JP2000324679A - Low-voltage side electric circuit grounding direction relay - Google Patents

Low-voltage side electric circuit grounding direction relay

Info

Publication number
JP2000324679A
JP2000324679A JP13196699A JP13196699A JP2000324679A JP 2000324679 A JP2000324679 A JP 2000324679A JP 13196699 A JP13196699 A JP 13196699A JP 13196699 A JP13196699 A JP 13196699A JP 2000324679 A JP2000324679 A JP 2000324679A
Authority
JP
Japan
Prior art keywords
low
voltage side
phase
circuit
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13196699A
Other languages
Japanese (ja)
Other versions
JP3408992B2 (en
Inventor
Koichi Ito
伊藤  公一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toenec Corp
Original Assignee
Toenec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toenec Corp filed Critical Toenec Corp
Priority to JP13196699A priority Critical patent/JP3408992B2/en
Publication of JP2000324679A publication Critical patent/JP2000324679A/en
Application granted granted Critical
Publication of JP3408992B2 publication Critical patent/JP3408992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To operate only a circuit breaker at a grounded low-voltage side electric circuit by deciding which of low-voltage side electric circuit from among a plurality of high/low voltage transformers where low-voltage side coil winding is commonly grounded has been grounded. SOLUTION: A relay 1 is provided with a phase comparison circuit 9a for deciding a grounded low-voltage side electric circuit, by comparing the phase of a grounding current that flows through a grounding bus, when either of low-voltage side electric circuit of high/low-voltage transformers where low- voltage side coil winding has been commonly grounded to a Type-B grounding electrode is grounded with the phase of a grounding current that flows to a grounding wire which is connected between the specific grounding point of each low-voltage side coil winding and the grounding bus, and an output circuit 12b for causing a circuit breaker at the low-voltage side electric circuit that has been decided to be grounded to operate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低圧側巻線がB種
接地極に共通接地された複数の高低圧変圧器のいずれか
の低圧側電路が地絡した場合、地絡した低圧側電路を検
出し、地絡した低圧側電路の遮断器を作動させる低圧側
電路地絡方向継電器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low voltage side electric circuit in which a low voltage side winding of any of a plurality of high / low voltage transformers whose low voltage side winding is commonly grounded to a class B ground electrode is grounded. And to operate a circuit breaker of the low-voltage side electric circuit in which a ground fault has occurred.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
ビルディングや工場などの自家用電気設備として、例え
ば高圧側が6.6kv、低圧側が200vの3相3線式
高低圧変圧器や、高圧側が6.6kv、低圧側が200
v−100vの単相3線式高低圧変圧器などが設置され
ている。上記3相3線式高低圧変圧器や単相3線式高低
圧変圧器の場合、電気設備の技術基準の解釈第24条に
よれば、低圧側巻線の中性点もしくは低圧側巻線端子の
一つにB種接地工事(所定の接地抵抗値以下で、通常、
1需要家に1極だけ設けられる共通の接地極工事)を施
すことが義務付けられている。図5は、単相3線式高低
圧変圧器Tr1の低圧側巻線の中性点Nと、3相3線式
高低圧変圧器Tr2の低圧側巻線端子の一つTEとが、
通常、1需要家に1極だけ設けられる共通のB種接地極
EBに接続されていることを模式的に示した電気回路図
である。
2. Description of the Related Art
As a private electric facility such as a building or a factory, for example, a three-phase three-wire high / low voltage transformer having a high voltage side of 6.6 kv and a low voltage side of 200 v, a high voltage side of 6.6 kv and a low voltage side of 200 kv are used.
A v-100v single-phase three-wire high-low voltage transformer and the like are installed. In the case of the above-described three-phase three-wire high-low voltage transformer or single-phase three-wire high-low voltage transformer, according to Article 24 of the Technical Standards for Electrical Equipment, the neutral point of the low-voltage winding or the low-voltage winding Class B grounding work at one of the terminals (below a predetermined ground resistance value, usually
It is obliged to perform a common grounding pole work in which only one pole is provided for one customer. FIG. 5 shows that the neutral point N of the low-voltage side winding of the single-phase three-wire high-low-voltage transformer Tr1 and one of the low-voltage side winding terminals TE of the three-phase three-wire high-low-voltage transformer Tr2 are:
FIG. 4 is an electric circuit diagram schematically showing that the power supply device is typically connected to a common type B ground electrode EB provided for only one pole per customer.

【0003】上記単相3線式高低圧変圧器Tr1や3相
3線式高低圧変圧器Tr2の低圧側電路に接続されるケ
ーブルは、最近、長大になっており、更にコンデンサを
構成素子とするラインフィルタ等を内蔵した電子機器が
負荷として接続されることが多い。そのため、一般に、
低圧側電路の見かけ上の対地静電容量(浮遊容量)Cが
大きくなっている。
The cables connected to the low-voltage side electric circuit of the single-phase three-wire high-low voltage transformer Tr1 and the three-phase three-wire high-low voltage transformer Tr2 have recently become long, and furthermore, capacitors are used as constituent elements. In many cases, an electronic device having a built-in line filter or the like is connected as a load. Therefore, in general,
The apparent ground capacitance (floating capacitance) C of the low-voltage side electric circuit is large.

【0004】上記のような低圧側電路において、図5に
示すように3相3線式高低圧変圧器Tr2の低圧側電路
のケーブルが例えばD種接地(通常、電線管や制御盤、
操作盤などが接地される)された電線管に地絡した場
合、地絡点からの地絡電流は、破線で示すように地絡抵
抗R、電線管に接続されているD種接地線EDL、対地
静電容量(浮遊容量)C、単相3線式高低圧変圧器Tr
1の低圧側電路、B種接地線EBL、3相3線式高低圧
変圧器Tr2の低圧側電路で構成される閉回路で流れる
ため、上記地絡とは直接的に関係の無い単相3線式高低
圧変圧器Tr1の低圧側電路の地絡遮断器ELBが不要
に作動するという問題がある。
In the above-mentioned low-voltage side electric circuit, as shown in FIG. 5, the cable of the low-voltage side electric circuit of the three-phase three-wire high / low voltage transformer Tr2 is, for example, D-class grounding (usually a conduit tube, a control panel,
When a ground fault occurs in a conduit in which a control panel or the like is grounded), a ground fault current from the ground fault point is represented by a ground fault resistance R and a D-class ground wire EDL connected to the conduit as indicated by a broken line. , Ground capacitance (floating capacitance) C, single-phase three-wire high-low voltage transformer Tr
1 is a single-phase circuit that is not directly related to the ground fault because it flows in a closed circuit composed of the low-voltage side electric circuit, the class B ground line EBL, and the low-voltage side electric circuit of the three-phase three-wire high-low voltage transformer Tr2. There is a problem that the ground fault circuit breaker ELB on the low voltage side electric circuit of the wire type high / low voltage transformer Tr1 is operated unnecessarily.

【0005】このように単相3線式高低圧変圧器Tr1
及び3相3線式高低圧変圧器Tr2の共通接地極となる
B種接地極EBに各変圧器の低圧側巻線の中性点Nや低
圧側巻線端子TEが共通接続されているため、地絡した
高低圧変圧器の低圧側電路とは直接的に関係の無い地絡
遮断器ELBが作動することがあるという問題がある。
[0005] Thus, the single-phase three-wire high-low voltage transformer Tr1
And the neutral point N and the low voltage side winding terminal TE of the low voltage side winding of each transformer are commonly connected to the class B ground pole EB which is a common grounding pole of the three-phase three-wire high / low voltage transformer Tr2. In addition, there is a problem that the ground fault circuit breaker ELB, which is not directly related to the low-voltage side electric circuit of the high-low voltage transformer having the ground fault, may operate.

【0006】そこで本発明では、低圧側巻線が共通接地
される複数の高低圧変圧器のどの低圧側電路が地絡した
かを検出し、地絡した低圧側電路の遮断器のみを作動さ
せることができる低圧側電路地絡方向継電器を提供する
ことを課題とする。
Therefore, in the present invention, which low-voltage side electric circuit of a plurality of high-and-low-voltage transformers whose low-voltage side windings are commonly grounded is detected, and only the circuit breaker of the grounded low-voltage side electric circuit is operated. It is an object of the present invention to provide a low-voltage side electric circuit ground fault direction relay that can be used.

【0007】[0007]

【課題を解決するための手段】上記課題は、特許請求の
範囲に記載した低圧側電路地絡方向継電器により解決す
ることができる。請求項1に記載の低圧側電路地絡方向
継電器によれば、低圧側巻線が共通接地極に接地された
複数の高低圧変圧器のいずれかの低圧側電路が地絡した
場合、共通接地極に接続された接地母線を流れる地絡電
流の位相と、各接地線を流れる地絡電流の位相とを比較
することにより、どの高低圧変圧器の低圧側電路が地絡
したかを検出することができる。また、請求項2に記載
の低圧側電路地絡方向継電器によれば、地絡した低圧側
電路の遮断器のみを作動させることができ、地絡した低
圧側電路以外の遮断器の不要動作を避けることができ
る。
The above object can be attained by the low-voltage side electric circuit ground fault directional relay described in the claims. According to the low voltage side electric circuit ground fault direction relay according to claim 1, when any one of the low voltage side electric circuits of the plurality of high voltage low voltage transformers whose low voltage side winding is grounded to the common grounding pole is grounded, the common grounding is performed. By comparing the phase of the ground fault current flowing through the ground bus connected to the pole with the phase of the ground fault current flowing through each ground wire, it is possible to detect which of the high and low voltage transformers has the low voltage side electric circuit grounded. be able to. According to the low voltage side electric circuit ground fault direction relay of claim 2, only the circuit breaker of the grounded low voltage side electric circuit can be operated, and unnecessary operation of circuit breakers other than the grounded low voltage side electric circuit is prevented. Can be avoided.

【0008】[0008]

【発明の実施の形態】次に、本発明の実施の形態につい
て説明する。図1は、単相3線式高低圧変圧器Tr1の
低圧側巻線の中性点N及び3相3線式高低圧変圧器Tr
2の低圧側巻線端子の一つTEを所定接地点とし、この
所定接地点とB種接地極(共通接地極)EBとが各接地
線EBL1,EBL2及び接地母線EBL0を介して接
続されていることを示した電気回路図である。図1に示
すように、接地母線EBL0を流れる地絡電流を検出す
るための電流検出器ZCT0、接地線EBL1を流れる
地絡電流を検出するための電流検出器ZCT1、及び接
地線EBL2を流れる地絡電流を検出するための電流検
出器ZCT2が設けられる。また、電流検出器ZCT
0、電流検出器ZCT1、及び電流検出器ZCT2の出
力端子は、単相3線式高低圧変圧器Tr1もしくは3相
3線式高低圧変圧器Tr2の低圧側電路が地絡した場
合、地絡した低圧側電路の遮断器を作動させる低圧側電
路地絡方向継電器1に接続されている。
Next, an embodiment of the present invention will be described. FIG. 1 shows the neutral point N of the low-voltage side winding of the single-phase three-wire high-low-voltage transformer Tr1 and the three-phase three-wire high-low-voltage transformer Tr.
One of the low-voltage side winding terminals TE is a predetermined ground point, and the predetermined ground point is connected to the class B ground electrode (common ground electrode) EB via the ground lines EBL1 and EBL2 and the ground bus EBL0. FIG. 4 is an electric circuit diagram showing that As shown in FIG. 1, a current detector ZCT0 for detecting a ground fault current flowing through the ground bus EBL0, a current detector ZCT1 for detecting a ground fault current flowing through the ground line EBL1, and a ground flowing through the ground line EBL2. A current detector ZCT2 for detecting a short-circuit current is provided. In addition, the current detector ZCT
0, the output terminals of the current detector ZCT1 and the current detector ZCT2 are connected to the single-phase three-wire high-low voltage transformer Tr1 or the low-voltage side electric circuit of the three-phase three-wire high-low voltage transformer Tr2. The low voltage side electric circuit ground fault direction relay 1 which operates the circuit breaker of the low voltage side electric circuit.

【0009】図2は、低圧側電路地絡方向継電器1の構
成を示したブロック図である。図2に示すように、上記
電流検出器ZCT0は端子z1,z2間に接続され、電
流検出器ZCT1は端子z3,z4間に接続され、電流
検出器ZCT2は端子z5,z6間に接続される。
FIG. 2 is a block diagram showing the configuration of the low-voltage side electric circuit ground fault directional relay 1. As shown in FIG. 2, the current detector ZCT0 is connected between terminals z1 and z2, the current detector ZCT1 is connected between terminals z3 and z4, and the current detector ZCT2 is connected between terminals z5 and z6. .

【0010】端子z1,z2に接続された過入力保護回
路2a、端子z3,z4に接続された過入力保護回路2
b、及び端子z5,z6に接続された過入力保護回路2
cは、過大な電圧の入力を防止し、内部回路を電気的に
保護するための回路である。上記過入力保護回路2bに
接続された零相電流整定回路3a、及び過入力保護回路
2cに接続された零相電流整定回路3bは、前記電流検
出器ZCT1,ZCT2により検出された各地絡電流の
入力レンジを調整する回路である。零相電流整定回路3
aに接続されたフィルタ・増幅回路4b、過入力保護回
路2aに接続されたフィルタ・増幅回路4a、零相電流
整定回路3bに接続されたフィルタ・増幅回路4cは、
高調波、高周波成分を除去し、地絡電流の基本波成分を
増幅する回路である。
An over-input protection circuit 2a connected to terminals z1 and z2, and an over-input protection circuit 2 connected to terminals z3 and z4
b and over-input protection circuit 2 connected to terminals z5 and z6
c is a circuit for preventing the input of an excessive voltage and for electrically protecting the internal circuit. The zero-phase current setting circuit 3a connected to the over-input protection circuit 2b and the zero-phase current setting circuit 3b connected to the over-input protection circuit 2c are used to detect the short-circuit currents detected by the current detectors ZCT1 and ZCT2. This circuit adjusts the input range. Zero-phase current setting circuit 3
a, the filter / amplifier circuit 4b connected to the over-input protection circuit 2a, and the filter / amplifier circuit 4c connected to the zero-phase current setting circuit 3b,
This circuit removes harmonics and high frequency components and amplifies the fundamental component of the ground fault current.

【0011】フィルタ・増幅回路4bに接続された全波
整流回路5a、フィルタ・増幅回路4cに接続された全
波整流回路5bは、フィルタ・増幅回路4b,4cから
出力された交流波形を直流波形に変換する回路である。
フィルタ・増幅回路4aに接続された波形整形回路6
a、フィルタ・増幅回路4bに接続された波形整形回路
6b、フィルタ・増幅回路4cに接続された波形整形回
路6cは、フィルタ・増幅回路4a,4b,4cから出
力された各正弦波信号の0ボルトからの立ち上がり時に
パルス信号を出力する(後述の図3参照)回路である。
The full-wave rectifier circuit 5a connected to the filter / amplifier circuit 4b and the full-wave rectifier circuit 5b connected to the filter / amplifier circuit 4c convert the AC waveform output from the filter / amplifier circuits 4b and 4c into a DC waveform. Is a circuit that converts the
Waveform shaping circuit 6 connected to filter / amplifier circuit 4a
a, the waveform shaping circuit 6b connected to the filter / amplifier circuit 4b, and the waveform shaping circuit 6c connected to the filter / amplifier circuit 4c output 0 of each sine wave signal output from the filter / amplifier circuits 4a, 4b, 4c. This is a circuit that outputs a pulse signal when rising from volts (see FIG. 3 described later).

【0012】全波整流回路5aに接続された平滑回路7
a、全波整流回路5bに接続された平滑回路7bは、全
波整流回路5a,5bから出力された直流波形のリップ
ルを除去する回路である。平滑回路7aに接続されたレ
ベル検出回路8a、平滑回路7bに接続されたレベル検
出回路8bは、平滑回路7a,7bから出力された各信
号の大きさ、即ち、前記電流検出器ZCT1,ZCT2
で検出された地絡電流が予め設定された基準値を超えて
いる場合、レベル検出信号を出力する回路である。
Smoothing circuit 7 connected to full-wave rectifier circuit 5a
a, The smoothing circuit 7b connected to the full-wave rectifier circuit 5b is a circuit that removes ripples of the DC waveform output from the full-wave rectifier circuits 5a and 5b. The level detection circuit 8a connected to the smoothing circuit 7a and the level detection circuit 8b connected to the smoothing circuit 7b determine the magnitude of each signal output from the smoothing circuits 7a and 7b, that is, the current detectors ZCT1 and ZCT2.
Is a circuit that outputs a level detection signal when the ground fault current detected in step (1) exceeds a preset reference value.

【0013】図3は、前記電流検出器ZCT0で検出さ
れた地絡電流の位相を基準とし、前記電流検出器ZCT
1,2で検出された地絡電流の位相が遅れているか、進
んでいるかを比較する位相比較回路9a,9bのタイミ
ングチャートである。尚、上記位相比較回路9a,9b
による位相比較の便宜上、図4に示すように電流検出器
ZCT1,ZCT2で検出された地絡電流(2点鎖線で
示す波形)の位相を、例えばフィルタ・増幅回路4b,
4cの出力時点で予め180度ずらした実線で示す波形
に反転させておき、波形整形回路6b,6cに入力させ
る。
FIG. 3 shows the current detector ZCT based on the phase of the ground fault current detected by the current detector ZCT0.
9 is a timing chart of the phase comparison circuits 9a and 9b for comparing whether the phases of the ground fault currents detected in 1 and 2 are delayed or advanced. The phase comparison circuits 9a and 9b
As shown in FIG. 4, the phase of the ground fault current (waveform indicated by a two-dot chain line) detected by the current detectors ZCT1 and ZCT2 is, for example, a filter / amplifier circuit 4b,
At the time of output of 4c, the waveform is inverted to a waveform indicated by a solid line shifted 180 degrees in advance, and input to the waveform shaping circuits 6b and 6c.

【0014】図3に示した位相比較回路9a,9bの位
相判定信号EVは、各位相比較回路9a,9b内部にお
ける信号であり、波形整形回路6aの出力パルス信号の
立ち上がりタイミングでオンになり、波形整形回路6b
又は波形整形回路6cの出力パルス信号の立ち上がりタ
イミングでオフになるように設定されている。そして、
電流検出器ZCT0で検出された地絡電流の位相に対し
て、 電流検出器ZCT1,ZCT2で検出された地絡電流
の位相が遅れている場合、位相判定信号EVのオン時間
は地絡電流の半周期の時間より短く、 電流検出器ZCT1,ZCT2で検出された地絡電流
の位相が進んでいる場合、位相判定信号EVのオン時間
は地絡電流の半周期の時間より長くなる。
The phase determination signal EV of the phase comparison circuits 9a and 9b shown in FIG. 3 is a signal inside each of the phase comparison circuits 9a and 9b, and is turned on at the rising timing of the output pulse signal of the waveform shaping circuit 6a. Waveform shaping circuit 6b
Alternatively, it is set to be turned off at the rising timing of the output pulse signal of the waveform shaping circuit 6c. And
If the phase of the ground fault current detected by the current detectors ZCT1 and ZCT2 is behind the phase of the ground fault current detected by the current detector ZCT0, the on-time of the phase determination signal EV is When the phase of the ground fault current detected by the current detectors ZCT1 and ZCT2 is shorter than the half cycle time, the ON time of the phase determination signal EV is longer than the half cycle time of the ground fault current.

【0015】上記のように、位相比較回路9a,9b
は、位相判定信号EVのオン時間と地絡電流の半周期の
時間とを比較することにより、電流検出器ZCT0で検
出された地絡電流の位相に対して、電流検出器ZCT
1,ZCT2で検出された地絡電流の位相が遅れている
か、進んでいるかを判定する。
As described above, the phase comparison circuits 9a and 9b
Compares a phase of the ground fault current detected by the current detector ZCT0 with a current detector ZCT by comparing the ON time of the phase determination signal EV with the time of a half cycle of the ground fault current.
1, it is determined whether the phase of the ground fault current detected by ZCT2 is delayed or advanced.

【0016】ここで、位相比較回路9a,9bが、電流
検出器ZCT0で検出された地絡電流の位相に対して、
電流検出器ZCT1,ZCT2で検出された地絡電流の
位相が遅れているか、進んでいるかを比較した結果に基
づいて、どの高低圧変圧器の低圧側電路が地絡している
かを判定するための作用を図1を参照して説明する。
尚、図1に示した地絡電流I1,I2,I3及びI4の
矢印の方向は、各地絡電流の正の周期における電流方向
を示している。また、電流検出器ZCT0,ZCT1,
ZCT2の傍に付した矢印は、各電流検出器を設置する
場合に各電流検出器のコイルの巻方向に基づく向き(方
向極性)を示している。
Here, the phase comparators 9a and 9b determine the phase of the ground fault current detected by the current detector ZCT0.
Based on the result of comparing whether the phase of the ground fault current detected by the current detectors ZCT1 and ZCT2 is delayed or advanced, it is possible to determine which high-low voltage transformer has the low-voltage side electric circuit in the ground fault. Will be described with reference to FIG.
The directions of the arrows of the ground fault currents I1, I2, I3 and I4 shown in FIG. 1 indicate the current directions in the positive cycle of the ground fault currents. Further, the current detectors ZCT0, ZCT1,
The arrow attached to ZCT2 indicates the direction (direction polarity) based on the winding direction of the coil of each current detector when each current detector is installed.

【0017】最初、位相比較回路9aにより、地絡した
低圧側電路を判定する作用について説明する。 単相3線式高低圧変圧器Tr1の低圧側電路が、D種
接地された例えば電線管に地絡した場合、地絡電流は、
地絡抵抗R1、D種接地線EDL1、D種接地極ED、
地中、B種接地極EB、接地母線EBL0、接地線EB
L1、単相3線式高低圧変圧器Tr1の低圧側電路で構
成される閉回路に流れる電流I1と、地絡抵抗R1、D
種接地線EDL1、3相3線式高低圧変圧器Tr2の浮
遊容量C2、3相3線式高低圧変圧器Tr2の低圧側電
路、接地線EBL2、接地線EBL1、単相3線式高低
圧変圧器Tr1の低圧側電路で構成される閉回路に流れ
る電流I2とに分流する。
First, the operation of the phase comparison circuit 9a for determining a low-voltage side electric circuit on which a ground fault has occurred will be described. When the low-voltage side electric circuit of the single-phase three-wire type high-low voltage transformer Tr1 is grounded to a class D grounded conduit, for example, the ground fault current is:
Ground fault resistance R1, D class ground line EDL1, D class ground electrode ED,
Underground, Class B ground pole EB, ground bus EBL0, ground wire EB
L1, a current I1 flowing through a closed circuit composed of a low-voltage side electric circuit of a single-phase three-wire high-low-voltage transformer Tr1, and ground-fault resistances R1, D
Seed ground line EDL1, stray capacitance C2 of three-phase three-wire high-low voltage transformer Tr2, low-voltage side electric circuit of three-phase three-wire high-low voltage transformer Tr2, ground line EBL2, ground line EBL1, single-phase three-wire high-low voltage The current is shunted to a current I2 flowing through a closed circuit formed by the low-voltage side electric circuit of the transformer Tr1.

【0018】上記地絡電流I1は接地母線EBL0を流
れるため、電流検出器ZCT0により検出される。ま
た、上記地絡電流I1,I2は接地線EBL1を流れる
ため、電流検出器ZCT1により検出される。この場
合、地絡電流I2は、3相3線式高低圧変圧器Tr2の
浮遊容量C2を流れるため、地絡電流I1より位相がほ
ぼ90°進んでいる。従って、電流検出器ZCT0によ
り検出された地絡電流I1の位相を基準とした場合、電
流検出器ZCT1により検出された地絡電流は進み位相
となる。このように、電流検出器ZCT0により検出さ
れた地絡電流I1の位相を基準とし、電流検出器ZCT
1により検出された地絡電流が進み位相となる場合、位
相比較回路9aは、単相3線式高低圧変圧器Tr1の低
圧側電路が地絡したと判定し、単相3線式高低圧変圧器
Tr1の低圧側電路が地絡したことを示す地絡判定信号
を出力する。
Since the ground fault current I1 flows through the ground bus EBL0, it is detected by the current detector ZCT0. The ground fault currents I1 and I2 flow through the ground line EBL1, and are detected by the current detector ZCT1. In this case, since the ground fault current I2 flows through the stray capacitance C2 of the three-phase three-wire high / low voltage transformer Tr2, the phase is advanced by approximately 90 ° from the ground fault current I1. Therefore, when the phase of the ground fault current I1 detected by the current detector ZCT0 is used as a reference, the ground fault current detected by the current detector ZCT1 has an advanced phase. As described above, the current detector ZCT0 is used as a reference with respect to the phase of the ground fault current I1 detected by the current detector ZCT0.
When the ground fault current detected by step 1 becomes the advanced phase, the phase comparison circuit 9a determines that the low-voltage side electric circuit of the single-phase three-wire high-low voltage transformer Tr1 has a ground fault, and determines the single-phase three-wire high-low voltage. It outputs a ground fault determination signal indicating that the low voltage side electric circuit of the transformer Tr1 has a ground fault.

【0019】次に、3相3線式高低圧変圧器Tr2の
低圧側電路が、D種接地された電線管に地絡した場合、
地絡電流は、地絡抵抗R2、D種接地線EDL2、単相
3線式高低圧変圧器Tr1の浮遊容量C1、単相3線式
高低圧変圧器Tr1の低圧側電路、接地線EBL1、接
地線EBL2、3相3線式高低圧変圧器Tr2の低圧側
電路で構成される閉回路を流れる電流I3と、地絡抵抗
R2、D種接地線EDL2、D種接地極ED、地中、B
種接地極EB、接地母線EBL0、接地線EBL2、3
相3線式高低圧変圧器Tr2の低圧側電路で構成される
閉回路を流れる電流I4とに分流する。
Next, when the low-voltage side electric circuit of the three-phase three-wire type high / low voltage transformer Tr2 is grounded to a class D grounded conduit,
The ground fault current includes a ground fault resistor R2, a class D ground line EDL2, a stray capacitance C1 of the single-phase three-wire high-low voltage transformer Tr1, a low-voltage side circuit of the single-phase three-wire high-low voltage transformer Tr1, a ground line EBL1, A ground line EBL2, a current I3 flowing through a closed circuit formed by a low-voltage side electric circuit of a three-phase three-wire high-low voltage transformer Tr2, a ground fault resistance R2, a D-class ground line EDL2, a D-class ground pole ED, B
Seed ground pole EB, ground bus EBL0, ground lines EBL2, 3
And a current I4 flowing through a closed circuit formed by the low-voltage side electric circuit of the phase three-wire high / low voltage transformer Tr2.

【0020】上記地絡電流I4は接地母線EBL0を流
れるため、電流検出器ZCT0により検出される。ま
た、上記地絡電流I3は接地線EBL1を流れるため、
電流検出器ZCT1により検出される。この場合、地絡
電流I3は、単相3線式高低圧変圧器Tr1の浮遊容量
C1を流れるため、地絡電流I4より位相がほぼ90°
進んでいるが、地絡電流I3の方向は、電流検出器ZC
T1の前記方向極性(矢印の向き)と反対であるため、
電流検出器ZCT1により検出された地絡電流I3の位
相は地絡電流I4の位相よりほぼ90°遅れる。このよ
うに、電流検出器ZCT1により検出された地絡電流I
3の位相が地絡電流I4の位相よりほぼ90°遅れの場
合、位相比較回路9aは、3相3線式高低圧変圧器Tr
2の低圧側電路が地絡したと判定し、前記地絡判定信号
を出力しない。
Since the ground fault current I4 flows through the ground bus EBL0, it is detected by the current detector ZCT0. Further, since the ground fault current I3 flows through the ground line EBL1,
It is detected by the current detector ZCT1. In this case, the ground fault current I3 flows through the stray capacitance C1 of the single-phase three-wire high-low voltage transformer Tr1, so that the phase is substantially 90 ° more than the ground fault current I4.
The direction of the ground fault current I3 depends on the current detector ZC
Since it is opposite to the directional polarity (the direction of the arrow) of T1,
The phase of the ground fault current I3 detected by the current detector ZCT1 is delayed by about 90 ° from the phase of the ground fault current I4. Thus, the ground fault current I detected by the current detector ZCT1 is
If the phase of the ground fault current 3 is approximately 90 ° behind the phase of the ground fault current I4, the phase comparison circuit 9a outputs a three-phase three-wire high-low voltage transformer Tr.
No. 2 low-voltage side electric circuit is determined to have a ground fault, and the ground fault determination signal is not output.

【0021】次に、位相比較回路9bにより,地絡した
低圧側電路を判定する作用について説明する。 3相3線式高低圧変圧器Tr2の低圧側電路が、D種
接地された電線管に地絡した場合、地絡電流は、地絡抵
抗R2、D種接地線EDL2、単相3線式高低圧変圧器
Tr1の低圧側電路の浮遊容量C1、単相3線式高低圧
変圧器Tr1の低圧側電路、接地線EBL1、接地線E
BL2、3相3線式高低圧変圧器Tr2の低圧側電路で
構成される閉回路を流れる電流I3と、地絡抵抗R2、
D種接地線EDL2、D種接地極ED、地中、B種接地
極EB、接地母線EBL0、接地線EBL2、3相3線
式高低圧変圧器Tr2の低圧側電路で構成される閉回路
を流れる電流I4とに分流する。従って、接地母線EB
L0には地絡電流I4が流れ、接地線EBL2には地絡
電流I4とI3が流れるため、地絡電流I4は電流検出
器ZCT0により検出され、地絡電流I3,I4は電流
検出器ZCT2により検出される。この場合、地絡電流
I3は、単相3線式高低圧変圧器Tr1の低圧側電路の
浮遊容量C1を流れるため、地絡電流I4より位相がほ
ぼ90°進んでいる。そのため、電流検出器ZCT0に
より検出された地絡電流I4の位相を基準とした場合、
電流検出器ZCT2により検出された地絡電流は進み位
相となる。このように、電流検出器ZCT0により検出
された地絡電流I4の位相を基準とし、電流検出器ZC
T2により検出された地絡電流が進み位相となる場合、
位相比較回路9bは、3相3線式高低圧変圧器Tr2の
低圧側電路が地絡したと判定し、3相3線式高低圧変圧
器Tr2の低圧側電路が地絡したことを示す地絡判定信
号を出力する。
Next, the operation of the phase comparison circuit 9b for determining the low-voltage side electric circuit having a ground fault will be described. If the low-voltage side electric circuit of the three-phase three-wire high-low voltage transformer Tr2 is grounded to a class D grounded conduit, the ground fault current will be a ground fault resistance R2, a class D ground wire EDL2, a single-phase three-wire system. The stray capacitance C1 of the low-voltage side electric circuit of the high-low voltage transformer Tr1, the low-voltage side electric circuit of the single-phase three-wire high-low voltage transformer Tr1, the ground line EBL1, and the ground line E
BL2, a current I3 flowing through a closed circuit formed by the low-voltage side electric circuit of the three-phase three-wire high-low voltage transformer Tr2, a ground fault resistance R2,
A closed circuit composed of a D-class ground line EDL2, a D-class ground electrode ED, underground, a B-class ground electrode EB, a ground bus EBL0, a ground line EBL2, and a low-voltage side electric circuit of a three-phase three-wire high-low voltage transformer Tr2. The current is divided into the flowing current I4. Therefore, the ground bus EB
Since the ground fault current I4 flows through L0 and the ground fault currents I4 and I3 flow through the ground line EBL2, the ground fault current I4 is detected by the current detector ZCT0, and the ground fault currents I3 and I4 are detected by the current detector ZCT2. Is detected. In this case, since the ground fault current I3 flows through the stray capacitance C1 of the low-voltage side electric circuit of the single-phase three-wire high-low voltage transformer Tr1, the phase is advanced by approximately 90 ° from the ground fault current I4. Therefore, when the phase of the ground fault current I4 detected by the current detector ZCT0 is used as a reference,
The ground fault current detected by the current detector ZCT2 has an advanced phase. As described above, the current detector ZC0 is used as a reference with respect to the phase of the ground fault current I4 detected by the current detector ZCT0.
When the ground fault current detected by T2 is in the advanced phase,
The phase comparison circuit 9b determines that the low-voltage side electric circuit of the three-phase three-wire high-low voltage transformer Tr2 has a ground fault, and indicates that the low-voltage side electric circuit of the three-phase three-wire high-low voltage transformer Tr2 has a ground fault. Outputs a short-circuit determination signal.

【0022】次に、単相3線式高低圧変圧器Tr1の
低圧側電路が、D種接地された電線管に地絡した場合、
地絡電流は、地絡抵抗R1、D種接地線EDL1、D種
接地極ED、地中、B種接地極EB、接地母線EBL
0、接地線EBL1、単相3線式高低圧変圧器Tr1の
低圧側電路で構成される閉回路に流れる電流I1と、地
絡抵抗R1、D種接地線EDL1、3相3線式高低圧変
圧器Tr2の浮遊容量C2、3相3線式高低圧変圧器T
r2の低圧側電路、接地線EBL2、接地線EBL1、
単相3線式高低圧変圧器Tr1の低圧側電路で構成され
る閉回路に流れる電流I2とに分流する。
Next, when the low-voltage side electric circuit of the single-phase three-wire high / low voltage transformer Tr1 is grounded to a conduit grounded to class D,
The ground fault current is represented by a ground fault resistance R1, a class D ground line EDL1, a class D ground electrode ED, underground, a class B ground electrode EB, and a ground bus EBL.
0, a ground line EBL1, a current I1 flowing in a closed circuit formed by a low-voltage side electric circuit of a single-phase three-wire high-low voltage transformer Tr1, a ground fault resistor R1, a D-class ground wire EDL1, and a three-phase three-wire high-low voltage. Floating capacitance C2 of transformer Tr2, three-phase three-wire high-low voltage transformer T
r2, the low voltage side electric circuit, the ground line EBL2, the ground line EBL1,
It shunts to a current I2 flowing through a closed circuit formed by the low-voltage side electric circuit of the single-phase three-wire high / low voltage transformer Tr1.

【0023】上記地絡電流I1は接地母線EBL0を流
れるため電流検出器ZCT0により検出される。また、
上記地絡電流I2は接地線EBL2を流れるため電流検
出器ZCT2により検出される。この場合、地絡電流I
2は、3相3線式高低圧変圧器Tr2の浮遊容量C2を
流れるため、地絡電流I1より位相がほぼ90°進んで
いるが、地絡電流I2の方向は、電流検出器ZCT2の
前記方向極性(矢印方向)と反対であるため、電流検出
器ZCT2により検出された地絡電流I1の位相は地絡
電流I4の位相より、ほぼ90°遅れる。このように、
電流検出器ZCT2により検出された地絡電流I1の位
相が地絡電流I4の位相より、ほぼ90°遅れている場
合、位相比較回路9bは、単相3線式高低圧変圧器Tr
1の低圧電路が地絡したと判定し、前述の地絡判定信号
を出力しない。
The ground fault current I1 flows through the ground bus EBL0 and is detected by the current detector ZCT0. Also,
The ground fault current I2 flows through the ground line EBL2 and is detected by the current detector ZCT2. In this case, the ground fault current I
2 flows through the stray capacitance C2 of the three-phase three-wire high / low voltage transformer Tr2, so that the phase is advanced by approximately 90 ° from the ground fault current I1, but the direction of the ground fault current I2 is the same as that of the current detector ZCT2. Since the polarity is opposite to the direction polarity (the direction of the arrow), the phase of the ground fault current I1 detected by the current detector ZCT2 is delayed by about 90 ° from the phase of the ground fault current I4. in this way,
When the phase of the ground fault current I1 detected by the current detector ZCT2 is substantially 90 ° behind the phase of the ground fault current I4, the phase comparison circuit 9b operates the single-phase three-wire high-low voltage transformer Tr.
It is determined that the first low-voltage path has a ground fault, and the above-described ground fault determination signal is not output.

【0024】次に、出力リレーX1,X2を作動させる
回路の構成について説明する。レベル検出回路8aと位
相比較回路9aに接続されたAND回路10aは、位相
比較回路9aから前述の地絡判定信号が出力されるとと
もに、レベル検出回路8aから前記レベル検出信号が出
力されると、AND信号を出力する。また、レベル検出
回路8bと位相比較回路9bとに接続されたAND回路
10bは、位相比較回路9bから前述の地絡判定信号が
出力されるとともに、レベル検出回路8bから前記レベ
ル検出信号が出力されると、AND信号を出力する。
Next, the configuration of a circuit for operating the output relays X1 and X2 will be described. The AND circuit 10a connected to the level detection circuit 8a and the phase comparison circuit 9a outputs the above-mentioned ground fault determination signal from the phase comparison circuit 9a and outputs the level detection signal from the level detection circuit 8a. An AND signal is output. The AND circuit 10b connected to the level detection circuit 8b and the phase comparison circuit 9b outputs the above-mentioned ground fault determination signal from the phase comparison circuit 9b and outputs the level detection signal from the level detection circuit 8b. Then, an AND signal is output.

【0025】AND回路10aに接続された時間整定回
路11a,及びAND回路10bに接続された時間整定
回路11bは、AND回路10a,10bから前記AN
D信号が予め整定された所定時間、継続して出力された
場合、出力回路12a,12bにリレー作動信号を出力
する。出力回路12a,12bは、時間整定回路11
a,11bからリレー作動信号が出力されると、出力リ
レーX1,X2のコイルに励磁電圧を出力し、出力リレ
ーX1,X2を作動させる。尚、以上の説明から明らか
なように、出力リレーX1が作動された場合は、単相3
線式高低圧変圧器Tr1の低圧側電路が地絡し、所定レ
ベル以上の地絡電流が流れた場合である。また、出力リ
レーX2が作動された場合は、3相3線式高低圧変圧器
Tr2の低圧側電路が地絡し、所定レベル以上の地絡電
流が流れた場合である。
The time setting circuit 11a connected to the AND circuit 10a and the time setting circuit 11b connected to the AND circuit 10b are provided by the AND circuits 10a and 10b.
When the D signal is continuously output for a predetermined time set in advance, a relay operation signal is output to the output circuits 12a and 12b. The output circuits 12a and 12b are connected to the time setting circuit 11
When a relay operation signal is output from a and 11b, an excitation voltage is output to the coils of the output relays X1 and X2, and the output relays X1 and X2 are operated. As apparent from the above description, when the output relay X1 is operated, the single-phase three-phase
This is the case where the low voltage side electric circuit of the wire type high / low voltage transformer Tr1 is grounded and a ground fault current of a predetermined level or more flows. When the output relay X2 is activated, the low-voltage side electric circuit of the three-phase three-wire high / low voltage transformer Tr2 is grounded, and a ground fault current of a predetermined level or more flows.

【0026】出力リレーX1のA接点は、単相3線式高
低圧変圧器Tr1の低圧側電路に接続された図示してい
ない遮断器の引外しコイルに接続されており、出力リレ
ーX1のA接点が閉じると引外しコイルが励磁され、遮
断器が作動する。また、出力リレーX1のB接点は、例
えばブザー及びランプから成る図示していない警報器と
接続されており、上記B接点が開くと警報器が作動さ
れ、単相3線式高低圧変圧器Tr1の低圧側電路が地絡
したことを警報する。
The A contact of the output relay X1 is connected to a tripping coil of a circuit breaker (not shown) connected to the low-voltage side electric circuit of the single-phase three-wire high / low voltage transformer Tr1. When the contacts are closed, the trip coil is excited and the circuit breaker is activated. The B contact of the output relay X1 is connected to an alarm (not shown) including, for example, a buzzer and a lamp. When the B contact is opened, the alarm is activated, and the single-phase three-wire high-low voltage transformer Tr1 is activated. Is warned that the low-voltage side electric circuit has ground fault.

【0027】出力リレーX2のA接点は、3相3線式高
低圧変圧器Tr2の低圧側電路に接続された図示してい
ない遮断器の引外しコイルに接続されており、出力リレ
ーX2のA接点が閉じると引外しコイルが励磁され、遮
断器が作動する。また、出力リレーX2のB接点は、上
記同様に構成された警報器と接続されており、上記B接
点が開くと警報器が作動され、3相3線式高低圧変圧器
Tr2の低圧側電路が地絡したことを警報する。
The A contact of the output relay X2 is connected to a trip coil of a circuit breaker (not shown) connected to the low-voltage side electric circuit of the three-phase three-wire high / low voltage transformer Tr2. When the contacts are closed, the trip coil is excited and the circuit breaker is activated. The B contact of the output relay X2 is connected to an alarm device configured in the same manner as described above. When the B contact is opened, the alarm is activated, and the low-voltage side electric circuit of the three-phase three-wire high-low voltage transformer Tr2 is connected. Warns that a ground fault has occurred.

【0028】尚、前記出力回路12a,12bに接続さ
れた動作表示器13a,13bは、例えば発光ダイオー
ドで構成され、上記出力リレーX1,X2が動作してい
るときに点灯される。また、低圧側電路地絡方向継電器
1の各回路に供給される直流電圧を生成するための電源
回路14が設けられている。
The operation indicators 13a and 13b connected to the output circuits 12a and 12b are composed of, for example, light emitting diodes, and are turned on when the output relays X1 and X2 are operating. Further, a power supply circuit 14 for generating a DC voltage to be supplied to each circuit of the low-voltage side electric circuit ground fault direction relay 1 is provided.

【0029】以上のように、低圧側電路地絡方向継電器
1の位相比較回路9a,9bにおいて、前記単相3線式
高低圧変圧器Tr1、3相3線式高低圧変圧器Tr2の
いずれの低圧側電路が地絡したかを判定することができ
るとともに、地絡した低圧側電路の遮断器のみを確実に
作動させることができる。
As described above, in the phase comparison circuits 9a and 9b of the low-voltage side electric circuit ground fault direction relay 1, any one of the single-phase three-wire high-low voltage transformer Tr1 and the three-phase three-wire high-low voltage transformer Tr2 is used. It is possible to determine whether or not the low-voltage side electric circuit has a ground fault, and it is possible to reliably operate only the circuit breaker of the low-voltage side electric circuit with the ground fault.

【0030】以上の実施の形態では、地絡判定の対象と
なる高低圧変圧器を単相3線式高低圧変圧器Tr1と3
相3線式高低圧変圧器Tr2の2台としたが、低圧側電
路地絡方向継電器1内の各回路を地絡判定の対象となる
高低圧変圧器の台数に応じて増やせば、任意の台数の高
低圧変圧器を地絡判定の対象とすることができる。
In the above embodiment, the high / low voltage transformers to be subjected to the ground fault determination are single-phase three-wire high / low voltage transformers Tr1 and Tr3.
Although the two-phase three-wire type high-low voltage transformer Tr2 is used, any circuit may be added in the low-voltage side electric circuit ground fault direction relay 1 according to the number of high-low voltage transformers to be subjected to ground fault determination. A number of high and low voltage transformers can be subjected to ground fault determination.

【0031】[0031]

【発明の効果】本発明によれば、低圧側巻線が共通接地
される複数の高低圧変圧器のどの低圧側電路が地絡した
かを検出することができるとともに、地絡した低圧側電
路の遮断器のみを確実に作動させることができるという
効果がある。
According to the present invention, it is possible to detect which low-voltage side electric circuit of a plurality of high-and-low-voltage transformers whose low-voltage side windings are commonly grounded, and to detect the low-voltage side electric circuit with the ground fault. This has the effect that only the circuit breaker can be reliably operated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示した電気回路図であ
る。
FIG. 1 is an electric circuit diagram showing an embodiment of the present invention.

【図2】低圧側電路地絡方向継電器の構成を示したブロ
ック図である。
FIG. 2 is a block diagram showing a configuration of a low-voltage side electric circuit ground fault direction relay.

【図3】位相比較回路の作用説明図である。FIG. 3 is an operation explanatory diagram of a phase comparison circuit.

【図4】位相比較回路の作用説明図である。FIG. 4 is an explanatory diagram of an operation of a phase comparison circuit.

【図5】従来の問題点を説明するための電気回路図であ
る。
FIG. 5 is an electric circuit diagram for explaining a conventional problem.

【符号の説明】[Explanation of symbols]

1 低圧側電路地絡方向継電器 9a,9b 位相比較回路 10a,10b AND回路 11a,11b 時間整定回路 12a,12b 出力回路 X1,X2 出力リレー Tr1 単相3線式高低圧変圧器 Tr2 3相3線式高低圧変圧器 N 中性点 TE 低圧側巻線端子 ZCT0 電流検出器 ZCT1 電流検出器 ZCT2 電流検出器 EB B種接地極 EBL0 接地母線 EBL1 接地線 EBL2 接地線 DESCRIPTION OF SYMBOLS 1 Low-voltage side ground fault relay 9a, 9b Phase comparison circuit 10a, 10b AND circuit 11a, 11b Time setting circuit 12a, 12b Output circuit X1, X2 Output relay Tr1 Single-phase three-wire high-low-voltage transformer Tr2 Three-phase three-wire Type high / low voltage transformer N Neutral point TE Low voltage side winding terminal ZCT0 Current detector ZCT1 Current detector ZCT2 Current detector EB Class B ground pole EBL0 Ground bus EBL1 Ground wire EBL2 Ground wire

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 低圧側巻線が共通接地極に接地された複
数の高低圧変圧器の地絡した低圧側電路を判定するため
の低圧側電路地絡方向継電器であって、前記共通接地極
に接続された接地母線を流れる地絡電流の位相と、前記
各低圧側巻線の所定接地点と前記接地母線との間に接続
された各接地線を流れる地絡電流の位相とを比較するこ
とにより地絡した低圧側電路を検出する検出手段を備え
た低圧側電路地絡方向継電器。
1. A low-voltage side ground fault relay for determining a low-voltage side electric circuit of a plurality of high / low voltage transformers whose low-voltage side winding is grounded to a common grounding pole, wherein the common grounding pole is provided. Is compared with the phase of the ground fault current flowing through the ground bus connected to the ground bus connected to the ground bus connected to the predetermined ground point of each of the low voltage side windings and the ground bus. A low voltage side electric circuit ground fault direction relay provided with a detecting means for detecting the low voltage side electric circuit caused by the ground fault.
【請求項2】 前記検出手段は、地絡検出した低圧側電
路の遮断器を作動させる低圧側電路地絡方向継電器。
2. The low voltage side electric circuit ground fault direction relay which operates the circuit breaker of the low voltage side electric circuit which detected the ground fault.
JP13196699A 1999-05-12 1999-05-12 Low-voltage side ground fault relay Expired - Fee Related JP3408992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13196699A JP3408992B2 (en) 1999-05-12 1999-05-12 Low-voltage side ground fault relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13196699A JP3408992B2 (en) 1999-05-12 1999-05-12 Low-voltage side ground fault relay

Publications (2)

Publication Number Publication Date
JP2000324679A true JP2000324679A (en) 2000-11-24
JP3408992B2 JP3408992B2 (en) 2003-05-19

Family

ID=15070397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13196699A Expired - Fee Related JP3408992B2 (en) 1999-05-12 1999-05-12 Low-voltage side ground fault relay

Country Status (1)

Country Link
JP (1) JP3408992B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225449B1 (en) 2012-09-19 2013-01-24 백용호 Integrated high resistance ground device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225449B1 (en) 2012-09-19 2013-01-24 백용호 Integrated high resistance ground device

Also Published As

Publication number Publication date
JP3408992B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
US4356443A (en) Detection of arcing faults in polyphase electric machines
US8743513B2 (en) Arc fault detector for AC or DC installations
US8891211B2 (en) Potential arc fault detection and suppression
US6671150B2 (en) Circuit breaker for detecting an excessive voltage and tripping responsive thereto
US7944654B2 (en) Multiple-pole circuit breaker with shared current sensor for arcing fault detection
JPS62503071A (en) ground fault circuit breaker
EP2577826A2 (en) An arc fault detector for ac or dc installations
US11307265B2 (en) Earth leakage circuit breaker
US11283256B2 (en) Power interruption method and device based on phase measurement and arc detection of power level
JP2009089574A (en) Ground-fault circuit interrupter
Lubich High resistance grounding and fault finding on three phase three wire (delta) power systems
US20030151413A1 (en) Diagnostic wiring verification tester
JP3408992B2 (en) Low-voltage side ground fault relay
JP3123999B2 (en) Short circuit test apparatus and method
Czapp Residual Current Devices: Selection, Operation, and Testing
KR100585378B1 (en) Leakage Current Detect Interrupter
KR100638239B1 (en) Leakage Current Detect Interrupter
KR20100034828A (en) Ground fault protection system
JP2002027660A (en) Ground fault detector for low-voltage circuit
Hamouda et al. Numerical differential protection algorithm for power transformers
JPH0322898Y2 (en)
Sattari et al. High reliability electrical distribution system for industrial facilities
RU2229764C1 (en) Device for checking insulation resistance and leakage current in power installations
JP2001339847A (en) Ground directional relay for low voltage circuit
Kojovic et al. Innovative differential protection of power transformers using low energy current sensors

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120314

LAPS Cancellation because of no payment of annual fees