JP2000339044A - Solarlight power generator - Google Patents

Solarlight power generator

Info

Publication number
JP2000339044A
JP2000339044A JP2000079653A JP2000079653A JP2000339044A JP 2000339044 A JP2000339044 A JP 2000339044A JP 2000079653 A JP2000079653 A JP 2000079653A JP 2000079653 A JP2000079653 A JP 2000079653A JP 2000339044 A JP2000339044 A JP 2000339044A
Authority
JP
Japan
Prior art keywords
current
power
circuit
solar cell
cell device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000079653A
Other languages
Japanese (ja)
Other versions
JP3796095B2 (en
Inventor
Takeo Ishida
健雄 石田
Ryuzo Hagiwara
龍蔵 萩原
Hitoshi Kishi
均 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000079653A priority Critical patent/JP3796095B2/en
Publication of JP2000339044A publication Critical patent/JP2000339044A/en
Application granted granted Critical
Publication of JP3796095B2 publication Critical patent/JP3796095B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Protection Of Static Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the optimum operation voltage of a power converter high and to improve operating efficiency by preventing the increase of overvaltage. SOLUTION: This power generator is provided with a solar battery device 1, a power converter 2 for converting an output from the device 1 into AC power, a current pass circuit 3 connected between the device 1 and the converter 2 in parallel, and a current detection circuit 4 for detecting a current to be fed back to the device 1. When the current detected by the circuit 4 exceeds a prescribed current value, the circuit 3 is disconnected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、太陽光発電装置に係
り、特に、電力変換装置へ過電圧が加わらないように保
護する太陽光発電装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic power generator and, more particularly, to a photovoltaic power generator for protecting a power converter from applying an overvoltage.

【0002】[0002]

【従来の技術】地球環境の問題等から、屋外に設置して
光起電力を発生させる太陽電池装置が注目されており、
屋根などに太陽電池装置を設置し、その発電電力により
日中の消費電力を賄う太陽光発電システムが実用化され
ている。
2. Description of the Related Art A solar cell device which is installed outdoors to generate photovoltaic power has attracted attention due to global environmental problems and the like.
2. Description of the Related Art A photovoltaic power generation system in which a solar cell device is installed on a roof or the like and supplies power during the daytime by the generated power has been put to practical use.

【0003】上記システムにおいては、太陽電池装置が
出力する電力は直流であるので、電力変換装置(インバ
ータ)を用いて、太陽電池装置からの直流電力を交流電
力に変換して用いている。
In the above system, since the power output from the solar cell device is DC, the DC power from the solar cell device is converted into AC power using a power converter (inverter) and used.

【0004】ところで、上記した電力変換装置において
は、太陽電池装置からの発電電力が得られたら直ちに起
動するものではなく、一定時間太陽電池装置からの出力
を確認した上で起動するように構成されている。これは
日の出などのように、太陽電池装置の発電状態が安定し
ない時に、電力変換装置を起動させると、出力電力にノ
イズなどが発生するなどの問題があるからである。
The above-described power converter is not configured to start immediately after the power generated from the solar cell device is obtained, but is configured to start after confirming the output from the solar cell device for a certain period of time. ing. This is because starting the power converter when the power generation state of the solar battery device is not stable, such as at sunrise, causes a problem such as generation of noise in the output power.

【0005】[0005]

【発明が解決しようとする課題】上述したように、従来
の電力変換装置においては、太陽電池装置からの電力が
一定時間安定するまでは起動しないように構成されてい
るため、開放電圧が上昇する。特に、冬場の早朝等にお
いては、開放電圧が大きくなる。このため、電力変換装
置に動作電圧に比べて大きな耐圧のものを用いなければ
ならず、コストがかかるとともに、通常の動作電圧時に
は効率が悪くなるという問題があった。
As described above, since the conventional power converter is configured not to start until the power from the solar cell device is stabilized for a certain period of time, the open-circuit voltage rises. . In particular, in the early morning of winter, etc., the open-circuit voltage increases. For this reason, it is necessary to use a power converter having a higher withstand voltage than the operating voltage, so that the cost is increased and there is a problem that efficiency is deteriorated at a normal operating voltage.

【0006】この発明の目的は、上述した従来の問題点
を解消するためになされたものにして、開放電圧の上昇
を防止して、電力変換装置へ過電圧が加わることを防止
することにある。さらに、この発明の目的は、電力変換
装置の最適動作電圧を高くし、動作効率が向上させる太
陽光発電装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described conventional problems and to prevent an increase in open-circuit voltage and to prevent an overvoltage from being applied to a power converter. Further, an object of the present invention is to provide a solar power generation device in which the optimum operation voltage of the power conversion device is increased and the operation efficiency is improved.

【0007】[0007]

【課題を解決するための手段】この発明は、太陽電池装
置、この太陽電池装置からの出力を交流電力に変換する
電力変換装置と、前記太陽電池装置と電力変換装置間に
並列に接続された電流パス回路と、太陽電池装置へ帰還
する電流を検出する電流検出回路と、を備え、前記電流
検出回路にて検出する電流が所定の電流値以上になる
と、前記電流パス回路が切り放されることを特徴とす
る。
SUMMARY OF THE INVENTION The present invention relates to a solar cell device, a power converter for converting an output from the solar cell device into AC power, and a parallel connection between the solar cell device and the power converter. A current path circuit; and a current detection circuit that detects a current that returns to the solar cell device. When the current detected by the current detection circuit is equal to or greater than a predetermined current value, the current path circuit is disconnected. It is characterized by the following.

【0008】前記太陽電池装置は、非晶質シリコン系太
陽電池素子で構成することができる。
[0008] The solar cell device can be composed of an amorphous silicon-based solar cell element.

【0009】上記した構成によれば、太陽電池装置から
の発電した電流が所定値以下の場合には、電流パス回路
を介して若干の電流が流れていくので、電力変換装置が
停止状態でも太陽電池装置は開放電圧とならず、電圧上
昇を抑制でき、最適動作電圧を高く設計しても耐圧は確
保できる。
According to the above configuration, when the current generated from the solar cell device is equal to or less than the predetermined value, a small amount of current flows through the current path circuit. The battery device does not have an open-circuit voltage, can suppress a voltage rise, and can ensure a withstand voltage even if the optimum operating voltage is designed to be high.

【0010】特に、太陽電池装置として、非晶質系シリ
コン太陽電池素子を用いた場合には、フィルファクタ
(F.F.)が小さいので、冬の早朝などに最大入力電
圧を越える畏れがあったが、この発明を適用すれば、発
電が開始すると同時に、電流パス回路に電流が流れるの
で、電圧上昇は、電力変換装置の動作時とあまり変わら
ない。
[0010] In particular, when an amorphous silicon solar cell element is used as a solar cell device, the fill factor (FF) is small, and there is a fear that the maximum input voltage may be exceeded in the early morning of winter or the like. However, when the present invention is applied, a current flows through the current path circuit at the same time as the start of power generation, so that the voltage rise is not much different from that during the operation of the power converter.

【0011】前記電流検出回路は逆流防止ダイオードか
らの出力により電流を検出するように構成することがで
きる。
The current detection circuit may be configured to detect a current based on an output from a backflow prevention diode.

【0012】逆流防止ダイオードの出力を利用して電流
検出を行うことで、回路を兼用することができる。
The circuit can be shared by detecting the current using the output of the backflow prevention diode.

【0013】また、この発明は、太陽電池装置と、この
太陽電池装置からの出力を交流電力に変換する電力変換
装置と、前記太陽電池装置と電力変換装置間に並列に接
続された電流パス回路と、前記電流パス回路と電力変換
装置との間に設けられ、電流パス回路からの出力により
制御される電力供給回路と、太陽電池装置へ帰還する電
流を検出する電流検出回路と、を備え、前記電流検出回
路にて検出する電流が所定の電流値以上になると、前記
電流パス回路が切り放されることを特徴とする。 前記
電力変換装置は、主回路と制御回路で構成され、制御回
路の駆動電力が太陽電池装置から与えられるように構成
する。
Further, the present invention provides a solar cell device, a power converter for converting an output from the solar cell device into AC power, and a current path circuit connected in parallel between the solar cell device and the power converter. And a power supply circuit provided between the current path circuit and the power conversion device and controlled by an output from the current path circuit, and a current detection circuit for detecting a current returning to the solar cell device, When the current detected by the current detection circuit is equal to or more than a predetermined current value, the current path circuit is disconnected. The power converter includes a main circuit and a control circuit, and is configured such that drive power of the control circuit is supplied from a solar cell device.

【0014】上記した構成によれば、太陽電池装置から
の発電した電流が所定値以下の場合には、電流パス回路
及び電流供給回路を介して若干の電流が流れていくの
で、電力変換装置が停止状態でも太陽電池装置は開放電
圧とならず、電圧上昇を抑制でき、最適動作電圧を高く
設計しても耐圧は確保できる。
According to the above configuration, when the current generated from the solar cell device is equal to or less than the predetermined value, a small amount of current flows through the current path circuit and the current supply circuit. Even in the stop state, the solar cell device does not reach the open voltage, the voltage rise can be suppressed, and the withstand voltage can be ensured even if the optimum operating voltage is designed to be high.

【0015】前記電流検出回路は逆流防止ダイオードか
らの出力に基づいて電流を検出するように構成できる。
The current detection circuit can be configured to detect a current based on an output from a backflow prevention diode.

【0016】また、前記電力供給回路は、電流パス回路
を分圧した電流と、太陽電池装置からの電流を切り替え
て供給するように構成するとよい。
The power supply circuit may be configured to switch and supply a current obtained by dividing a current path circuit and a current from a solar cell device.

【0017】前記電力供給回路は、太陽電池装置と電力
変換装置との間に流れる電流をオン/オフする手段と、
前記電流パス回路から与えられる電流を電力変換装置に
与える手段と、を備えて構成することができる。そし
て、前記オン/オフする手段は、サイリスタ或いは、自
己保持型リレーで構成することができる。
The power supply circuit includes means for turning on / off a current flowing between the solar cell device and the power conversion device;
Means for supplying a current supplied from the current path circuit to a power converter. The on / off means can be constituted by a thyristor or a self-holding relay.

【0018】[0018]

【発明の実施の形態】以下、この発明の実施の形態につ
き、図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1は、この発明の第1の実施形態を示す
ブロック図である。図1に示すように、屋根等に設置さ
れた太陽電池装置1は、非晶質シリコン、結晶系シリコ
ン等の太陽電池素子を複数個、並列及び直列に接続し
て、所定の電力を出力するように構成されている。この
太陽電池装置1から発電された直流電力が電力変換装置
2の入力側端子2a、2bから電力変換装置2に与えら
れる。この実施の形態における電力変換装置2の耐圧
は、最適動作電圧より少し大きくしている程度のものを
用いている。
FIG. 1 is a block diagram showing a first embodiment of the present invention. As shown in FIG. 1, a solar cell device 1 installed on a roof or the like outputs a predetermined power by connecting a plurality of solar cell elements such as amorphous silicon and crystalline silicon in parallel and in series. It is configured as follows. The DC power generated from the solar cell device 1 is supplied to the power converter 2 from the input terminals 2a and 2b of the power converter 2. The withstand voltage of the power conversion device 2 in this embodiment is set to a value slightly higher than the optimum operating voltage.

【0020】電力変換装置2にて直流電力を交流電力に
変換し、出力端子2c、2dから交流電力が内部の電気
系統に与えられ、この電気系統に接続された交流負荷6
に電力が供給される。
The DC power is converted into AC power by the power converter 2, AC power is supplied to the internal electric system from the output terminals 2c and 2d, and the AC load 6 connected to the electric system is supplied.
Is supplied with power.

【0021】電気系統は、商用の電力系統と連系されて
おり、夜間など太陽電池装置1から供給される電力が不
足したときに、電力系統からの電力を利用できるように
構成されている。
The electric system is interconnected with a commercial electric power system, and is configured such that electric power from the electric power system can be used when electric power supplied from the solar cell device 1 is insufficient, such as at night.

【0022】この発明では、電力変換装置2の入力端子
2a、2bと太陽電池装置1の出力端子との間に電流パ
ス回路3が設けられている。この電流パス回路3は、太
陽電池装置1のリターン側に設けられた帰還電流を測定
する電流検出回路4の出力により、その動作が制御され
る。
In the present invention, the current path circuit 3 is provided between the input terminals 2a and 2b of the power converter 2 and the output terminal of the solar cell device 1. The operation of the current path circuit 3 is controlled by the output of a current detection circuit 4 that measures a feedback current provided on the return side of the solar cell device 1.

【0023】なお、この実施形態においては、入力端子
2aが+側端子、入力端子2bが−側端子で構成されて
いる。
In this embodiment, the input terminal 2a is a positive terminal and the input terminal 2b is a negative terminal.

【0024】前記電流パス回路3は、バイアス抵抗とス
イッチング素子を有し、電流検出回路4からの出力によ
り、スイッチング素子がオン/オフし、帰還電流が所定
の電流値になるまで、電流パス回路3に電流が流れ、電
力変換装置2には、電流を与えずに、太陽電池装置1に
戻る。
The current path circuit 3 has a bias resistor and a switching element. The output of the current detection circuit 4 turns the switching element on / off and keeps the current path circuit until the feedback current reaches a predetermined current value. 3, the current returns to the solar cell device 1 without supplying the current to the power conversion device 2.

【0025】太陽電池装置1の出力の増大につれて、電
流パス回路3を経て流れる電流は増加する。そして、電
流検出回路4は所定の電流値、即ち、電力変換装置2の
起動開始電圧を十分上回る状態になると、電流パス回路
3は切り放され、太陽電池装置1からの電力は全て電力
変換装置2へ供給される。
As the output of the solar cell device 1 increases, the current flowing through the current path circuit 3 increases. When the current detection circuit 4 reaches a predetermined current value, that is, a state sufficiently higher than the activation start voltage of the power conversion device 2, the current path circuit 3 is cut off, and all the power from the solar battery device 1 is converted to the power conversion device. 2.

【0026】図示はしていないが、この装置は、電力変
換装置2の起動を制御するために、電流パス回路3を経
て流れる電流を測定し、太陽電池装置1が起動開始電圧
に達したか否か判断している。すなわち、一定時間太陽
電池装置1からの出力を確認した上で電力変換装置2が
起動されるように構成されている。
Although not shown, this device measures the current flowing through the current path circuit 3 in order to control the activation of the power converter 2, and determines whether the solar cell device 1 has reached the activation start voltage. Has been determined. That is, the power converter 2 is configured to be activated after checking the output from the solar cell device 1 for a certain period of time.

【0027】ところで、太陽電池装置1が開放状態で最
大電圧になる時は、太陽電池電流(Ipv)は0であ
る。そこで、この発明では、電力変換装置2が停止状態
及び起動開始電圧を上回らない時には、電流パス回路3
から電流を流して、電圧の上昇を抑制する。このため、
電流パス回路3のバイアス抵抗は電力変換装置2の耐圧
に応じて大きな抵抗のものが用いられる。太陽電池装置
1で発電した電流が電流パス回路3を通じて流れること
により、電圧降下が起こり電圧の上昇を抑制できる。そ
して、電力変換装置2が起動しているときは、太陽電池
電流が電力変換装置2に流れるので、開放状態とはなら
ず、電流パス回路3に太陽電池電流を流すと発電電流が
無駄となる。このため、この発明では、太陽電池装置1
が電力変換装置2の起動開始電圧を上回り、電力変換装
置2が通常の起動状態になると電流検出回路4からの出
力により、電流パス回路3が切り放される。
By the way, when the solar cell device 1 reaches the maximum voltage in the open state, the solar cell current (Ipv) is zero. Therefore, according to the present invention, when the power converter 2 does not exceed the stop state and the start-up voltage, the current path circuit 3
To suppress a rise in voltage. For this reason,
As the bias resistor of the current path circuit 3, a resistor having a large resistance according to the withstand voltage of the power converter 2 is used. When the current generated by the solar cell device 1 flows through the current path circuit 3, a voltage drop occurs and a rise in voltage can be suppressed. When the power conversion device 2 is activated, the solar cell current flows through the power conversion device 2, so that the power conversion device 2 does not enter an open state. When the solar cell current flows through the current path circuit 3, the generated current is wasted. . For this reason, in the present invention, the solar cell device 1
Exceeds the activation start voltage of the power converter 2, and when the power converter 2 enters a normal startup state, the current path circuit 3 is cut off by the output from the current detection circuit 4.

【0028】このように、運転状態での最大電圧を考慮
した耐圧になるように、電流パス回路3にバイアス抵抗
等を設定しておけば、電力変換装置2に、大きな電圧が
入力することがなくなる。従って、最適動作電圧を高く
設定することができ、システム効率をアップさせること
ができる。
As described above, if a bias resistor or the like is set in the current path circuit 3 so that the withstand voltage in consideration of the maximum voltage in the operating state is set, a large voltage can be input to the power converter 2. Disappears. Therefore, the optimum operating voltage can be set high, and the system efficiency can be increased.

【0029】図2は、この発明の第1の実施形態の具体
例を示す回路図である。図2に示すように、電流パス回
路3は、第1トランジスタ31と第2トランジスタ32
を有し、第1トランジスタ31のベースに電流検出回路
4からの出力が与えられる。第1トランジスタ31のコ
レクタは太陽電池装置1の出力(+)側のラインと抵抗
33を介して接続され、エミッタは太陽電池装置1の帰
還(−)側ラインと接続されている。第1トランジスタ
31のコレクタが第2トランジスタ32のベースと接続
され、第2トランジスタ32のコレクタは太陽電池装置
1の出力側のラインと抵抗35を介して接続され、エミ
ッタは太陽電池装置1の帰還側ラインとバイアス抵抗3
6を介して接続されている。第2トランジスタ32のベ
ースと帰還側ラインとは抵抗34を介して接続されてい
る。上記抵抗33、34、35は、第1トランジスタ3
1及び第2トランジスタ32との特性等によりその抵抗
値は適宜選択され、バイアス抵抗(Rz)36は、使用
する電源変換装置2の耐圧に応じて決められる。
FIG. 2 is a circuit diagram showing a specific example of the first embodiment of the present invention. As shown in FIG. 2, the current path circuit 3 includes a first transistor 31 and a second transistor 32.
And the output of the current detection circuit 4 is provided to the base of the first transistor 31. The collector of the first transistor 31 is connected to a line on the output (+) side of the solar cell device 1 via a resistor 33, and the emitter is connected to a feedback (−) side line of the solar cell device 1. The collector of the first transistor 31 is connected to the base of the second transistor 32, the collector of the second transistor 32 is connected to the output line of the solar cell device 1 via the resistor 35, and the emitter is the feedback of the solar cell device 1. Side line and bias resistor 3
6 are connected. The base of the second transistor 32 and the feedback line are connected via a resistor 34. The resistors 33, 34 and 35 are connected to the first transistor 3
The resistance value is appropriately selected according to the characteristics of the first and second transistors 32 and the like, and the bias resistance (Rz) 36 is determined according to the withstand voltage of the power supply converter 2 to be used.

【0030】この電流検出回路4では、逆流防止ダイオ
ード41の出力を利用して、電流検出を行っている。逆
流防止ダイオード41の出力が抵抗44を介して、差動
アンプ42の一方に入力され、差動アンプ42の他方の
入力は、帰還抵抗45を介してアンプの出力が与えられ
る。また、他方の入力は抵抗43を介して帰還ラインと
接続されている。また、アンプ42の一方の入力と帰還
ラインとは抵抗46と接続されている。これら各抵抗4
3、44、45、46は、逆流防止ダイオード41から
のゲインを調整するものであり、電力変換装置3を通常
の起動状態に適した電流値になったとき、電流パス回路
3を切り離すための出力値となるように選択されてい
る。
The current detection circuit 4 detects the current using the output of the backflow prevention diode 41. The output of the backflow prevention diode 41 is input to one of the differential amplifiers 42 via a resistor 44, and the other input of the differential amplifier 42 is supplied with the output of the amplifier via a feedback resistor 45. The other input is connected to a feedback line via a resistor 43. One input of the amplifier 42 and the feedback line are connected to the resistor 46. Each of these resistors 4
Reference numerals 3, 44, 45, and 46 adjust the gain from the backflow prevention diode 41, and are used to disconnect the current path circuit 3 when the power converter 3 has a current value suitable for a normal startup state. It is selected to be the output value.

【0031】次に、この発明の動作を図3及び図4を参
照して説明する。図3は、太陽電池装置1の特性に応じ
た電力変換装置2の運転状態を示す特性図、図4は太陽
電池装置1の電圧電流特性図である。
Next, the operation of the present invention will be described with reference to FIGS. FIG. 3 is a characteristic diagram illustrating an operation state of the power conversion device 2 according to characteristics of the solar cell device 1, and FIG. 4 is a voltage-current characteristic diagram of the solar cell device 1.

【0032】太陽電池装置1が発電を開始する前は、電
力変換装置2は停止したままである。そして、逆流防止
ダイオード41からは電流が流れておらず、第1トラン
ジスタ31はオフである。第1トランジスタ31がオフ
の時、第2トランジスタ32はオンとなり、電流パス回
路3が太陽電池装置1と接続された状態である。
Before the solar cell device 1 starts power generation, the power conversion device 2 remains stopped. Then, no current flows from the backflow prevention diode 41, and the first transistor 31 is off. When the first transistor 31 is off, the second transistor 32 is on and the current path circuit 3 is connected to the solar cell device 1.

【0033】早朝、太陽電池装置に光が当たると太陽電
池装置1から発電した電流は、電流パス回路3のバイア
ス抵抗36を介して、逆流ダイオード41を経て太陽電
池装置1に戻る。電流検出回路4は流れる電流を検出し
ている。
In the early morning, when light hits the solar cell device, the current generated from the solar cell device 1 returns to the solar cell device 1 via the bias resistor 36 of the current path circuit 3 and the reverse current diode 41. The current detection circuit 4 detects a flowing current.

【0034】時間が経過し、太陽が高くあがると太陽電
池装置1からの直流電圧が上昇していくが、第1トラン
ジスタ31がオフで第2トランジスタがオンのため、太
陽電池はバイアス抵抗(Rz)36に接続され、図4に
示すように、Rzの負荷直線と太陽電池のIV特性曲線
の交点によって決定される動作電圧VRz以上に上昇る
ことはない。ここで、VRzは電力変換装置2の起動開
始電圧を十分上回るように設定されている。
As the time elapses and the sun rises, the DC voltage from the solar cell device 1 increases. However, since the first transistor 31 is off and the second transistor is on, the solar cell has a bias resistance (Rz 4), and does not rise above the operating voltage VRz determined by the intersection of the load straight line of Rz and the IV characteristic curve of the solar cell as shown in FIG. Here, VRz is set to be sufficiently higher than the starting voltage of the power converter 2.

【0035】電力変換装置2が起動すると、太陽電池の
電流は次第に増大し、太陽電池の最適動作点Pmax付
近で運転される。このとき逆流防止ダイオード41に流
れる電流もIRzからIpmaxに増加し、電流検出回
路4から与えられる出力により、第1トランジスタ31
がオンになる。第1トランジスタ31がオンになると第
2トランジスタ32がオフになり、電流パス回路3が切
り放され得る。そして、太陽電池装置1からの直流電流
が電力変換回路2にのみ与えられ、太陽電池装置1の出
力を最大限利用できる。
When the power converter 2 is started, the current of the solar cell gradually increases, and the solar cell is operated near the optimum operating point Pmax. At this time, the current flowing through the backflow prevention diode 41 also increases from IRz to Ipmax, and the output given from the current detection circuit 4 causes the first transistor 31
Turns on. When the first transistor 31 is turned on, the second transistor 32 is turned off, and the current path circuit 3 can be disconnected. Then, the DC current from the solar cell device 1 is supplied only to the power conversion circuit 2, and the output of the solar cell device 1 can be used to the maximum.

【0036】この発明では、太陽電池装置1が発電を開
始した状態から、電流パス回路3を介して若干の電流が
流れていくので、電圧が過電圧になるのが防止できる。
例えば、電流を流さない場合には、図3の点線のよう
に、開放電圧は上昇し、電力変換装置2の起動時に最大
電圧となる。これに対して、この発明では、太陽電池装
置1の直流出力電力が大きくなるときに電圧も大きくな
るが、電流は電流パス回路3を介して流れているので、
電圧が動作電圧以上になるのを抑制できる。この結果、
最適動作電圧を高く設計しても耐圧は確保できる。
In the present invention, since a small amount of current flows through the current path circuit 3 from the state in which the solar cell device 1 starts generating power, it is possible to prevent the voltage from becoming overvoltage.
For example, when no current flows, the open-circuit voltage increases as shown by a dotted line in FIG. On the other hand, in the present invention, the voltage increases when the DC output power of the solar cell device 1 increases, but since the current flows through the current path circuit 3,
It is possible to suppress the voltage from exceeding the operating voltage. As a result,
Even if the optimal operating voltage is designed to be high, the withstand voltage can be secured.

【0037】尚、図3においては、直流電力出力が一定
値以上になると、電力変換装置2は、最大電力追従運転
による制御を行っている。
In FIG. 3, when the DC power output exceeds a certain value, the power converter 2 performs control by a maximum power following operation.

【0038】そして、日の入りに近づき、太陽電池装置
1の発電出力が小さくなると、電流検出回路4からの電
流出力も小さくなり、第1トランジスタ31はオフ、第
2トランジスタ32はオンとなり、電流パス回路3が接
続状態となる。そして、その後、電力変換装置2は運転
を停止する。
As the sunset approaches and the power output of the solar cell device 1 decreases, the current output from the current detection circuit 4 also decreases, the first transistor 31 turns off, the second transistor 32 turns on, and the current path circuit 3 is connected. Then, thereafter, the power conversion device 2 stops operating.

【0039】太陽電池装置1として、特に、非晶質系シ
リコン太陽電池を用いた場合には、フィルファクタ
(F.F.)が小さいので、従来では、冬の早朝などに
最大入力電圧を越える畏れがあったが、この発明を適用
すれば、発電が開始すると同時に、電流パス回路3に電
流が流れるので、電圧上昇は、電力変換装置2の動作時
とあまり変わらない。
In particular, when an amorphous silicon solar cell is used as the solar cell device 1, since the fill factor (FF) is small, conventionally, the input voltage exceeds the maximum input voltage in the early morning of winter or the like. Although there was fear, if the present invention is applied, a current flows through the current path circuit 3 at the same time as the start of power generation, so that the voltage rise is not so different from that during the operation of the power converter 2.

【0040】上記のように本発明によれば、最適動作電
圧を高くすることができるので、電流変換装置2の効率
を高めることができる。
As described above, according to the present invention, since the optimum operating voltage can be increased, the efficiency of the current converter 2 can be increased.

【0041】例えば、従来は開放電圧が高くなるため、
動作電圧180Vの変換装置では、開放電圧の関係から
電力変換装置2として耐圧350Vものを使用してい
る。このため、動作電流は16.6A程度となる。これ
に対して、この発明を用いると、耐圧350Vのものを
用いた場合、動作電圧は230Vが可能となる。このた
め、動作電流は13.0Aとなる。
For example, conventionally, since the open circuit voltage becomes high,
In the converter with an operating voltage of 180 V, a power converter with a withstand voltage of 350 V is used as the power converter 2 because of the open voltage. Therefore, the operating current is about 16.6 A. On the other hand, according to the present invention, when a device having a withstand voltage of 350 V is used, the operating voltage can be 230 V. Therefore, the operating current is 13.0A.

【0042】ここで、電流I2R損の改善につき考える
と、(13.0/16.6)2=0.6となり、40%
改善が可能となる。
Here, considering the improvement of the current I 2 R loss, (13.0 / 16.6) 2 = 0.6, which is 40%
Improvements are possible.

【0043】例えば、電力変換装置2の効率が92%と
すると、損失全てがI2R損とすると、損失は4.8%
となり、効率は95%程度に改善される。
For example, assuming that the efficiency of the power converter 2 is 92%, if all the losses are I 2 R losses, the loss is 4.8%.
And the efficiency is improved to about 95%.

【0044】尚、上記した実施の形態においては、電流
検出回路4として、逆流防止ダイオード41の出力を用
いているが、これに限られず、シャント抵抗などを用い
てもよい。
Although the output of the backflow prevention diode 41 is used as the current detection circuit 4 in the above-described embodiment, the present invention is not limited to this, and a shunt resistor or the like may be used.

【0045】上記した電力変換装置2は、図5に示すよ
うに、直流電力を交流電力に変換する主回路21と、こ
の主回路21を制御する制御回路22とで、構成されて
いる。電力変換回路2を駆動させるためには、制御回路
22へ電力を供給し、制御回路22を動作させる必要が
ある。図4に示したものでは、制御回路22を系統など
に接続し、系統などから電力を供給するように構成して
いる。
As shown in FIG. 5, the power conversion device 2 includes a main circuit 21 for converting DC power into AC power, and a control circuit 22 for controlling the main circuit 21. In order to drive the power conversion circuit 2, it is necessary to supply power to the control circuit 22 and operate the control circuit 22. In the configuration shown in FIG. 4, the control circuit 22 is connected to a system or the like and configured to supply power from the system or the like.

【0046】次に示すこの発明の第2の実施形態は、電
力変換装置2の制御回路22への電力を太陽電池装置1
側から供給するように構成したものである。
In a second embodiment of the present invention described below, the power to the control circuit 22 of the power converter 2 is
It is configured to be supplied from the side.

【0047】図6は、この発明の第2の実施形態を示す
ブロック図である。なお、上記した第1の実施形態と同
じ部分には同じ符号を付す。
FIG. 6 is a block diagram showing a second embodiment of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals.

【0048】図6に示すように、この第2の実施形態
は、電流パス回路3からの出力により制御される電流供
給回路5を電力変換装置2と電流パス回路3との間に設
けたものである。そして、電力変換装置2の制御回路2
2は、太陽電池装置1からの電力により駆動されるよう
に構成されている。
As shown in FIG. 6, in the second embodiment, a current supply circuit 5 controlled by an output from a current path circuit 3 is provided between the power converter 2 and the current path circuit 3. It is. Then, the control circuit 2 of the power converter 2
2 is configured to be driven by electric power from the solar cell device 1.

【0049】前記した第1の実施形態においては、電流
検出回路4が検出する帰還電流が所定の電流値になるま
で、電流パス回路3に電流が流れ、電力変換装置2に
は、電流を与えないようにしている。この第2の実施形
態においても、原則的には、電流検出回路4が検出する
帰還電流が所定の電流値になるまで、電流パス回路3に
電流を流すが、電力変換装置2の制御回路22には電流
パス回路3へ流れる電流から電流供給回路5が一部の電
流を流すように構成している。
In the first embodiment, the current flows through the current path circuit 3 until the feedback current detected by the current detection circuit 4 reaches a predetermined current value, and the current is supplied to the power converter 2. I try not to. Also in the second embodiment, in principle, a current flows through the current path circuit 3 until the feedback current detected by the current detection circuit 4 reaches a predetermined current value. The current supply circuit 5 is configured to flow a part of the current from the current flowing to the current path circuit 3.

【0050】太陽電池装置1が発電している間は、この
電力供給回路5からの電流により、電力変換回路2内の
制御回路22は駆動される。この制御回路22が使用す
る電力は極めて少量で済むため、日の出などのように、
太陽電池装置1からの僅かな電力でも十分に動作が行え
る。このように、電力供給回路5からの電力変換装置2
の制御回路22の電力を供給することで、系統などの電
力を用いることなく、電力変換装置2を駆動制御させる
ことができる。もちろん、制御回路2の動作を保証する
ために、バックアップ用の電池などを用意し、太陽電池
装置1からの電力が急に遮断された場合にも制御回路2
2は問題なく動作するように構成している。
While the solar cell device 1 is generating power, the control circuit 22 in the power conversion circuit 2 is driven by the current from the power supply circuit 5. Since the control circuit 22 uses a very small amount of power, such as at sunrise,
The operation can be sufficiently performed even with a small amount of power from the solar cell device 1. Thus, the power conversion device 2 from the power supply circuit 5
By supplying the power of the control circuit 22, the driving of the power converter 2 can be controlled without using the power of the system or the like. Of course, in order to guarantee the operation of the control circuit 2, a backup battery or the like is prepared, and even if the power from the solar cell device 1 is suddenly cut off, the control circuit 2
2 is configured to operate without any problem.

【0051】太陽電池装置1の出力の増大につれて、電
流パス回路3を経て流れる電流は増加する。そして、電
流検出回路4は所定の電流値、即ち、電力変換装置2の
起動開始電圧を十分上回る状態になると、電流パス回路
3は切り放され、太陽電池装置1からの電力は全て電力
変換装置2へ供給される。
As the output of the solar cell device 1 increases, the current flowing through the current path circuit 3 increases. When the current detection circuit 4 reaches a predetermined current value, that is, a state sufficiently higher than the activation start voltage of the power conversion device 2, the current path circuit 3 is cut off, and all the power from the solar battery device 1 is converted to the power conversion device. 2.

【0052】ところで、この第2の実施形態において
は、太陽電池装置1が開放状態で最大電圧になる時は、
太陽電池電流(Ipv)は電力供給回路5からごく僅か
に電流が与えられているだけである。例えば、0.1A
とごく僅かである。
By the way, in the second embodiment, when the solar cell device 1 reaches the maximum voltage in the open state,
The solar cell current (Ipv) is only slightly supplied from the power supply circuit 5. For example, 0.1A
Very slight.

【0053】そこで、この発明では、電力変換装置2が
停止状態及び起動開始電圧を上回らない時には、電流パ
ス回路3から電流を流して、電圧の上昇を抑制する。こ
のため、電流パス回路3は電力変換装置2の耐圧に応じ
て、電流供給回路5から与えられる電流を考慮して抵抗
分圧による抵抗などが決められる。
Therefore, according to the present invention, when the power converter 2 does not exceed the stop state and the start-up voltage, a current flows from the current path circuit 3 to suppress a rise in voltage. For this reason, in the current path circuit 3, a resistance or the like by resistance voltage division is determined in consideration of the current supplied from the current supply circuit 5 in accordance with the withstand voltage of the power converter 2.

【0054】太陽電池装置1で発電した電流が電流パス
回路3を通じて流れることにより、電圧降下が起こり電
圧の上昇を抑制できる。そして、電力変換装置2が起動
しているときは、太陽電池電流が電力変換装置2に流れ
るので、開放状態とはならず、電流パス回路3に太陽電
池電流を流すと発電電流が無駄となる。このため、この
実施形態においても、太陽電池装置1が電力変換装置2
の起動開始電圧を上回り、電力変換装置2が通常の起動
状態になると電流検出回路4からの出力により、電流パ
ス回路3が切り放される。このように、運転状態での最
大電圧を考慮した耐圧になるように、電流パス回路3に
抵抗等を設定しておけば、電力変換装置2に、大きな電
圧が入力することがなくなる。従って、最適動作電圧を
高く設定することができ、システム効率をアップさせる
ことができる。
When the current generated by the solar cell device 1 flows through the current path circuit 3, a voltage drop occurs and a rise in voltage can be suppressed. When the power conversion device 2 is activated, the solar cell current flows through the power conversion device 2, so that the power conversion device 2 does not enter an open state. . Therefore, also in this embodiment, the solar cell device 1 is
When the power conversion device 2 enters a normal startup state, the current path circuit 3 is cut off by an output from the current detection circuit 4. As described above, if a resistance or the like is set in the current path circuit 3 so as to have a withstand voltage in consideration of the maximum voltage in the operating state, a large voltage is not input to the power converter 2. Therefore, the optimum operating voltage can be set high, and the system efficiency can be increased.

【0055】図7は、この発明の第2の実施形態の具体
例を示す回路図である。図7に示すように、電流パス回
路3は、第1トランジスタ31と第2トランジスタ32
を有し、第1トランジスタ31のベースに電流検出回路
4からの出力が与えられる。第1トランジスタ31のコ
レクタは太陽電池装置1の出力(+)側のラインと抵抗
33を介して接続され、エミッタは太陽電池装置1の帰
還(−)側ラインと接続されている。第1トランジスタ
31のエミッタ、コレクタ間は抵抗39を介して接続さ
れている。また、第1トランジスタ31のコレクタと第
2トランジスタ32のベースとが接続されている。
FIG. 7 is a circuit diagram showing a specific example of the second embodiment of the present invention. As shown in FIG. 7, the current path circuit 3 includes a first transistor 31 and a second transistor 32.
And the output of the current detection circuit 4 is provided to the base of the first transistor 31. The collector of the first transistor 31 is connected to a line on the output (+) side of the solar cell device 1 via a resistor 33, and the emitter is connected to a feedback (−) side line of the solar cell device 1. The emitter and the collector of the first transistor 31 are connected via a resistor 39. Further, the collector of the first transistor 31 and the base of the second transistor 32 are connected.

【0056】この第2トランジスタ32のコレクタは太
陽電池装置1の出力側のラインと接続される。そして、
この第2トランジスタ32のエミッタは抵抗37、抵抗
38を介して太陽電池装置1の帰還側ラインと接続され
ている。抵抗37、抵抗38で分圧された出力が電流供
給回路5のダイオード51に与えられる。
The collector of the second transistor 32 is connected to a line on the output side of the solar cell device 1. And
The emitter of the second transistor 32 is connected to the feedback line of the solar cell device 1 via the resistors 37 and 38. The output divided by the resistors 37 and 38 is supplied to the diode 51 of the current supply circuit 5.

【0057】電流供給回路5は、太陽電池装置1からの
電力を電力変換装置2に与えるために、太陽電池装置1
の出力(+)側のラインが電流供給回路5のサイリスタ
(SCR)53に接続される。サイリスタ53の出力が
電力変換装置2に接続される。太陽電池装置1からの電
流Iはサイリスタ53がオンしている時に、電力変換
装置2へ供給される。
The current supply circuit 5 supplies the electric power from the solar cell device 1 to the power converter 2 so that the solar cell device 1
Is connected to the thyristor (SCR) 53 of the current supply circuit 5. The output of thyristor 53 is connected to power converter 2. The current I M from the solar cell device 1 when the thyristor 53 is turned on, is supplied to the power converter 2.

【0058】また、ダイオード51の出力は、差動アン
プ52の−端子及び電力変換装置2に与えられる。ま
た、差動アンプ52の+端子には抵抗37、抵抗38で
分圧された出力が与えられる。この差動アンプ52の出
力電流Iがサイリスタ53のゲート電流として与えら
れる。
The output of the diode 51 is supplied to the minus terminal of the differential amplifier 52 and the power converter 2. The + terminal of the differential amplifier 52 receives an output divided by the resistors 37 and 38. Output current I G of the differential amplifier 52 is supplied as a gate current of the thyristor 53.

【0059】この差動アンプ52は、太陽電池装置1で
発電した電力が電源変換装置2の制御回路22を十分駆
動できるが、主回路21を駆動するには十分でないと
き、ダイオード51のアノード、カソード間の電位差で
はゲートトリガ電圧に達しないように増幅率が決められ
ている。このため、サイリスタ53は、日照強度が微弱
なときにはオンしない。
When the power generated by the solar cell device 1 can sufficiently drive the control circuit 22 of the power converter 2 but is not sufficient to drive the main circuit 21, the differential amplifier 52 uses the anode of the diode 51. The amplification factor is determined so that the potential difference between the cathodes does not reach the gate trigger voltage. Therefore, the thyristor 53 does not turn on when the sunlight intensity is weak.

【0060】また、ダイオード51の出力電流Iは、
電力変換装置2に与えられる。サイリスタ53がオフ、
すなわち、太陽電池装置1と電力変換装置2との間が遮
断された状態でも、太陽電池装置1が発電している間は
ダイオード51から電力変換装置2の制御回路22に電
力が供給される。
[0060] Further, the output current I S of the diode 51,
It is provided to the power converter 2. Thyristor 53 is off,
That is, even when the solar cell device 1 and the power converter 2 are shut off, power is supplied from the diode 51 to the control circuit 22 of the power converter 2 while the solar cell device 1 is generating power.

【0061】上記抵抗33、39は、第1トランジスタ
31及び第2トランジスタ32との特性等によりその抵
抗値は適宜選択され、分圧抵抗37、38は、電流検出
回路4は、前記した図2に示す回路と同様であるので、
同じ部分には同じ符号を付し説明の重複を避けるため
に、ここではその説明を省略する。なお、逆流防止ダイ
オード41の代わりに、ホール素子を用いた電流センサ
などの検出手段を用いてもよい。
The resistances of the resistors 33 and 39 are appropriately selected according to the characteristics of the first transistor 31 and the second transistor 32 and the like. The voltage dividing resistors 37 and 38 correspond to the current detecting circuit 4 shown in FIG. Is the same as the circuit shown in
The same portions are denoted by the same reference numerals, and description thereof will be omitted here to avoid duplication of description. Instead of the backflow prevention diode 41, a detection means such as a current sensor using a Hall element may be used.

【0062】次に、この図7に示す回路の動作を説明す
る。太陽電池装置1が発電を開始する前は、電力変換装
置2は停止したままである。そして、逆流防止ダイオー
ド41からは電流が流れておらず、第1トランジスタ3
1はオフである。第1トランジスタ31がオフの時、第
2トランジスタ32はオンとなり、電流パス回路3が太
陽電池装置1と接続された状態である。そして、サイリ
スタ53もオフの状態であり、太陽電池装置1と電力変
換装置2は遮断されている。
Next, the operation of the circuit shown in FIG. 7 will be described. Before the solar cell device 1 starts power generation, the power conversion device 2 remains stopped. Then, no current flows from the backflow prevention diode 41 and the first transistor 3
1 is off. When the first transistor 31 is off, the second transistor 32 is on and the current path circuit 3 is connected to the solar cell device 1. The thyristor 53 is also in the off state, and the solar cell device 1 and the power converter 2 are shut off.

【0063】早朝、太陽電池装置に光が当たると太陽電
池装置1から発電した電流は、電流パス回路3の分圧抵
抗37,38により分圧された電流が逆流ダイオード4
1を経て太陽電池装置1に戻る。電流検出回路4は流れ
る電流を検出している。一方、分圧された電流はダイオ
ード51から電流Iとして、電力変換装置2の制御回
路22へ与えられる。上記したように、太陽電池装置1
からの発電電力が電力変換装置2の制御回路22は十分
駆動できるが、主回路21を駆動するには十分でないと
きは、サイリスタ53はオンしない。すなわち、日照強
度が微弱なとき、ダイオード51のアノード、カソード
間の電位差では、サイリスタ53のゲートトリガ電圧に
達しないように、差動アンプ52の増幅率が決められて
いる。このとき、太陽電池装置1で発電した電流は、電
流パス回路3を通じて流れることにより、電圧降下が起
こり、電圧の上昇を抑制する。
In the early morning, when light hits the solar battery device, the current generated from the solar battery device 1 is divided by the voltage dividing resistors 37 and 38 of the current path circuit 3 into the reverse current diode 4.
After that, the process returns to the solar cell device 1. The current detection circuit 4 detects a flowing current. On the other hand, the divided current as a current I S from the diode 51 is applied to the control circuit 22 of the power converter 2. As described above, the solar cell device 1
When the power generated from the power converter 2 can drive the control circuit 22 of the power converter 2 sufficiently, but is not sufficient to drive the main circuit 21, the thyristor 53 is not turned on. That is, when the sunlight intensity is weak, the amplification factor of the differential amplifier 52 is determined so that the potential difference between the anode and the cathode of the diode 51 does not reach the gate trigger voltage of the thyristor 53. At this time, the current generated by the solar cell device 1 flows through the current path circuit 3 to cause a voltage drop, thereby suppressing an increase in voltage.

【0064】日照強度がさらに増加し、電流変換装置2
の制御回路22が主回路21を起動させると、ダイオー
ド51からの電流Iは大きく増加し、ダイオード51
の電位差により、差動アンプ52の出力電圧がサイリス
タ53のゲートトリガ電圧を十分超え、サイリスタ53
がオンとなり、電力変換装置2には、電流Iが供給さ
れる。
The sunlight intensity further increases and the current converter 2
When the control circuit 22 of starting the main circuit 21, current I S from the diode 51 is greatly increased, the diode 51
, The output voltage of the differential amplifier 52 sufficiently exceeds the gate trigger voltage of the thyristor 53 and the thyristor 53
There turned on, the power converter 2, the current I M is supplied.

【0065】電力変換装置2が起動すると、太陽電池装
置1の電流は次第に増大し、太陽電池装置1の最適動作
点Pmax付近で運転される。このとき逆流防止ダイオ
ード41に流れる電流もIpmaxに増加し、電流検出
回路4から与えられる出力により、第1トランジスタ3
1がオンになる。第1トランジスタ31がオンになると
第2トランジスタ32がオフになり、電流パス回路3が
切り放される。電流パス回路3が切り離されると、ダイ
オード52からの出力電流Iは0になる。また、サイ
リスタ53へのゲート電流Iもオフになるが、サイリ
スタ53はオン状態を維持する。そして、太陽電池装置
1からの直流電流Iが電力変換回路2に与えられ、太
陽電池装置1の出力を最大限利用できる。
When the power converter 2 starts, the current of the solar cell device 1 gradually increases, and the solar cell device 1 is operated near the optimum operating point Pmax. At this time, the current flowing through the backflow prevention diode 41 also increases to Ipmax, and the first transistor 3
1 turns on. When the first transistor 31 is turned on, the second transistor 32 is turned off, and the current path circuit 3 is disconnected. When the current path circuit 3 is cut off, the output current I S from the diode 52 becomes zero. Further, it is also turned off the gate current I G to the thyristor 53, the thyristor 53 is kept on. Then, the DC current I M from the solar cell device 1 is applied to the power conversion circuit 2, it can take full advantage of the output of the solar cell device 1.

【0066】上記したように、この第2の実施形態で
は、太陽電池装置1が発電を開始した状態から、電流パ
ス回路3及び電流供給回路5を介して電流が流れていく
ので、電圧が過電圧になるのが防止できる。例えば、電
流を流さない場合には、図3の点線のように、開放電圧
は上昇し、電力変換装置2の起動時に最大電圧となる。
これに対して、この発明では、太陽電池装置1の直流出
力電力が大きくなるときに電圧も大きくなるが、電流は
電流パス回路3及び電流供給回路5を介して流れている
ので、電圧が動作電圧以上になるのを抑制できる。この
結果、最適動作電圧を高く設計しても耐圧は確保でき
る。
As described above, in the second embodiment, since the current flows through the current path circuit 3 and the current supply circuit 5 from the state where the photovoltaic device 1 has started power generation, the voltage becomes overvoltage. Can be prevented. For example, when no current flows, the open-circuit voltage increases as shown by a dotted line in FIG.
On the other hand, in the present invention, when the DC output power of the solar cell device 1 increases, the voltage also increases. However, since the current flows through the current path circuit 3 and the current supply circuit 5, the voltage operates. It can be suppressed that the voltage becomes higher than the voltage. As a result, the withstand voltage can be ensured even if the optimum operating voltage is designed to be high.

【0067】そして、何らかの原因により、太陽電池装
置1の発電が突然停止すると、第1トランジスタ31が
オフになり、第2トランジスタ32がオンし、電流パス
回路3が接続される。さらに、このとき、ゲート電流I
はオフであるが、ダイオード51の出力電流Iがサ
イリスタ53をショートするように働き、サイリスタ5
3をオフする。この結果、太陽電池装置1と電力変換装
置2との間が遮断される。
When the power generation of the solar cell device 1 is suddenly stopped for some reason, the first transistor 31 is turned off, the second transistor 32 is turned on, and the current path circuit 3 is connected. Further, at this time, the gate current I
G but is off, the output current I S of the diode 51 acts to short circuit the thyristor 53, the thyristor 5
Turn 3 off. As a result, the connection between the solar cell device 1 and the power converter 2 is cut off.

【0068】太陽電池装置1が発電を再開すると、上記
したように、サイリスタ53がオンし、電流パス回路3
が切り離され、太陽電池装置1から電力変換装置2に電
力が供給される。
When the solar cell device 1 resumes power generation, the thyristor 53 is turned on and the current path circuit 3
Is cut off, and power is supplied from the solar cell device 1 to the power converter 2.

【0069】そして、日の入りに近づき、太陽電池装置
1の発電出力が小さくなると、電流検出回路4からの電
流出力も小さくなり、第1トランジスタ31はオフ、第
2トランジスタ32はオンとなり、電流パス回路3が接
続状態となる。このとき、電力変換装置2の主回路21
が出力を停止寸前まで低下させながらも運転を継続でき
る程度に、太陽電池装置1が電流を供給する時がある。
この状態では、差動アンプ52の出力電圧がゲートトリ
ガ電圧を越えて、サイリスタ53がオンとなって、太陽
電池装置1からサイリスタ53を介して電力が電力変化
装置2に供給される状態となる。このときは、太陽電池
装置1の動作電圧がVpmaxで開放電圧よりも相当低
いため、高い電圧が電力変換装置2に供給されることは
ない。
As the sunset approaches and the power output of the solar cell device 1 decreases, the current output from the current detection circuit 4 also decreases, the first transistor 31 turns off, the second transistor 32 turns on, and the current path circuit 3 is connected. At this time, the main circuit 21 of the power converter 2
There is a case where the solar cell device 1 supplies a current to such an extent that the operation can be continued while the output is reduced to just before the stop.
In this state, the output voltage of the differential amplifier 52 exceeds the gate trigger voltage, the thyristor 53 is turned on, and power is supplied from the solar cell device 1 to the power changing device 2 via the thyristor 53. . At this time, since the operating voltage of the solar cell device 1 is Vpmax, which is considerably lower than the open voltage, a high voltage is not supplied to the power converter 2.

【0070】さらに、日照強度が低下して、電力変換装
置2の主回路21が停止すると、I も制御回路22を
駆動する程度しか流れず、差動アンプ52の出力電圧も
ゲートトリガ電圧を下回り、ゲートオフとなる。また、
が流れることにより、サイリスタ53はショート状
態となり、サイリスタ53はオフとなる。このとき、電
力変換装置2へは分圧抵抗37,38を通して分圧され
た電圧しか供給されず開放電圧が電力変換装置2に加わ
ることが抑制される。
Further, the sunshine intensity decreases and the power conversion device
When the main circuit 21 of the device 2 stops, I SAlso control circuit 22
It flows only to the extent of driving, and the output voltage of the differential amplifier 52 also
It falls below the gate trigger voltage and turns off the gate. Also,
ISThyristor 53 is short-circuited
State, and the thyristor 53 is turned off. At this time,
The voltage is divided into the force converter 2 through the voltage dividing resistors 37 and 38.
And the open voltage is applied to the power converter 2.
Is suppressed.

【0071】その後、さらに、日照強度が低下すると、
制御回路22も運転を停止し、全ての素子は太陽電池装
置1が発電する前の状態に復帰する。
Thereafter, when the sunshine intensity further decreases,
The control circuit 22 also stops operating, and all elements return to the state before the solar cell device 1 generates power.

【0072】上記した実施の形態においては、電力変換
装置2の停止時及び起動開始時には、電力変換装置2の
制御回路22に電力供給回路5のダイオード51から電
流I が供給される。また、電力変換装置2の運転時に
は、サイリスタ53に与えられる電流Iが電力変換装
置2の制御回路22に供給される。この供給される電力
により、電力変換装置2の制御回路22が駆動される。
In the above embodiment, the power conversion
At the time of stopping and starting the device 2, the power conversion device 2
Power is supplied to the control circuit 22 from the diode 51 of the power supply circuit 5.
Style I SIs supplied. In addition, during operation of the power converter 2,
Is the current I given to the thyristor 53MIs power conversion equipment
The signal is supplied to the control circuit 22 of the device 2. This supplied power
Thereby, the control circuit 22 of the power converter 2 is driven.

【0073】上記した図7に示す回路において、太陽電
池装置1の開放電圧が350V、運転中の太陽電池装置
1の電圧が200Vとし、抵抗33を100kΩ、抵抗
37を1kΩ、抵抗36を150W、300Ω、抵抗3
7を1kΩのものを用いる。このとき、電力変換装置2
が停止している状態では、電流が、ダイオード51へ
0.1A、抵抗38へ0.35A流れる。このときの電
力変換装置2側の電圧は270Vとなる。そして、起動
開始時には、太陽電池装置2の電圧は260Vになり、
電流Iは0.1Aとなる。そして、運転中は太陽電池
装置1及び電力変換装置2の電圧は200Vとなる。こ
のときの電流Iは15Aである。
In the circuit shown in FIG. 7, the open-circuit voltage of the solar cell device 1 is 350 V, the voltage of the solar cell device 1 during operation is 200 V, the resistance 33 is 100 kΩ, the resistance 37 is 1 kΩ, and the resistance 36 is 150 W. 300Ω, resistance 3
7 is 1 kΩ. At this time, the power converter 2
Is stopped, a current flows through the diode 51 at 0.1 A and through the resistor 38 at 0.35 A. At this time, the voltage on the power conversion device 2 side is 270V. Then, at the start of activation, the voltage of the solar cell device 2 becomes 260 V,
Current I S will be 0.1A. Then, during operation, the voltage of the solar cell device 1 and the power conversion device 2 becomes 200V. Current I M at this time is 15A.

【0074】次に、この第2の実施の形態の異なる具体
的回路を図8に示す。なお、図7と同じ構成について
は、同じ符号付し、説明を省略する。この図8は、電力
変換装置2の停止時と、起動時に電流を与える電力供給
回路5の部分を変更したものである。すなわち、図7に
示す回路においては、抵抗37,38で分圧して、電流
を与えるように構成した。これに対して、この図8
に示すものは、ツェナーダイオード38aとトランジス
タ54に置き換えたものである。すなわち、抵抗38の
変わりにツェナーダイオード38aを用い、トランジス
タ32のエミッタとトランジスタ54のコレクタと接続
し、トランジスタ54のエミッタをダイオード51と接
続している。
Next, a specific circuit different from the second embodiment is shown in FIG. The same components as those in FIG. 7 are denoted by the same reference numerals, and description thereof will be omitted. FIG. 8 shows a modification of the power supply circuit 5 that supplies current when the power converter 2 is stopped and when it is started. That is, in the circuit shown in FIG. 7, divides by resistors 37 and 38, and configured to provide a current I S. On the other hand, FIG.
1 is replaced with a Zener diode 38a and a transistor 54. That is, a Zener diode 38 a is used instead of the resistor 38, the emitter of the transistor 32 is connected to the collector of the transistor 54, and the emitter of the transistor 54 is connected to the diode 51.

【0075】このように構成することで、僅かなI
流を供給できるとともに、抵抗分圧に比べて抵抗でのI
2R損がなく、抵抗37にワット(W)数の小さい抵抗
が使える。
[0075] With this configuration, a slight I S current with can be supplied, I in resistance than the resistive partial pressure
There is no 2 R loss, watts (W) the number of small resistance can be used in the resistor 37.

【0076】次に、この第2の実施の形態の異なる具体
的回路を図9に示す。なお、図7と同じ構成について
は、同じ符号を付し、説明を省略する。この図9に示す
ものは、サイリスタ53の変わりに、自己保持型リレー
55を用いたものである。このよに構成しても、前述し
た動作が行える。
Next, a specific circuit different from the second embodiment is shown in FIG. The same components as those in FIG. 7 are denoted by the same reference numerals, and description thereof will be omitted. The one shown in FIG. 9 uses a self-holding relay 55 instead of the thyristor 53. Even with such a configuration, the above-described operation can be performed.

【0077】[0077]

【発明の効果】以上説明したように、この発明では、太
陽電池装置からの発電した電流が所定値以下の場合に
は、電流パス回路を介して若干の電流が流れるように構
成しているので、電力変換装置が停止状態でも太陽電池
装置は開放電圧とならず、電圧上昇を抑制でき、最適動
作電圧を高く設計しても耐圧は確保することができる。
As described above, according to the present invention, when the current generated from the solar cell device is equal to or less than a predetermined value, a small amount of current flows through the current path circuit. In addition, even when the power conversion device is stopped, the solar cell device does not reach the open voltage, the voltage rise can be suppressed, and the withstand voltage can be ensured even if the optimum operating voltage is designed to be high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施形態を示すブロック図で
ある。
FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】この発明の第1の実施形態の具体例を示す回路
図である
FIG. 2 is a circuit diagram showing a specific example of the first embodiment of the present invention.

【図3】太陽電池装置の特性に応じた電力変換装置の運
転状態を示す特性図である。
FIG. 3 is a characteristic diagram illustrating an operation state of a power converter according to characteristics of a solar cell device.

【図4】この発明の太陽電池装置の電圧電流特性図であ
る。
FIG. 4 is a voltage-current characteristic diagram of the solar cell device of the present invention.

【図5】この発明に用いられる電力変換装置の構成を示
すブロック図である。
FIG. 5 is a block diagram showing a configuration of a power conversion device used in the present invention.

【図6】この発明の第2の実施形態を示すブロック図で
ある。
FIG. 6 is a block diagram showing a second embodiment of the present invention.

【図7】この発明の第2の実施形態の具体例を示す回路
図である。
FIG. 7 is a circuit diagram showing a specific example of the second embodiment of the present invention.

【図8】この発明の第2の実施形態の異なる具体例を示
す回路図である。
FIG. 8 is a circuit diagram showing another specific example of the second embodiment of the present invention.

【図9】この発明の第2の実施形態のさらに異なる具体
例を示す回路図である。
FIG. 9 is a circuit diagram showing still another specific example of the second embodiment of the present invention.

【符号の説明】 1 太陽電池装置 2 電力変換装置 3 電流パス回路 4 電流検出回路[Description of Signs] 1 Solar cell device 2 Power conversion device 3 Current path circuit 4 Current detection circuit

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池装置と、この太陽電池装置から
の出力を交流電力に変換する電力変換装置と、前記太陽
電池装置と電力変換装置間に並列に接続された電流パス
回路と、太陽電池装置へ帰還する電流を検出する電流検
出回路と、を備え、前記電流検出回路にて検出する電流
が所定の電流値以上になると、前記電流パス回路が切り
放されることを特徴とする太陽光発電装置。
1. A solar cell device, a power converter for converting an output from the solar cell device into AC power, a current path circuit connected in parallel between the solar cell device and the power converter, A current detection circuit for detecting a current returning to the device, wherein when the current detected by the current detection circuit is equal to or greater than a predetermined current value, the current path circuit is cut off. Power generator.
【請求項2】 太陽電池装置と、この太陽電池装置から
の出力を交流電力に変換する電力変換装置と、前記太陽
電池装置と電力変換装置間に並列に接続された電流パス
回路と、前記電流パス回路と電力変換装置との間に設け
られ、電流パス回路からの出力により制御される電力供
給回路と、太陽電池装置へ帰還する電流を検出する電流
検出回路と、を備え、前記電流検出回路にて検出する電
流が所定の電流値以上になると、前記電流パス回路が切
り放されることを特徴とする太陽光発電装置。
2. A photovoltaic device, a power converter for converting an output from the photovoltaic device into AC power, a current path circuit connected in parallel between the photovoltaic device and the power converter, A power supply circuit provided between the pass circuit and the power conversion device, the power supply circuit being controlled by an output from the current path circuit, and a current detection circuit for detecting a current returning to the solar cell device; The current path circuit is cut off when the current detected by (2) becomes equal to or more than a predetermined current value.
【請求項3】 前記電流検出回路は逆流防止ダイオード
からの出力に基づいて電流を検出することを特徴とする
請求項1又は2に記載の太陽光発電装置。
3. The photovoltaic power generator according to claim 1, wherein the current detection circuit detects a current based on an output from a backflow prevention diode.
【請求項4】 前記電力変換装置は、主回路と制御回路
で構成され、制御回路の駆動電力が太陽電池装置から与
えられることを特徴とする請求項2に記載の太陽光発電
装置。
4. The photovoltaic power generator according to claim 2, wherein the power converter includes a main circuit and a control circuit, and the driving power of the control circuit is supplied from a solar cell device.
【請求項5】 前記電力供給回路は、電流パス回路を分
圧した電流と、太陽電池装置からの電流を切り替えて供
給することを特徴とする請求項2又は4に記載の太陽光
発電装置。
5. The solar power generation device according to claim 2, wherein the power supply circuit switches and supplies a current obtained by dividing a current path circuit and a current from a solar cell device.
【請求項6】 前記電力供給回路は、太陽電池装置と電
力変換装置との間に流れる電流をオン/オフする手段
と、前記電流パス回路から与えられる電流を電力変換装
置に与える手段と、を備えることを特徴とする請求項2
又は4に記載の太陽光発電装置。
6. The power supply circuit includes: means for turning on / off a current flowing between a solar cell device and a power conversion device; and means for providing a current supplied from the current path circuit to the power conversion device. 3. The device according to claim 2, wherein
Or the photovoltaic power generator according to 4.
【請求項7】 前記オン/オフする手段は、サイリスタ
である請求項6記載の太陽光発電装置。
7. The photovoltaic power generator according to claim 6, wherein said on / off means is a thyristor.
【請求項8】 前記オン/オフする手段は、自己保持型
リレーである請求項7記載の太陽光発電装置
8. The photovoltaic power generator according to claim 7, wherein said on / off means is a self-holding relay.
JP2000079653A 1999-03-24 2000-03-22 Solar power plant Expired - Lifetime JP3796095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000079653A JP3796095B2 (en) 1999-03-24 2000-03-22 Solar power plant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7993199 1999-03-24
JP11-79931 1999-03-24
JP2000079653A JP3796095B2 (en) 1999-03-24 2000-03-22 Solar power plant

Publications (2)

Publication Number Publication Date
JP2000339044A true JP2000339044A (en) 2000-12-08
JP3796095B2 JP3796095B2 (en) 2006-07-12

Family

ID=26420914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000079653A Expired - Lifetime JP3796095B2 (en) 1999-03-24 2000-03-22 Solar power plant

Country Status (1)

Country Link
JP (1) JP3796095B2 (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012511299A (en) * 2008-12-04 2012-05-17 ソラレッジ テクノロジーズ リミテッド System and method for protection in a power plant
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
JP5226873B2 (en) * 2009-08-24 2013-07-03 三菱電機株式会社 Power conditioner for photovoltaic power generation
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
US8587151B2 (en) 2006-12-06 2013-11-19 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8599588B2 (en) 2007-12-05 2013-12-03 Solaredge Ltd. Parallel connected inverters
US8659188B2 (en) 2006-12-06 2014-02-25 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8766696B2 (en) 2010-01-27 2014-07-01 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8957645B2 (en) 2008-03-24 2015-02-17 Solaredge Technologies Ltd. Zero voltage switching
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8988838B2 (en) 2012-01-30 2015-03-24 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9000617B2 (en) 2008-05-05 2015-04-07 Solaredge Technologies, Ltd. Direct current power combiner
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9276410B2 (en) 2009-12-01 2016-03-01 Solaredge Technologies Ltd. Dual use photovoltaic system
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9870016B2 (en) 2012-05-25 2018-01-16 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power

Cited By (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8587151B2 (en) 2006-12-06 2013-11-19 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US8659188B2 (en) 2006-12-06 2014-02-25 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8599588B2 (en) 2007-12-05 2013-12-03 Solaredge Ltd. Parallel connected inverters
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US8957645B2 (en) 2008-03-24 2015-02-17 Solaredge Technologies Ltd. Zero voltage switching
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9000617B2 (en) 2008-05-05 2015-04-07 Solaredge Technologies, Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
JP2012511299A (en) * 2008-12-04 2012-05-17 ソラレッジ テクノロジーズ リミテッド System and method for protection in a power plant
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
JP5226873B2 (en) * 2009-08-24 2013-07-03 三菱電機株式会社 Power conditioner for photovoltaic power generation
US9276410B2 (en) 2009-12-01 2016-03-01 Solaredge Technologies Ltd. Dual use photovoltaic system
US11735951B2 (en) 2009-12-01 2023-08-22 Solaredge Technologies Ltd. Dual use photovoltaic system
US10270255B2 (en) 2009-12-01 2019-04-23 Solaredge Technologies Ltd Dual use photovoltaic system
US11056889B2 (en) 2009-12-01 2021-07-06 Solaredge Technologies Ltd. Dual use photovoltaic system
US9564882B2 (en) 2010-01-27 2017-02-07 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9917587B2 (en) 2010-01-27 2018-03-13 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US8766696B2 (en) 2010-01-27 2014-07-01 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9231570B2 (en) 2010-01-27 2016-01-05 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US8988838B2 (en) 2012-01-30 2015-03-24 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US11334104B2 (en) 2012-05-25 2022-05-17 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US9870016B2 (en) 2012-05-25 2018-01-16 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US11740647B2 (en) 2012-05-25 2023-08-29 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US10705551B2 (en) 2012-05-25 2020-07-07 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11538951B2 (en) 2016-03-03 2022-12-27 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11824131B2 (en) 2016-03-03 2023-11-21 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10540530B2 (en) 2016-03-03 2020-01-21 Solaredge Technologies Ltd. Methods for mapping power generation installations
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems

Also Published As

Publication number Publication date
JP3796095B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
JP3796095B2 (en) Solar power plant
US6291764B1 (en) Photovoltaic power generation device
US4100427A (en) Device for converting solar energy
US9356456B2 (en) Charging device
JPH08275390A (en) Method and apparatus for controlling charging and discharging, and power generating system having such apparatus
JPH1146457A (en) Charging device utilizing solar cell
JP2005276942A (en) Solar cell power generator and system, and control method therefor
US10090754B2 (en) Photovoltaic inverter
TWI826868B (en) Photovoltaic energy storage system and control method thereof
JP2004336974A (en) Power supply
JP3629987B2 (en) Snow melting control device and photovoltaic power generation system
CN111769740A (en) MPPT charging system based on buck-boost conversion
JP3656113B2 (en) Solar power plant
JPH0534199Y2 (en)
CN218449592U (en) Power supply parallel operation control circuit and device
JP2001275258A (en) Solar battery system
EP4312334A1 (en) System and method for power supply of a solar tracker position control system
CN116915169B (en) Photovoltaic cell bypass circuit
JP2001145266A (en) System connection inverter
JP2679348B2 (en) Satellite bus voltage control system
KR910005698Y1 (en) Converting circuit of a.c.
JPS644415B2 (en)
JP6323893B2 (en) Grid interconnection device
KR20230072637A (en) power converting apparatus
JPH0340062Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060414

R151 Written notification of patent or utility model registration

Ref document number: 3796095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

EXPY Cancellation because of completion of term