充電を停止させ
る。この状態では、キャパシタAの端子電圧がキャパシ
タ内部の自己充電や自己放電などによって設定電圧Vfu
l を割り込むと、信号Fが「L」になり再度充電が開始
されるので、t1以降は一定電圧に維持される緩和充電
の状態が続く。
When the capacitor starts charging at a constant current (constant current charging) from a state in which the capacitor is completely discharged or initialized with zero voltage, in a state where the initialization mode is not selected, that is, when the initialization switch S1 is off, Since the bias circuit for the charging current does not operate, A and B shown at the left end of FIG.
The voltage rises at an inclination according to the difference in capacitance as shown in FIG. Then, one of the capacitors connected in series, for example, set in the smaller capacitor C A of the capacitor t1 voltage Vful
, The full-charge detection signal F of the comparator 13 becomes “H”, so that the output signal S of the OR gate 15 becomes “H”, and the charger 11 stops the constant current charging. In this state, the terminal voltage of the capacitor A becomes the set voltage Vfu due to self-charging or self-discharging inside the capacitor.
When l is interrupted, the signal F becomes "L" and charging is started again, so that the state of relaxed charging maintained at a constant voltage continues after t1.

【0039】次に、時間t2で放電してキャパシタに蓄
積した電力を利用し、時間t3で放電を停止したとき、
初期化の条件を満たしていることにより初期化充電を行
う場合には、初期化スイッチS1をオンにして充電を開
始する。その後、先に説明したように例えばいずれかの
キャパシタの端子電圧が設定電圧Vini に達したt4か
ら一定時間(t5−t4=td)を初期化ペリオドとし
て初期化充電を実行し、時間t5で初期化終了として初
期化スイッチS1をオンにする。その後さらに、いずれ
かのキャパシタの端子電圧が設定電圧Vful に達する
(満充電になる)まで通常の充電を実行すると時間t6
で充電が最終的に終了するが、初期化終了の時間t5で
充電を終了させてもよいし、初期化充電を中断して電力
を利用するために放電した場合には、その放電を停止し
た後に初期化充電を再実行させるようにしてもよいこと
は先にも説明したとおりである。
Next, when the power discharged at time t2 and accumulated in the capacitor is used and the discharge is stopped at time t3,
When the initialization charging is performed by satisfying the initialization condition, the initialization switch S1 is turned on to start the charging. Thereafter, as described above, for example, the initialization charge is executed with a certain period of time (t5−t4 = td) from t4 when the terminal voltage of any one of the capacitors reaches the set voltage Vini, and initialization is performed at time t5. The initialization switch S1 is turned on to end the initialization. Thereafter, when the normal charging is further performed until the terminal voltage of any one of the capacitors reaches the set voltage Vful (fully charged), the time t6
, The charging is finally terminated. However, the charging may be terminated at the time t5 of the initialization end, or when the initialization charging is interrupted and the battery is discharged to use the power, the discharging is stopped. As described above, the initialization charging may be performed again later.

【0040】初期化ペリオドでは、バイパス回路がオン
になると、それらに流れる電流だけキャパシタの端子電
圧の上昇が遅くなる。トランジスタTrに直列に挿入接
続した抵抗Rがゼロであれば、端子電圧は設定電圧Vin
i より上昇しないが、ここでは充電電流を、例えば半分
バイパスする程度に抵抗Rの値を選定し、電圧の上昇す
るスピードを半分にしておくことにより、端子電圧はな
お上昇を続ける。
In the initialization period, when the bypass circuits are turned on, the rise in the terminal voltage of the capacitor is delayed by the current flowing through them. If the resistance R inserted and connected in series with the transistor Tr is zero, the terminal voltage becomes the set voltage Vin.
Although it does not increase more than i, the value of the resistor R is selected so as to bypass the charging current by half, for example, and the speed at which the voltage rises is halved, so that the terminal voltage continues to rise.

【0041】このようにt4で設定電圧Vini に達した
キャパシタCA と、遅れてt5で設定電圧Vini に達す
るキャパシタCB では、t1とt6における電圧を比較
すると明らかなようにそれまで低かったキャパシタCB
の満充電時(充電停止時)の端子電圧が増大してキャパ
シタCA の端子電圧に近づくことになる。
[0041] and thus the capacitor C A has reached the set voltage Vini at t4, the capacitor C B reaches at t5 delayed set voltage Vini, lower until it as is apparent from a comparison of the voltage at t1 and t6 capacitor C B
Becomes closer to the terminal voltage of the capacitor C A full terminal voltage during charging (charging stops) is increased.

【0042】次に、具体例により初期化制御を説明す
る。図9は初期化制御の例を説明するための図、図10
は初期化処理の例を説明するための図、図11はバラツ
キの判定処理の例を説明するための図である。
Next, initialization control will be described with a specific example. FIG. 9 is a diagram for explaining an example of initialization control, and FIG.
FIG. 11 is a diagram for explaining an example of an initialization process, and FIG. 11 is a diagram for explaining an example of a variation determination process.

【0043】本発明の初期化制御では、例えば図9に示
すようにまず、充放電中か否か(ステップS11)、充
電レベルが設定範囲内であるか否か(ステップS1
2)、各キャパシタ間のバラツキが大きいか否か(ステ
ップS13)を判定し、充放電中でなく、充電レベルが
設定範囲内であり、かつ各キャパシタ間のバラツキが大
きい場合に初期化処理を実行する(ステップS14)。
In the initialization control according to the present invention, for example, as shown in FIG. 9, first, it is determined whether charging / discharging is being performed (step S11), and whether the charge level is within a set range (step S1).
2) It is determined whether or not the variation between the capacitors is large (step S13). If the charging level is within the set range while the battery is not being charged or discharged, and the variation between the capacitors is large, the initialization process is performed. Execute (step S14).

【0044】そして、初期化処理では、例えば図10に
示すように初期化スイッチS1をオンにして初期化回路
をオンにし(ステップS21)、初期化充電を開始する
(ステップS22)。その後、満充電のセルが検出され
たか否かを判定し(ステップS23)、満充電のセルが
検出されない場合には、並列モニタのバイパス回路が動
作したセルを検出してから一定時間経過したか否かを判
定し(ステップS24)、一定時間経過していない場合
には負荷に放電する給電指令が出されたか否かを判定す
る(ステップS25)。その結果、満充電のセルが検出
されず、一定時間経過せず、かつ給電指令も出されてい
ない場合にはステップS23に戻って同様の処理を繰り
返し、満充電のセルが検出された場合や、一定時間経過
した場合、給電指令が出された場合には、初期化充電を
停止し(ステップS26)、初期化スイッチS1をオフ
にして初期化回路をオフにする(ステップS27)。
In the initialization process, for example, as shown in FIG. 10, the initialization switch S1 is turned on to turn on the initialization circuit (step S21), and initialization charging is started (step S22). Thereafter, it is determined whether or not a fully charged cell has been detected (step S23). If a fully charged cell has not been detected, whether a predetermined time has elapsed since the detection of the cell in which the bypass circuit of the parallel monitor operated. It is determined whether or not power supply has been performed (step S24). If the predetermined time has not elapsed, it is determined whether or not a power supply command to discharge to the load has been issued (step S25). As a result, if a fully charged cell has not been detected, the fixed time has not elapsed, and a power supply command has not been issued, the process returns to step S23 to repeat the same processing, and if a fully charged cell has been detected, If a predetermined time has elapsed and a power supply command has been issued, the initialization charging is stopped (step S26), and the initialization switch S1 is turned off to turn off the initialization circuit (step S27).

【0045】また、バラツキの判定処理では、例えば図
11に示すようにまず、充電を実行したことを検出する
と(ステップS31)、満充電のセルを検出した時の充
電電圧Vnを読み込み(ステップS32)、満充電を検
出する設定電圧Vful ×セルの数nと充電電圧Vnとの
差ΔVの計算を実行する(ステップS33)。しかる
後、ΔVが一定値Kより大きいか否かを判定し(ステッ
プS34)、ΔVが一定値Kより大きい場合には、バラ
ツキ大を示すフラグFを「1」に設定し、ΔVが一定値
Kより大きくない場合には、バラツキ大を示すフラグF
を「0」に設定する(ステップS36)。すなわち、一
定値Kは、バラツキ大か否かを判定する基準値であり、
全てのセルが設定電圧Vful に充電され全くバラツキが
ない場合には、ΔV=0となる。
In the variation determination processing, for example, as shown in FIG. 11, when it is first detected that charging has been performed (step S31), the charging voltage Vn when a fully charged cell is detected is read (step S32). ), The difference ΔV between the set voltage Vful for detecting full charge × the number n of cells and the charge voltage Vn is calculated (step S33). Thereafter, it is determined whether or not ΔV is greater than a constant value K (step S34). If ΔV is greater than the constant value K, a flag F indicating large variation is set to “1”, and ΔV is set to a constant value. If not larger than K, a flag F indicating a large variation
Is set to "0" (step S36). That is, the constant value K is a reference value for determining whether the variation is large,
When all the cells are charged to the set voltage Vful and there is no variation at all, ΔV = 0.

【0046】なお、本発明は、上記実施の形態に限定さ
れるものではなく、種々の変形が可能である。例えば上
記実施の形態では、直並列切り換え回路を有するキャパ
シタ蓄電装置の例を示して説明したが、直並列切り換え
回路を有するものでなくてもよいし、他の形態の直並列
切り換え回路を有するものであってもよいことはいうま
でもない。電流ポンプ又はバンク切り換えは、静電容量
Cのキャパシタバンクの出力電圧Vが放電に伴って蓄電
量Uに対し、よく知られた関係U=CV2 /2で大幅に
変化するので、インバータの設計を困難にしないよう、
あるいは効率を維持する目的で挿入するものであるの
で、効率や蓄電量の有効利用を考慮しない場合には省略
してもよい。入力電源は、商用電源であってもよいし、
燃料電池やエンジン発電機でもよい。また、直流電源で
あってもよい。この場合には、AC/DCコンバータを
DC/DCコンバータと置換し、電流ポンプとDC/A
Cインバータを電流ポンプ又はDC/DCコンバータと
置換すればよい。
It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above-described embodiment, an example of a capacitor power storage device having a series-parallel switching circuit has been described. However, the embodiment does not have to include the series-parallel switching circuit, and may include another type of series-parallel switching circuit. It goes without saying that this may be the case. Current pump or bank switching, compared storage amount U output voltage V with the discharge of the capacitor bank of the capacitance C, so greatly varied in a well-known relationship U = CV 2/2, inverter design Not to make it difficult
Alternatively, since it is inserted for the purpose of maintaining the efficiency, it may be omitted when the efficiency and the effective use of the charged amount are not considered. The input power may be a commercial power supply,
A fuel cell or an engine generator may be used. Further, a DC power supply may be used. In this case, the AC / DC converter is replaced with a DC / DC converter, and the current pump and the DC / A
The C inverter may be replaced with a current pump or a DC / DC converter.

【0047】[0047]

【発明の効果】以上の説明から明らかなように、本発明
によれば、入力電源と負荷に接続して停電時の給電を行
ったり負荷の平準化を行ったりするキャパシタ蓄電装置
を用いた電源調整装置であって、充電電流をバイパスす
る回路を有し充電電圧・電流を制御する並列モニタを並
列に接続した複数のキャパシタからなるキャパシタ蓄電
装置と、入力電源よりキャパシタ蓄電装置に充電を行う
充電手段と、キャパシタ蓄電装置から出力電流を制御し
て放電を行う放電手段と、入力電源と負荷との間の給電
系に接続して放電手段の出力を負荷に給電する接続手段
と、入力電源と負荷との間の給電系を監視して充電手段
及び放電手段を制御する制御手段とを備えたので、短時
間にキャパシタ蓄電装置の充放電を行うことができ、停
電時の給電を行ったり負荷の平準化を行ったりすること
ができる。
As is apparent from the above description, according to the present invention, a power supply using a capacitor power storage device connected to an input power supply and a load to supply power during a power failure or level the load. An adjustment device having a circuit for bypassing a charging current and having a capacitor connected in parallel with a parallel monitor for controlling a charging voltage and a current, comprising: a plurality of capacitors; and a charging device for charging the capacitor power storage device from an input power supply. Means, discharge means for controlling the output current from the capacitor power storage device to perform discharge, connection means for connecting the power supply system between the input power supply and the load to supply the output of the discharge means to the load, and input power supply. Since the power supply system between the load and the control means for controlling the charging means and the discharging means by monitoring the power supply system, the charging and discharging of the capacitor power storage device can be performed in a short time, and the power supply at the time of the power failure can be performed. Ri can be and go the leveling of the load.

【0048】また、充電手段は、AC/DCコンバー
タ、初期化電圧を設定し、前記各キャパシタを前記初期
化電圧に充電する初期化機能を有し、放電手段は、DC
/ACインバータや出力電流を一定に制御する電流ポン
プを有し、キャパシタ蓄電装置は、充電電圧に応じてキ
ャパシタの直並列切り換えを行うバンク切り換え回路を
有し、制御手段は、負荷の変動を検出して充電手段及び
放電手段を制御しキャパシタ蓄電装置の充放電を行うこ
とにより負荷の平準化を行い、入力電源の停電を検出し
て放電手段を制御しキャパシタ蓄電装置から給電を行う
ので、高効率、低損失、長寿命で信頼性の高い、停電の
バックアップ、尖頭負荷に対する不足電力の供給を行う
ことにより負荷の平準化の可能な装置を提供できる。
The charging means has an AC / DC converter, an initialization function for setting an initialization voltage, and charging each of the capacitors to the initialization voltage.
/ AC inverter and a current pump for controlling the output current to a constant level, the capacitor power storage device has a bank switching circuit for switching the series and parallel of the capacitors according to the charging voltage, and the control means detects a change in load. Control the charging means and the discharging means to charge and discharge the capacitor power storage device to level the load, detect a power outage of the input power supply, control the discharging means, and supply power from the capacitor power storage device. It is possible to provide a device capable of leveling the load by performing backup of a power failure and supplying insufficient power to a peak load with high efficiency, low loss, long life and high reliability.

【0049】さらに、本発明は、停電や瞬断などが皆無
とすることが要求されるような高品質な電力ラインに組
み込むことができる。また、高度に安定な電力が必要な
抄紙や紡糸などの生産設備、研究設備、病院、コンピュ
ータ施設の給電装置では、長時間の停電に備えて非常用
発電機が備えられるが、通常の高信頼性、緩起動型の発
電機の起動所要時間は40秒程度が保証されているの
で、これら非常用発電設備とそれらの起動までの時間を
バックアップできる本発明とを複合することにより、無
停電で非常電源に切り換えることができる。しかも、本
発明の負荷平準化を併用することにより尖頭的な負荷電
流によって設備容量が比較的小さい発電システムが脱調
を生じて停電するなどの事故も予防することができる。
Further, the present invention can be incorporated in a high-quality power line that requires no power failure or instantaneous interruption. In addition, power supply equipment for production equipment such as papermaking and spinning that requires highly stable power, research equipment, hospitals, and computer facilities are equipped with emergency generators in preparation for long-term power outages. The start-up required time of the generator of the slow start type is guaranteed to be about 40 seconds. Therefore, by combining these emergency power generation equipment and the present invention which can back up the time until the start-up of the Can switch to emergency power. Moreover, by using the load leveling of the present invention together, it is possible to prevent an accident such as a step-out of the power generation system having a relatively small installed capacity due to a sharp load current and a power failure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係るキャパシタ蓄電装置を用いた電
源調整装置の実施の形態を示す図である。
FIG. 1 is a diagram showing an embodiment of a power supply adjusting device using a capacitor power storage device according to the present invention.

【図2】 本発明に係る電源調整装置に用いるキャパシ
タ蓄電装置の構成例を示す図である。
FIG. 2 is a diagram illustrating a configuration example of a capacitor power storage device used in the power supply adjustment device according to the present invention.

【図3】 直並列切り換え回路を有するキャパシタ蓄電
装置の他の実施の形態を示す図である。
FIG. 3 is a diagram showing another embodiment of a capacitor power storage device having a series / parallel switching circuit.

【図4】 直並列切り換え回路を有するキャパシタ蓄電
装置のさらに他の実施の形態を示す図である。
FIG. 4 is a diagram showing still another embodiment of a capacitor power storage device having a series / parallel switching circuit.

【図5】 バンク切り換え方式と電流ポンプの併用例を
説明するための図である。
FIG. 5 is a diagram for explaining an example of using a bank switching method and a current pump together.

【図6】 初期化用と満充電検出用に別々のコンパレー
タを有する並列モニタの構成例を示す図である。
FIG. 6 is a diagram illustrating a configuration example of a parallel monitor having separate comparators for initialization and full charge detection.

【図7】 キャパシタの使い方に見る充放電のスタイル
と初期化のポイントの例を示す図である。
FIG. 7 is a diagram showing an example of charging / discharging styles and points of initialization in the usage of a capacitor.

【図8】 初期化時の充電カーブと通常の充放電カーブ
の例を示す図である。
FIG. 8 is a diagram showing an example of a charge curve at the time of initialization and a normal charge / discharge curve.

【図9】 初期化制御の例を説明するための図である。FIG. 9 is a diagram illustrating an example of initialization control.

【図10】 初期化処理の例を説明するための図であ
る。
FIG. 10 is a diagram illustrating an example of an initialization process.

【図11】 バラツキの判定処理の例を説明するための
図である。
FIG. 11 is a diagram illustrating an example of a variation determination process.

【符号の説明】[Explanation of symbols]

1…AC/DCコンバータ、2…充電制御回路、3…キ
ャパシタ蓄電装置、4…電流ポンプ、5…DC/ACイ
ンバータ、6…出力制御回路、7…接続回路、8…制御
装置
REFERENCE SIGNS LIST 1 AC / DC converter, 2 charge control circuit, 3 capacitor storage device, 4 current pump, 5 DC / AC inverter, 6 output control circuit, 7 connection circuit, 8 control device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02M 7/06 H01G 9/00 301Z (72)発明者 岡村 廸夫 神奈川県横浜市南区南太田2丁目19番6号 Fターム(参考) 5G015 FA10 GA11 HA11 JA21 JA60 5G065 AA00 DA04 EA01 EA06 HA16 JA07 LA01 LA02 MA01 MA02 MA10 NA01 5H006 AA04 AA06 CA03 CA05 CA06 CA07 CA12 CA13 CB09 CC08 DA04 DB01 DC05 GA01 GA04 5H730 AA11 AA12 AS08 AS17 AS21 BB14 BB82 BB85 BB86 BB88 BB98 CC01 DD05 DD06 DD07 FD21 FG01 FG23 FG24 FG26 XC01 ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02M 7/06 H01G 9/00 301Z (72) Inventor Okamura Dio 2-19 Minamiota, Minami-ku, Yokohama-shi, Kanagawa Prefecture No. 6 F term (reference) 5G015 FA10 GA11 HA11 JA21 JA60 5G065 AA00 DA04 EA01 EA06 HA16 JA07 LA01 LA02 MA01 MA02 MA10 NA01 5H006 AA04 AA06 CA03 CA05 CA06 CA07 CA12 CA13 CB09 CC08 DA04 DB01 DC05 GA01 GA04 5H730 AA11 AS11 BB82 BB85 BB86 BB88 BB98 CC01 DD05 DD06 DD07 FD21 FG01 FG23 FG24 FG26 XC01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 入力電源と負荷に接続して停電時の給電
を行ったり負荷の平準化を行ったりするキャパシタ蓄電
装置を用いた電源調整装置であって、充電電流をバイパ
スする回路を有し充電電圧・電流を制御する並列モニタ
を並列に接続した複数のキャパシタからなるキャパシタ
蓄電装置と、前記入力電源より前記キャパシタ蓄電装置
に充電を行う充電手段と、前記キャパシタ蓄電装置から
出力電流を制御して放電を行う放電手段と、前記入力電
源と負荷との間の給電系に接続して前記放電手段の出力
を負荷に給電する接続手段と、前記入力電源と負荷との
間の給電系を監視して前記充電手段及び放電手段を制御
する制御手段とを備えたことを特徴とするキャパシタ蓄
電装置を用いた電源調整装置。
1. A power supply adjustment device using a capacitor power storage device connected to an input power supply and a load to supply power at the time of a power failure or to level the load, and has a circuit for bypassing a charging current. A capacitor power storage device including a plurality of capacitors connected in parallel with a parallel monitor for controlling charging voltage and current; charging means for charging the capacitor power storage device from the input power; and controlling an output current from the capacitor power storage device. Discharging means for performing a discharge by means of a power supply, connecting means connected to a power supply system between the input power supply and the load to supply the output of the discharge means to the load, and monitoring a power supply system between the input power supply and the load. And a control means for controlling the charging means and the discharging means.
【請求項2】 前記充電手段は、AC/DCコンバータ
を有することを特徴とする請求項1記載のキャパシタ蓄
電装置を用いた電源調整装置。
2. The power supply adjusting device using a capacitor power storage device according to claim 1, wherein said charging means has an AC / DC converter.
【請求項3】 前記充電手段は、初期化電圧を設定し、
前記各キャパシタを前記初期化電圧に充電する初期化機
能を有することを特徴とする請求項1記載のキャパシタ
蓄電装置を用いた電源調整装置。
3. The charging means sets an initialization voltage,
The power supply adjusting device according to claim 1, further comprising an initialization function of charging each of the capacitors to the initialization voltage.
【請求項4】 前記放電手段は、DC/ACインバータ
を有することを特徴とする請求項1記載のキャパシタ蓄
電装置を用いた電源調整装置。
4. The power supply adjusting apparatus according to claim 1, wherein said discharging means has a DC / AC inverter.
【請求項5】 前記放電手段は、出力電流を一定に制御
する電流ポンプを有することを特徴とする請求項1記載
のキャパシタ蓄電装置を用いた電源調整装置。
5. The power supply adjusting device according to claim 1, wherein said discharging means has a current pump for controlling an output current to be constant.
【請求項6】 前記キャパシタ蓄電装置は、充電電圧に
応じてキャパシタの直並列切り換えを行うバンク切り換
え回路を有することを特徴とする請求項1記載のキャパ
シタ蓄電装置を用いた電源調整装置。
6. The power supply adjusting device according to claim 1, wherein the capacitor power storage device includes a bank switching circuit that performs a series / parallel switching of the capacitor according to a charging voltage.
【請求項7】 前記制御手段は、負荷の変動を検出して
前記充電手段及び放電手段を制御し前記キャパシタ蓄電
装置の充放電を行うことにより負荷の平準化を行い、入
力電源の停電を検出して前記放電手段を制御し前記キャ
パシタ蓄電装置から給電を行うことを特徴とする請求項
1記載のキャパシタ蓄電装置を用いた電源調整装置。
7. The control unit detects a change in load, controls the charging unit and the discharging unit, and charges and discharges the capacitor power storage device to level the load and detect a power outage of the input power supply. The power supply adjusting device using the capacitor power storage device according to claim 1, wherein the power supply is supplied from the capacitor power storage device by controlling the discharging means.
JP37199799A 1999-12-28 1999-12-28 Power supply adjustment device using capacitor power storage device Expired - Fee Related JP3695688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37199799A JP3695688B2 (en) 1999-12-28 1999-12-28 Power supply adjustment device using capacitor power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37199799A JP3695688B2 (en) 1999-12-28 1999-12-28 Power supply adjustment device using capacitor power storage device

Publications (2)

Publication Number Publication Date
JP2001186691A true JP2001186691A (en) 2001-07-06
JP3695688B2 JP3695688B2 (en) 2005-09-14

Family

ID=18499669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37199799A Expired - Fee Related JP3695688B2 (en) 1999-12-28 1999-12-28 Power supply adjustment device using capacitor power storage device

Country Status (1)

Country Link
JP (1) JP3695688B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003075113A1 (en) * 2002-03-04 2003-09-12 Josuke Nakata Power generating system
JP2009038969A (en) * 2004-02-06 2009-02-19 Honda Motor Co Ltd Dc/dc converter, and program
JP2009528666A (en) * 2006-03-02 2009-08-06 エンサイト・エルエルシー Power cell structure and power generation array control
US9129194B2 (en) 2012-06-20 2015-09-08 Fuji Xerox Co., Ltd. Image forming system, image forming apparatus, and non-transitory computer readable medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003075113A1 (en) * 2002-03-04 2003-09-12 Josuke Nakata Power generating system
JP2009038969A (en) * 2004-02-06 2009-02-19 Honda Motor Co Ltd Dc/dc converter, and program
JP2009528666A (en) * 2006-03-02 2009-08-06 エンサイト・エルエルシー Power cell structure and power generation array control
US9129194B2 (en) 2012-06-20 2015-09-08 Fuji Xerox Co., Ltd. Image forming system, image forming apparatus, and non-transitory computer readable medium

Also Published As

Publication number Publication date
JP3695688B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
TWI221695B (en) Uninterruptible power system
US7994657B2 (en) Modular system for unattended energy generation and storage
US6795322B2 (en) Power supply with uninterruptible function
CN102270884B (en) Energy-storage system and control method thereof
KR101097265B1 (en) Energy storage system and controlling method of the same
US10763682B2 (en) Energy storage system and controlling method thereof
KR101369633B1 (en) Energy storage system and method of controlling the same
JP3507384B2 (en) Capacitor storage device with initialization function
JP2004064814A (en) Method and system for power supply
CN111953016B (en) Mobile multi-energy micro-grid control method and system
US9257859B2 (en) Dynamic battery control based on demand
US20070229022A1 (en) Power-Supply Unit
JP2001197660A (en) Power system stabilizing system
JP2001186691A (en) Power supply adjusting device using capacitor recharging device
JP2000323365A (en) Dc supplying device
JP2001178024A (en) Emergency power supply unit
JP3530519B2 (en) Voltage equalizing device for power storage device and power storage system provided with the device
JP4189985B2 (en) Instantaneous incoming power control system
RU2726735C1 (en) Self-contained power supply system with combined energy storage unit
JP2000004507A (en) Electric railway feeding system and electric car thereof
JP3873043B2 (en) Uninterruptible power system
TWI830498B (en) Energy regulation system
WO2024104359A1 (en) Energy regulation system
JP3193350B2 (en) Power supply
JPH07118870B2 (en) Switching regulator power supply

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040714

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050624

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3695688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

R255 Notification of exclusion from application

Free format text: JAPANESE INTERMEDIATE CODE: R2525

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees