JP2001023697A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2001023697A
JP2001023697A JP11195649A JP19564999A JP2001023697A JP 2001023697 A JP2001023697 A JP 2001023697A JP 11195649 A JP11195649 A JP 11195649A JP 19564999 A JP19564999 A JP 19564999A JP 2001023697 A JP2001023697 A JP 2001023697A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
electrolyte secondary
compound
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11195649A
Other languages
Japanese (ja)
Inventor
Yoko Sano
陽子 佐野
Nobuharu Koshiba
信晴 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11195649A priority Critical patent/JP2001023697A/en
Publication of JP2001023697A publication Critical patent/JP2001023697A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the crystal breakdown of WO3 in over discharge, to lengthen the charge/discharge cycle life, and to enhance over discharge characteristics in a nonaqueous electrolyte secondary battery containing WO3. SOLUTION: The nonaqueous electrolyte secondary battery has a positive electrode 5 containing tungsten trioxide (WO3) and a compound capable of doping/undoping lithium, a negative electrode 6, and a nonaqueous electrolyte, and as the compound, a material having a reduction potential of average 1 V or higher vs. metal lithium when discharged at a current density of 0.1 mA/cm2 is used. The compound for composing the positive electrode 5 contains at least either one of lithium titanium oxide (Li4/3Ti5/3O4) having spinel structure and niobium pentoxide (Nb2O5), and the mixing ratio in weight of the compound to tungsten trioxide (WO3) composing the positive electrode 5 is 50-200 to 100 of tungsten trioxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、携帯用端末の直流
電源、メモリーバックアップ電源などとして用いられる
非水電解質二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery used as a DC power supply for a portable terminal, a memory backup power supply, and the like.

【0002】[0002]

【従来の技術】近年のエレクトロニクス分野における技
術の急速な発展により、電子機器の小型化が進展してい
る。これら機器の電源として、小型軽量で高エネルギ−
密度を有する電池の需要が高まっており、負極にリチウ
ムを用いるリチウム二次電池が注目を集め世界的に研究
が行われている。これまでの研究の傾向としては、正極
にコバルト酸リチウムやマンガン酸スピネル、ニッケル
酸リチウムなど4V級のもの、さらにはリチウム含有マ
ンガン酸化物、五酸化バナジウムなど3V級のものが検
討され、高電圧を有する電池が実用化されている。
2. Description of the Related Art With the rapid development of technologies in the field of electronics in recent years, the miniaturization of electronic devices has been progressing. The power supply for these devices is small, lightweight and high energy
The demand for a battery having a high density is increasing, and a lithium secondary battery using lithium for a negative electrode has attracted attention and is being studied worldwide. The trend of research so far has been to study 4V-class cathodes such as lithium cobaltate, spinel manganate, and lithium nickelate, as well as 3V-class cathodes such as lithium-containing manganese oxide and vanadium pentoxide. Have been put to practical use.

【0003】しかし、最近では機器の消費電力を低減す
るという要望を受けて、半導体素子の動作電圧の低電圧
化が進み、充放電電圧が低く設定された電池も要望され
るようになり、2.5〜1.5V級の三酸化タングステ
ン(以下、WO3 とする)、五酸化ニオブ(以下、Nb
2 5)、スピネル構造のリチウムチタン酸化物(以
下、Li4/3 Ti5/34)などが検討されている。
However, recently, in response to a demand to reduce power consumption of equipment, the operating voltage of a semiconductor device has been reduced, and a battery with a low charge / discharge voltage has been demanded. 0.5-1.5 V class tungsten trioxide (hereinafter referred to as WO 3 ), niobium pentoxide (hereinafter referred to as Nb)
2 O 5 ), lithium titanium oxide having a spinel structure (hereinafter, Li 4/3 Ti 5/3 O 4 ) and the like have been studied.

【0004】特に三酸化タングステンの場合、電気化学
雑誌No.9.599(1981)にも示されるよう
に、充放電カーブが傾斜型を有している。この三酸化タ
ングステンのみを正極に用い、負極にリチウムアルミニ
ウム合金を用いた電池においても、前記の場合と同様
に、放電カ−ブは傾斜型を示す。この電池は、電圧を3
Vに設定されるが、2.5Vや2V級の電池としても使
用可能である。このため、使用する機器に対応した電圧
の設定が可能となり、非水電解質電池を構成する正極材
料としての適用が有望である。
In the case of tungsten trioxide in particular, electrochemical magazine No. As shown in 9.599 (1981), the charge / discharge curve has a slope type. In a battery using only tungsten trioxide as a positive electrode and a lithium aluminum alloy as a negative electrode, the discharge curve shows an inclined type, as in the case described above. This battery has a voltage of 3
Although it is set to V, it can also be used as a 2.5V or 2V class battery. For this reason, it is possible to set a voltage corresponding to a device to be used, and the application as a positive electrode material constituting a nonaqueous electrolyte battery is promising.

【0005】[0005]

【発明が解決しようとする課題】正極にWO3 を用いた
電池は、本願発明者らが種々の検討を行った結果、放電
深度が深い充放電サイクルや過放電に対して非常に弱い
ことがわかった。これは、WO3 が金属リチウムに対
し、1V付近よりも低くなると結晶が徐々に破壊される
ためである。
As a result of various studies conducted by the inventors of the present invention, it has been found that a battery using WO 3 as a positive electrode is very weak against a charge / discharge cycle having a deep discharge depth and an overdischarge. all right. This is because when WO 3 becomes lower than about 1 V with respect to metallic lithium, the crystal is gradually destroyed.

【0006】本発明ではこの結晶破壊を防止し、過放電
特性および充放電サイクル寿命を向上させることを目的
とした。
An object of the present invention is to prevent the crystal breakage and to improve overdischarge characteristics and charge / discharge cycle life.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に本発明の非水電解質二次電池は、WO3 と、リチウム
のドープ、アンドープが可能な化合物とを混合した正
極、負極、非水電解質からなり、前記化合物が、金属リ
チウムに対し、0.1mA/cm2の電流密度で放電し
た際に平均1V以上の還元電位を有することを特徴とす
る。
In order to achieve the above object, a non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode, a negative electrode, a non-aqueous electrolyte prepared by mixing WO 3 with a compound capable of doping and undoping lithium. The compound is characterized in that the compound has an average reduction potential of 1 V or more when discharged at a current density of 0.1 mA / cm 2 with respect to lithium metal.

【0008】前記化合物としては、金属リチウムの電位
に対し、実質的に2V以下で作動し、充放電の可逆性に
すぐれるNb2 5、あるいは1.5V付近で充放電が
可能な、Li4/3 Ti5/34が好ましい。
As the compound, Nb 2 O 5 , which operates at substantially 2 V or less with respect to the potential of metallic lithium and has excellent reversibility of charge and discharge, or Li which can be charged and discharged near 1.5 V, 4/3 Ti 5/3 O 4 is preferred.

【0009】[0009]

【発明の実施の形態】本発明の請求項1に記載の発明
は、WO3 と、リチウムのドープ、アンドープが可能な
化合物とを含む正極、負極、非水電解質からなる非水電
解質二次電池であって、該化合物が、金属リチウムに対
し、0.1mA/cm2の電流密度で放電した際に平均
1V以上の還元電位を有することを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention relates to a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte containing WO 3 and a compound capable of doping and undoping lithium. Wherein the compound has an average reduction potential of 1 V or more when discharged at a current density of 0.1 mA / cm 2 with respect to lithium metal.

【0010】前記の構成を有する電池は、化合物とWO
3 との約3Vから1.5V程度の低い充電電圧でも使用
可能となる。さらに、WO3 は、1V以下に還元電圧が
降下しない。このため、1V以下の過放電特性に優れて
おり、1V以下に達するまで放電を行った場合でも、W
3 の結晶に破壊が生じず、安定した状態で充放電を繰
り返すことが可能である。
[0010] The battery having the above structure comprises a compound and WO.
It can be used even at a low charging voltage of about 3V to 1.5V. Further, the reduction voltage of WO 3 does not drop below 1V. For this reason, it is excellent in overdischarge characteristics of 1 V or less, and even when discharging is performed until the voltage reaches 1 V or less, W
It is possible to repeat charging and discharging in a stable state without destruction of the O 3 crystal.

【0011】請求項2に記載の発明は、正極を構成する
化合物が、Li4/3 Ti5/3 4、Nb2 5の少なくと
もいずれか一方からなる。これによれば、放電によって
電位が下降しても、WO3 と混合されるLi4/3 Ti
5/3 4や、Nb2 5の電位で保持されるため、WO3
の電位が1V以下に降下することがなく、過放電特性、
充放電サイクル特性に優れるという作用を有する。
According to a second aspect of the present invention, the compound constituting the positive electrode comprises at least one of Li 4/3 Ti 5/3 O 4 and Nb 2 O 5 . According to this, even if the potential drops due to discharge, Li 4/3 Ti mixed with WO 3
5/3 O 4 and, because it is held at a potential of Nb 2 O 5, WO 3
Over discharge characteristics without the potential of
It has the effect of having excellent charge / discharge cycle characteristics.

【0012】なお、本発明では、化合物としてLi4/3
Ti5/3 4、及びNb2 5を例として説明したが、リ
チウムのド−プ、アンド−プが可能で、還元電位(放電
電位)が、金属リチウムに対し、0.1mA/cm2
電流密度で平均1V以上の電位を有する物質であれば、
同様の効果が得られるものと考えられる。
In the present invention, Li 4/3 is used as the compound.
Although Ti 5/3 O 4 and Nb 2 O 5 have been described as examples, doping and undoping of lithium is possible, and the reduction potential (discharge potential) is 0.1 mA / cm with respect to metallic lithium. If the substance has a potential of 1 V or more on average at the current density of 2 ,
It is considered that a similar effect can be obtained.

【0013】請求項3に記載の発明は、正極を構成する
WO3と化合物との混合比率を規定するものであり、両
者の混合比率を重量比率においてWO3が100に対し
て化合物が50から200の範囲とする。
According to a third aspect of the present invention, the mixing ratio of WO 3 and the compound constituting the positive electrode is specified, and the mixing ratio of the two is from 100 to 50 for WO 3 in weight ratio. The range is 200.

【0014】WO3100に対する化合物の重量比率が
50未満の場合、正極中に占める化合物の比率が相対的
に低下し、これに伴って1V以下の電位に対する容量も
小さくなる。このため、WO3 の電位が1V以下に降下
するのを防止する効果が低くなってしまう。また、化合
物の重量比率が200を超える場合には、正極中に占め
るWO3 の比率が小さくなり、WO3 の電位が1V以下
に至った場合、直ちに結晶が破壊され、充放電が不可能
となる。
When the weight ratio of the compound to WO 3 100 is less than 50, the ratio of the compound in the positive electrode is relatively reduced, and accordingly, the capacity for a potential of 1 V or less is also reduced. Therefore, the effect of preventing the potential of WO 3 from dropping to 1 V or less is reduced. Further, when the weight ratio of the compound exceeds 200, the ratio of WO 3 in the positive electrode decreases, and when the potential of WO 3 reaches 1 V or less, the crystal is immediately destroyed and it is impossible to charge and discharge. Become.

【0015】請求項4に記載の発明は、正極の電気容量
に比較して負極の電気容量を小さく設定し、電池容量を
負極規制とする。負極容量によって電池容量を規制する
ことで、負極の電位の向上で放電を収束させ、WO3
電位が1V以下に降下しないようにするという作用を有
する。
According to the present invention, the electric capacity of the negative electrode is set smaller than the electric capacity of the positive electrode, and the battery capacity is regulated to the negative electrode. By regulating the battery capacity by the negative electrode capacity, the discharge is converged by improving the potential of the negative electrode, and has the effect of preventing the potential of WO 3 from dropping to 1 V or less.

【0016】正極をWO3 と化合物とからなる構成とす
ることで、WO3 の電位が1V以下へ降下することを防
止できる。しかし、正極の電気容量以上に放電された場
合、WO3 の電位も、やがては1V以下に低下してしま
う。そこで、混合物の電位が維持されている間に、負極
の電位の向上で放電を収束させる。これによって、電池
電圧が0Vになった場合でも、負極電位が1V以上の混
合物の電位まで上昇した状態で安定化させることができ
る。この構成によれば、電池が深い放電深度あるいは過
放電状態においても、WO3 の結晶を破壊せず安定な充
放電が可能となる。
When the positive electrode is composed of WO 3 and a compound, the potential of WO 3 can be prevented from dropping to 1 V or less. However, when the electric charge is discharged beyond the electric capacity of the positive electrode, the potential of WO 3 eventually drops to 1 V or less. Therefore, while the potential of the mixture is maintained, the discharge is converged by improving the potential of the negative electrode. Thereby, even when the battery voltage becomes 0 V, it is possible to stabilize the battery in a state where the negative electrode potential has risen to the potential of the mixture of 1 V or more. According to this configuration, even when the battery is in a deep discharge depth or in an overdischarged state, stable charging and discharging can be performed without destroying WO 3 crystals.

【0017】請求項6に記載の発明は、負極にLiAl
合金を用いる。これにより、充放電時のデントライトの
生成を抑制し、安定に充放電できる。なお、本発明の正
極に組み合される負極としては、リチウムの吸蔵、放出
が可能なAl合金に加えて、Si、Si合金、あるいは
低電位で充放電する金属酸化物が好ましく、具体的には
WO2 、LiFeO2 、SiO、SnOなどが用いるこ
とができる。これらの中でも、とくに高電位において安
定な特性を有するものが好ましく、リチウムを吸蔵する
Al合金やWO2 、SiOが最適である。
According to a sixth aspect of the present invention, the negative electrode comprises LiAl
Use an alloy. Thereby, generation of dentite at the time of charge and discharge is suppressed, and stable charge and discharge can be performed. As the negative electrode combined with the positive electrode of the present invention, in addition to an Al alloy capable of inserting and extracting lithium, Si, an Si alloy, or a metal oxide which can be charged and discharged at a low potential is preferable. 2 , LiFeO 2 , SiO, SnO and the like can be used. Among these, those having stable characteristics particularly at a high potential are preferable, and an Al alloy that absorbs lithium, WO 2 , and SiO are most suitable.

【0018】[0018]

【実施例】以下、本発明の具体例について、図1〜3を
用いて説明する。なお、以下に示す実施例は本発明を具
体化した一例であり、本発明の技術的範囲を限定するも
のではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific example of the present invention will be described below with reference to FIGS. The embodiments described below are only examples embodying the present invention, and do not limit the technical scope of the present invention.

【0019】(実施例1)WO3 を含む正極と、LiA
l合金を用いた負極から構成された本実施例のコイン型
非水電解質二次電池の構成断面図を図1に示す。1は正
極端子を兼ねたケース、2は負極端子を兼ねた封口板、
3はケースと封口板とを絶縁するポリプロピレン製ガス
ケット、4はポリプロピレン製不織布からなるセパレー
タである。
Example 1 A positive electrode containing WO 3 and LiA
FIG. 1 is a cross-sectional view illustrating the configuration of a coin-type nonaqueous electrolyte secondary battery according to the present embodiment including a negative electrode using an l-alloy. 1 is a case also serving as a positive terminal, 2 is a sealing plate also serving as a negative terminal,
Reference numeral 3 denotes a polypropylene gasket for insulating the case from the sealing plate, and reference numeral 4 denotes a separator made of a polypropylene nonwoven fabric.

【0020】5は正極であるが、正極活物質をWO3
Nb25=100:50に調整し、活物質を90wt
%、導電材としてカーボンブラックを5wt%、バイン
ダーであるフッソ樹脂を5wt%加え、これらを混練
し、厚さ約0.6mm、直径12.0mmの大きさのペ
レットになるように成型した。電気容量にして約30m
Ahである。そして、200℃で真空乾燥し、脱水処理
後、正極とした。
Reference numeral 5 denotes a positive electrode, and the positive electrode active material is WO 3 :
Nb 2 O 5 was adjusted to 100: 50 and the active material was 90 wt.
%, 5 wt% of carbon black as a conductive material, and 5 wt% of a fluorine resin as a binder were kneaded and molded into pellets having a thickness of about 0.6 mm and a diameter of 12.0 mm. About 30m in electric capacity
Ah. And it vacuum-dried at 200 degreeC, and performed the dehydration process, and it was set as the positive electrode.

【0021】6は負極であり、リチウムが5wt%のL
iA・合金を用い、直径は15mmとした。容量比は正
極:負極=1:0.9とした。電解液はエチレンカーボ
ネート(以下、ECで表す)、1、2−ジメトキシエタ
ン(以下、DMEで表す)の当容積混合溶媒にLiN
(CF3 SO2 2 を1mol/lの割合で溶解させた
ものを使用した。電池の大きさは直径20mm、厚さ
2.0mmである。これを電池Aとする。また、正極活
物質をWO3 :Nb25=50:50、正極活物質をW
3 :Nb2 5 =33:67とし、ほかの構成は電池
Aと全く同じ条件とした電池をそれぞれB、Cとする。
Reference numeral 6 denotes a negative electrode, which contains L at 5 wt% of lithium.
An iA alloy was used and the diameter was 15 mm. The capacity ratio was positive electrode: negative electrode = 1: 0.9. The electrolytic solution is a mixture of ethylene carbonate (hereinafter, referred to as EC) and 1,2-dimethoxyethane (hereinafter, referred to as DME) in an equal volume of a mixed solvent of LiN.
(CF 3 SO 2 ) 2 dissolved at a rate of 1 mol / l was used. The size of the battery is 20 mm in diameter and 2.0 mm in thickness. This is called battery A. Further, the positive electrode active material was WO 3 : Nb 2 O 5 = 50: 50, and the positive electrode active material was W.
O 3 : Nb 2 O 5 = 33: 67, and the batteries B and C have the same configuration as the battery A in other configurations, respectively.

【0022】(実施例2)次に、正極活物質におけるW
3 とLi4/3 Ti5/3 4 との比率を、100:5
0、100:100、100:200に調整し、他の構
成は電池Aと全く同じ条件とした電池をそれぞれD、
E、Fとする。
(Example 2) Next, in the positive electrode active material, W
The ratio of O 3 to Li 4/3 Ti 5/3 O 4 is 100: 5
The batteries were adjusted to 0, 100: 100, and 100: 200, and the other configurations were the same as the battery A.
E and F.

【0023】(実施例3)次に、正極活物質としてWO
3 、Nb2 5 、Li4/3 Ti5/3 4 をそれぞれ用
い、これらの重量比率を100:25:25、100:
50:50、100:100:100に調整し、ほかの
構成は電池Aと全く同じ条件とした電池をそれぞれG、
H、Iとする。
Example 3 Next, WO 3 was used as the positive electrode active material.
3 , Nb 2 O 5 , and Li 4/3 Ti 5/3 O 4 , respectively, and their weight ratios are 100: 25: 25, 100:
The batteries were adjusted to 50:50 and 100: 100: 100, and the other configurations were the same as the battery A.
H and I.

【0024】なお、本実施例では混合する物質の二種の
重量比率を同等としたが、必ずしも混合する物質の重量
比率を同等とする必要はなく、混合物の重量比をWO3
100に対して50〜200に調整すれば良い。
In the present embodiment, the weight ratios of the two substances to be mixed are equal, but the weight ratios of the substances to be mixed are not necessarily equal, and the weight ratio of the mixture is set to WO 3.
It may be adjusted to 50 to 200 with respect to 100.

【0025】また、この他にリチウムのド−プ、アンド
−プが可能で、還元電位(放電電位)が金属リチウムに
対し、0.1mA/cm2の電流密度で、平均1V以上
の電位を有する物質であれば、二種以上混合することは
可能であり、前記同様、混合物の重量比を50〜200
に調整すれば、同様に実施可能である。
In addition, lithium doping and undoping are possible, and the reduction potential (discharge potential) is 0.1 mA / cm 2 at a current density of 0.1 mA / cm 2 with respect to metallic lithium. It is possible to mix two or more of these substances as long as the substance has a weight ratio of the mixture of 50 to 200 as described above.
If it is adjusted to, it can be similarly implemented.

【0026】(比較例1)続いて、正極活物質をWO3
のみとし、ほかの構成は電池Aと全く同じ条件の電池を
Jとする。
Comparative Example 1 Subsequently, the positive electrode active material was WO 3
In other configurations, the battery under the same conditions as the battery A is denoted by J.

【0027】(比較例2)さらに、容量比を正極:負極
=1:1.2とし、ほかの構成は電池Aと全く同じ条件
の電池をKとする。
(Comparative Example 2) Further, the capacity ratio of the positive electrode to the negative electrode was set to 1: 1.2, and the battery having the same configuration as the battery A in other configurations was designated as K.

【0028】なお、以上の説明では、電解液としてE
C、DMEの等容積混合溶媒にLiN(CF3 SO2
2 を1mol/lの割合で溶解させたものを使用した
が、非水電解質二次電池で使用される一般的な電解液で
あれば、同様に実施可能である。
In the above description, E is used as the electrolytic solution.
LiN (CF 3 SO 2 ) in a mixed solvent of equal volume of C and DME
Although a solution in which 2 was dissolved at a ratio of 1 mol / l was used, a general electrolytic solution used in a non-aqueous electrolyte secondary battery can be similarly implemented.

【0029】上記の電池A〜Kについて、充放電サイク
ル試験、過放電試験を行った。
The batteries A to K were subjected to a charge / discharge cycle test and an overdischarge test.

【0030】充放電サイクル試験は20℃において、1
mAの定電流で充電上限カット電圧を2.5V、放電下
限カット電圧を0.5Vにそれぞれ設定し、充放電を5
サイクル繰り返した。初期の容量を100%とした時の
5サイクル後の電気容量維持率を測定した。この結果を
(表1)に示す。
The charge / discharge cycle test was performed at 20 ° C.
At a constant current of mA, the charge upper limit cut voltage was set to 2.5 V, the discharge lower limit cut voltage was set to 0.5 V, and charge / discharge was set to 5 V.
The cycle was repeated. The electric capacity retention rate after 5 cycles when the initial capacity was 100% was measured. The results are shown in (Table 1).

【0031】[0031]

【表1】 [Table 1]

【0032】本発明品である電池A〜Iでは5サイクル
後に約90%以上の放電容量を維持しており、電池Jに
比べ、WO3 にNb2 5 、Li4/3 Ti5/3 4 を混
合することによって、充放電サイクル特性の向上にかな
り効果がある。また、電池Kと比べるとわかるように、
負極規制とすることによっても、充放電サイクル特性の
向上に効果がある。
[0032] maintains the discharge capacity of about 90% or more after the battery A~I in 5 cycles products of the present invention, compared with the battery J, Nb 2 O 5 to WO 3, Li 4/3 Ti 5/3 Mixing O 4 has a considerable effect on improving the charge / discharge cycle characteristics. Also, as you can see when comparing with Battery K,
The regulation of the negative electrode is also effective in improving the charge / discharge cycle characteristics.

【0033】次に、60℃の高温における過放電試験に
ついて説明する。この試験は3kΩの負荷を接続して2
0日間保持するものである。3kΩの負荷で連続放電す
ると、1日あまりで電池の端子電圧は0V近くになる。
そのまま20日間保持した後、2.5Vで充電し、その
回復容量を初期の容量を100%として算出した。測定
結果を(表2)に示す。
Next, an overdischarge test at a high temperature of 60 ° C. will be described. In this test, a 3 kΩ load was connected and 2
It is kept for 0 days. When the battery is continuously discharged with a load of 3 kΩ, the terminal voltage of the battery becomes close to 0 V in about one day.
After being kept as it is for 20 days, it was charged at 2.5 V, and its recovery capacity was calculated with the initial capacity being 100%. The measurement results are shown in (Table 2).

【0034】[0034]

【表2】 [Table 2]

【0035】充放電サイクル試験の結果と同様に、電池
A〜Iでは60℃の高温での過放電20日後でも、約7
5%以上の回復容量を維持しており、電池J、Kに比
べ、過放電特性が向上しているとわかる。
Similar to the results of the charge / discharge cycle test, the batteries A to I have about 7 days even after 20 days of overdischarge at a high temperature of 60 ° C.
It can be seen that the recovery capacity of 5% or more is maintained, and the overdischarge characteristics are improved as compared with the batteries J and K.

【0036】[0036]

【発明の効果】以上のように本発明によれば、WO3
金属リチウムに1V以上の電位を有し、充放電の可逆性
を有する化合物、すなわちLi4/3Ti5/34、Nb2
5を少なくともいずれか1つを混合することによって、
WO3の結晶破壊を防止し、充放電サイクル寿命および
過放電特性を向上させることができる。さらに、負極規
制とすることによって、過放電特性をより安定させ、充
放電サイクル特性の向上に一層効果的である。
As described above, according to the present invention, WO 3 has a potential of 1 V or more in metallic lithium and a compound having reversibility of charge and discharge, that is, Li 4/3 Ti 5/3 O 4 , Nb 2 O
By mixing at least one of the five
WO 3 crystal breakage can be prevented, and the charge / discharge cycle life and overdischarge characteristics can be improved. Further, by restricting the negative electrode, the overdischarge characteristics are further stabilized, and the charge / discharge cycle characteristics are more effectively improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例におけるコイン型電池の縦断面
FIG. 1 is a longitudinal sectional view of a coin-type battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ケース 2 封口板 3 ガスケット 4 セパレータ 5 正極 6 負極 DESCRIPTION OF SYMBOLS 1 Case 2 Sealing plate 3 Gasket 4 Separator 5 Positive electrode 6 Negative electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA01 AA04 BB04 BB05 BC06 BD00 BD04 5H014 AA02 EE10 HH01 HH04 5H029 AJ02 AJ05 AK02 AK03 AL02 AL03 AL11 AL12 AM03 AM04 AM07 BJ03 BJ12 DJ17 HJ01 HJ02 HJ17 HJ18 HJ19  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 三酸化タングステン(WO3 )と、リチ
ウムのドープ、アンドープが可能な化合物とを含む正
極、負極、非水電解質からなる非水電解質二次電池であ
って、該化合物が、金属リチウムに対し、0.1mA/
cm2の電流密度で放電した際に平均1V以上の還元電
位を有することを特徴とする非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte containing tungsten trioxide (WO 3 ) and a compound capable of doping and undoping lithium. 0.1 mA /
A non-aqueous electrolyte secondary battery having an average reduction potential of 1 V or more when discharged at a current density of cm 2 .
【請求項2】 正極を構成する化合物が、スピネル構造
のリチウムチタン酸化物(Li4/3 Ti5/3 4 )、五
酸化ニオブ(Nb2 5 )の少なくともいずれか一方を
含む請求項1記載の非水電解質二次電池。
2. The compound constituting the positive electrode contains at least one of lithium titanium oxide having a spinel structure (Li 4/3 Ti 5/3 O 4 ) and niobium pentoxide (Nb 2 O 5 ). 2. The non-aqueous electrolyte secondary battery according to 1.
【請求項3】 正極を構成する該三酸化タングステン
(WO3 )と化合物との混合比率が、重量比率にて三酸
化タングステンが100に対して化合物が50から20
0の範囲にある請求項1もしくは2記載の非水電解質二
次電池。
3. The mixing ratio of the tungsten trioxide (WO 3 ) and the compound constituting the positive electrode is such that the weight ratio of tungsten trioxide is 100 and the compound is 50 to 20.
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the value is in the range of 0.
【請求項4】 正極の電気容量に比較して負極の電気容
量を小さく設定し、電池容量を負極規制とする請求項1
乃至3記載の非水電解質二次電池。
4. The negative electrode capacity is set to be smaller than the positive electrode capacity, and the battery capacity is regulated to the negative electrode.
4. The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3.
【請求項5】 負極がLiAl合金である請求項1乃至
4記載の非水電解質二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode is a LiAl alloy.
JP11195649A 1999-07-09 1999-07-09 Nonaqueous electrolyte secondary battery Pending JP2001023697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11195649A JP2001023697A (en) 1999-07-09 1999-07-09 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11195649A JP2001023697A (en) 1999-07-09 1999-07-09 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2001023697A true JP2001023697A (en) 2001-01-26

Family

ID=16344693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11195649A Pending JP2001023697A (en) 1999-07-09 1999-07-09 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2001023697A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080680A (en) * 2005-09-14 2007-03-29 Sanyo Electric Co Ltd Thermal resistant lithium secondary battery
WO2015016548A1 (en) * 2013-07-30 2015-02-05 주식회사 엘지화학 Cathode mix for secondary battery having irreversible additive
US9023532B2 (en) 2012-08-01 2015-05-05 Samsung Sdi Co., Ltd. Positive active material composition for rechargeable lithium battery, positive electrode for rechargeable lithium battery including the positive active material composition, and rechargeable lithium battery including the positive active material composition
JP2018501615A (en) * 2014-12-12 2018-01-18 ペリオン テクノロジーズ インク. Electrochemical cell and production method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080680A (en) * 2005-09-14 2007-03-29 Sanyo Electric Co Ltd Thermal resistant lithium secondary battery
US9023532B2 (en) 2012-08-01 2015-05-05 Samsung Sdi Co., Ltd. Positive active material composition for rechargeable lithium battery, positive electrode for rechargeable lithium battery including the positive active material composition, and rechargeable lithium battery including the positive active material composition
WO2015016548A1 (en) * 2013-07-30 2015-02-05 주식회사 엘지화학 Cathode mix for secondary battery having irreversible additive
US10218002B2 (en) 2013-07-30 2019-02-26 Lg Chem, Ltd. Positive electrode mix for secondary batteries including irreversible additive
JP2018501615A (en) * 2014-12-12 2018-01-18 ペリオン テクノロジーズ インク. Electrochemical cell and production method thereof
US10727473B2 (en) 2014-12-12 2020-07-28 Viking Power Systems Pte. Ltd. Electrochemical cell and method of making the same

Similar Documents

Publication Publication Date Title
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
TWI343668B (en) Electrode for lithium secondary battery comprising electrode additive and lithium secondary battery using the same
JPH1027626A (en) Lithium secondary battery
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
JP2003331825A (en) Nonaqueous secondary battery
JPH07335261A (en) Lithium secondary battery
US7422827B2 (en) Nonaqueous electrolyte
EP0809868A1 (en) Delithiated cobalt oxide and nickel oxide phases and method of preparing same
JP2000012090A (en) Lithium secondary battery
JP2000058122A (en) Nonaqueous electrolytic solution for secondary battery and nonaqueous electrolytic solution secondary battery
JP3082117B2 (en) Non-aqueous electrolyte secondary battery
JP2003163029A (en) Secondary non-aqueous electrolyte battery
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP2001023697A (en) Nonaqueous electrolyte secondary battery
JPH1027627A (en) Lithium secondary battery
JP2006040557A (en) Organic electrolyte secondary battery
JPH05326017A (en) Nonaqueous solvent type lithium secondary battery
KR100635740B1 (en) Negative active material for lithium secondary battery and lithium secondary battery comprising same
JP2001023615A (en) Flat nonaqueous electrolyte secondary battery
JP4560877B2 (en) Lithium secondary battery
JP2000133313A (en) Non-aqueous electrolyte battery
JP3650016B2 (en) Lithium battery
JP3452488B2 (en) Non-aqueous electrolyte lithium secondary battery
JPH03112070A (en) Lithium secondary battery
JP3428348B2 (en) Organic electrolyte lithium secondary battery