JP2000308388A - Driver of permanent magnet motor for electric car - Google Patents

Driver of permanent magnet motor for electric car

Info

Publication number
JP2000308388A
JP2000308388A JP11109307A JP10930799A JP2000308388A JP 2000308388 A JP2000308388 A JP 2000308388A JP 11109307 A JP11109307 A JP 11109307A JP 10930799 A JP10930799 A JP 10930799A JP 2000308388 A JP2000308388 A JP 2000308388A
Authority
JP
Japan
Prior art keywords
motor
inverter
voltage
power supply
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11109307A
Other languages
Japanese (ja)
Other versions
JP4269197B2 (en
Inventor
Satoru Ozaki
覚 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10930799A priority Critical patent/JP4269197B2/en
Publication of JP2000308388A publication Critical patent/JP2000308388A/en
Application granted granted Critical
Publication of JP4269197B2 publication Critical patent/JP4269197B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PROBLEM TO BE SOLVED: To easily provide a measure for over-voltage due to non-load induction voltage of a motor and restart of inverter, by inserting in series a parallel connecting circuit of a one-way conducive means and a switching means between the power supply of inverter and inventor arm. SOLUTION: For example, in the case of restarting inverter operation during rotation of a PM motor 5, the inverter operation is restarted while a switching means 7 is kept open with a control device 40. In this case, while a torque current element is maintained at zero, only the energizing current element is controlled to set a terminal voltage of the PM motor to the predetermined value. As a result, a magnetic flux of the PM motor 5 is lowered, thereby lowering an inducted voltage. Charges accumulated in the capacitors 31 to 33 are lowered due to the switching loss of the inverter operation during this period and consumption by copper loss of a coil of the PM motor 5. In this case, when loss exceeds an extra element of the charging voltage of the capacitors 31 to 33 for the power supply voltage, the power is supplied from the power supply side 1 via the one-way conductor means 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、鉄道車両や電気
自動車などのように永久磁石電動機を備え、惰行運転を
行なうことがある場合に用いて好適な永久磁石電動機駆
動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet motor driving device having a permanent magnet motor, such as a railway car or an electric vehicle, which is suitable for use in a case where coasting operation is sometimes performed.

【0002】[0002]

【従来の技術】近年、二酸化炭素による地球温暖化や大
気汚染等の環境問題に対する取り組みとして、電気自動
車の実用化が進められている。また、鉄道車両において
も省エネルギーや保守軽減等の観点から、VVVFイン
バータを利用した交流電動機駆動システムが主流となり
つつある。図3に交流電動機(誘導電動機)駆動システム
の従来例を示す。同図において、1は電源(架線)、2は
パンタグラフ、3は遮断器、4はフィルタリアクトル、
9は交流電動機、10は例えばIGBT(絶縁ゲートバ
イポーラトランジスタ)等の電力変換素子11〜16お
よびフリーホイーリングダイオード21〜26などから
なるインバータ、30はフィルタコンデンサ、31〜3
3はスナバコンデンサである。
2. Description of the Related Art In recent years, electric vehicles have been put into practical use as a measure against environmental problems such as global warming and air pollution caused by carbon dioxide. Also, from the viewpoints of energy saving and maintenance reduction in railway vehicles, an AC motor drive system using a VVVF inverter is becoming mainstream. FIG. 3 shows a conventional example of an AC motor (induction motor) drive system. In the figure, 1 is a power supply (an overhead line), 2 is a pantograph, 3 is a circuit breaker, 4 is a filter reactor,
Reference numeral 9 denotes an AC motor, 10 denotes an inverter including power conversion elements 11 to 16 such as IGBTs (insulated gate bipolar transistors) and freewheeling diodes 21 to 26, and 30 denotes a filter capacitor, and 31 to 33.
3 is a snubber capacitor.

【0003】すなわち、架線1またはバッテリ等から供
給される直流電力を、半導体電力変換素子11〜16お
よびダイオード21〜26からなるインバータ10で可
変電圧可変周波数(VVVF)の交流電力に変換し、交流
電動機9を可変速駆動する。交流電動機9としては通常
誘導電動機を使用し、いわゆるベクトル制御にもとづい
て、その励磁電流成分やトルク電流成分を調整すること
で、電動機の発生トルクや端子電圧を制御する。
That is, DC power supplied from the overhead wire 1 or a battery or the like is converted into AC power of a variable voltage variable frequency (VVVF) by an inverter 10 comprising semiconductor power conversion elements 11 to 16 and diodes 21 to 26, The motor 9 is driven at a variable speed. An induction motor is usually used as the AC motor 9, and the generated torque and terminal voltage of the motor are controlled by adjusting its exciting current component and torque current component based on so-called vector control.

【0004】これらの駆動システムに適用される電動機
は、低速で大トルクを発生する必要があるが、同時に小
形軽量であることが必須であることから、電動機を高速
回転形とし、減速ギアを用いて低速におけるトルク不足
を補うようにしている。近年、希土類磁石の高性能化に
より、低速トルクの発生が容易でエネルギー効率にも優
れた、永久磁石形同期電動機(以下、PMモータとも略
記する)を用いた自動車,電車の駆動システムの研究開
発が盛んになっている。
The electric motor applied to these drive systems needs to generate a large torque at a low speed, but at the same time, it is essential that the motor is small and lightweight. To compensate for the lack of torque at low speed. In recent years, research and development of drive systems for automobiles and trains using permanent magnet type synchronous motors (hereinafter abbreviated as PM motors), which are easy to generate low-speed torque and have excellent energy efficiency, due to the high performance of rare earth magnets. Is thriving.

【0005】PMモータの場合、永久磁石による磁束が
一定であるため、電動機単体の特性としては、磁束密度
と電動機の回転速度との積に比例した誘起電圧を発生す
る。これを無負荷誘起電圧といい、図4に点線で示すよ
うな特性を持つ。これに対して、インバータは入力の直
流電圧以上の電圧を発生することはできないことから、
無負荷誘起電圧がインバータの最大出力電圧を越える領
域では、永久磁石による磁束を打ち消すような磁束を電
機子巻線で発生させる、いわゆる界磁弱め制御を行なっ
て、高速までの運転を行なっている(図4の実線参照)。
[0005] In the case of the PM motor, since the magnetic flux generated by the permanent magnet is constant, the characteristic of the electric motor alone is that an induced voltage proportional to the product of the magnetic flux density and the rotational speed of the electric motor is generated. This is called a no-load induced voltage, and has a characteristic shown by a dotted line in FIG. On the other hand, since the inverter cannot generate a voltage higher than the input DC voltage,
In the region where the no-load induced voltage exceeds the maximum output voltage of the inverter, a so-called field weakening control is performed, in which the armature winding generates a magnetic flux that cancels the magnetic flux generated by the permanent magnet, and operation is performed up to high speed. (See the solid line in FIG. 4).

【0006】自動車や電車では、駆動システムによる加
速,減速を行なわずに惰性で走行(惰行)することがその
運転モードの大きな特徴である。このような場合、PM
モータを使用する駆動システムでは前述のような無負荷
誘起電圧が発生し、この無負荷誘起電圧がインバータの
直流電圧(コンデンサ30の両端電圧に相当)よりも大き
な領域では、PMモータの誘起電圧が半導体電力変換素
子11〜16に逆並列接続されたダイオード21〜26
を介して全波整流され、直流中間電圧(コンデンサ30
の両端電圧)を上昇させたり、電源側1に電力回生され
て、駆動システム全体としてはブレーキ動作を行なうこ
とになる。
A major feature of the operation mode of an automobile or a train is that the vehicle runs (coasts) by inertia without performing acceleration and deceleration by a drive system. In such a case, PM
In a drive system using a motor, the no-load induced voltage as described above is generated, and in a region where the no-load induced voltage is larger than the DC voltage of the inverter (corresponding to the voltage across the capacitor 30), the induced voltage of the PM motor is reduced. Diodes 21 to 26 connected in antiparallel to semiconductor power conversion elements 11 to 16
Through a full-wave rectifier and a DC intermediate voltage (capacitor 30
) Or the power is regenerated to the power supply 1, and the entire drive system performs a braking operation.

【0007】このため、PMモータを使用した自動車,
電車駆動システムでは加速/減速/惰行にかかわらず、
PMモータの端子電圧を一定のレベルになるように、常
時、弱め界磁制御のための励磁電流を流したり、あるい
は、図5のシステム構成に示すように、インバータ10
の出力とPMモータ5の端子間に断路器6を設け、イン
バータ停止(惰行)時にPMモータ5の無負荷誘起電圧が
インバータ10の出力端子に直接印加されないようにし
ている。
Therefore, an automobile using a PM motor,
In the train drive system, regardless of acceleration / deceleration / coasting,
An excitation current for field-weakening control is always supplied so that the terminal voltage of the PM motor becomes a constant level, or an inverter 10 is provided as shown in the system configuration of FIG.
A disconnector 6 is provided between the output of the PM motor 5 and the terminal of the PM motor 5 so that the no-load induced voltage of the PM motor 5 is not directly applied to the output terminal of the inverter 10 when the inverter is stopped (coasting).

【0008】[0008]

【発明が解決しようとする課題】電車や自動車が惰行中
に、界磁弱め制御のための励磁電流を流すべくインバー
タ運転することは、PMモータの巻線に電流が流れるこ
とによって生じる銅損やインバータの変換損失が発生す
るため、省エネルギーの観点から好ましくない。特に、
エネルギー効率が最重要課題の電気自動車では、致命的
な問題である。また、惰行中に断路器6を開放する図5
のような方式では、惰行中の電力損失や不要な制動力は
発生しないが、惰行状態から再度加速したり減速したり
するためにインバータ運転を再開する場合は、断路器6
を閉じる必要がある。
When the train or the automobile is coasting, the inverter operation for supplying the exciting current for the field weakening control is performed because of the copper loss caused by the current flowing through the winding of the PM motor. Since conversion loss of the inverter occurs, it is not preferable from the viewpoint of energy saving. In particular,
Energy efficiency is a critical issue for electric vehicles, where energy is of paramount importance. FIG. 5 shows that the disconnector 6 is opened during coasting.
Although no power loss or unnecessary braking force is generated during coasting in the method described above, when the inverter operation is restarted in order to accelerate or decelerate again from the coasting state, the disconnector 6
Need to close.

【0009】しかしながら、PMモータ5が高速回転中
に断路器6を閉じることは、PMモータ5の過大な無負
荷誘起電圧がインバータ10を構成する素子11〜16
および21〜26に一気に印加されることになり、急激
な電圧上昇による半導体電力変換素子の破壊や、無負荷
誘起電圧の急激な電源回生による走行速度のショックで
乗り心地に悪影響を与えるおそれがあった。このため、
一旦、断路器6を開放してしまうと、電車または自動車
が減速してPMモータ5の過大な無負荷誘起電圧がイン
バータ10の出力電圧以下に低下するまで、断路器6の
閉成(導通)とインバータ運転の再開を待たねばならず、
実用にならないという問題が生じる。さらには、図3の
ような従来の誘導電動機駆動システムでは断路器は不要
であるのに対し、図5では部品点数の増加によるコス
ト,質量,サイズの増加や、有接点部品であることから
保守,信頼性の点からも問題があった。したがって、こ
の発明の課題は部品点数を増加させることなく、電動機
の無負荷誘起電圧による過電圧対策やインバータの再起
動を容易とすることにある。
However, closing the disconnector 6 while the PM motor 5 is rotating at a high speed means that the excessive no-load induced voltage of the PM motor 5 causes the elements 11 to 16
And 21 to 26 at a stretch, there is a possibility that the ride comfort may be adversely affected by the destruction of the semiconductor power conversion element due to a sudden increase in the voltage, or the shock of the traveling speed due to the sudden regeneration of the power supply due to the no-load induced voltage. Was. For this reason,
Once the disconnector 6 has been opened, the train or the vehicle is decelerated and the disconnector 6 is closed (conducted) until the excessive no-load induced voltage of the PM motor 5 drops below the output voltage of the inverter 10. And restarting the inverter operation,
There is a problem that it is not practical. Further, in the conventional induction motor drive system as shown in FIG. 3, a disconnector is not required. On the other hand, in FIG. There was also a problem in terms of reliability. Accordingly, it is an object of the present invention to facilitate measures against overvoltage due to no-load induced voltage of a motor and restart of an inverter without increasing the number of parts.

【0010】[0010]

【課題を解決するための手段】このような課題を解決す
るため、この発明では、インバータの電源とインバータ
アーム間に一方向導通手段と開閉手段との並列接続回路
を直列に挿入し、インバータを介して永久磁石形同期電
動機を駆動する駆動装置であって、インバータの停止中
には前記開閉手段を開放し、インバータの運転開始時に
は前記開閉手段を開放したままで、前記電動機の端子電
圧が所定の値になるように励磁電流を制御し、前記電動
機の端子電圧が所定値に達したとき前記開閉手段を閉と
した状態で前記電動機のトルク電流を制御して電動機を
加減速運転し、運転中のインバータを停止させるとき
は、前記電動機の端子電圧が所定値になるように励磁電
流を制御したままでトルク電流をゼロに減少させた後、
前記開閉手段を開放し、しかる後励磁電流を減少させて
インバータの運転を停止させることを特徴とする。
In order to solve such a problem, according to the present invention, a parallel connection circuit of one-way conduction means and opening / closing means is inserted in series between the power supply of the inverter and the inverter arm, and the inverter is connected. A driving device for driving a permanent magnet type synchronous motor through the inverter, wherein the opening / closing means is opened when the inverter is stopped, and the terminal voltage of the motor is set to a predetermined value while the opening / closing means is opened when the inverter starts operating. When the terminal voltage of the motor reaches a predetermined value, the motor is accelerated / decelerated by controlling the torque current of the motor in a state where the opening / closing means is closed when the terminal voltage of the motor reaches a predetermined value. When stopping the middle inverter, after reducing the torque current to zero while controlling the excitation current so that the terminal voltage of the motor becomes a predetermined value,
The operation of the inverter is stopped by opening the opening / closing means and then reducing the exciting current.

【0011】[0011]

【発明の実施の形態】図1はこの発明の実施の形態を示
す構成図である。同図からも明らかなように、図3に示
すものに対し主コンデンサ30とインバータ10との間
に直列に、スイッチのような開閉手段7とダイオードの
ような電力の一方向の導通手段8との並列回路を挿入し
た点が特徴である。導通手段8は駆動システムが加速運
転を行なうとき、電源1側からインバータ10に電力を
供給する方向に導通する。また、40は制御装置で、所
定のアルゴリズム(例えば、交流電動機のベクトル制御
のための)に従い、インバータ10および開閉手段7の
オン,オフ制御を行なう。なお、制御に必要な電圧,電
流を含む諸量の検出、IGBTへのゲート信号の供給等
については記述を省略した。
FIG. 1 is a block diagram showing an embodiment of the present invention. As is apparent from FIG. 3, the switching means 7 such as a switch and the one-way conduction means 8 such as a diode are connected in series between the main capacitor 30 and the inverter 10 as shown in FIG. The feature is that a parallel circuit is inserted. The conducting means 8 conducts in a direction in which power is supplied from the power supply 1 to the inverter 10 when the drive system performs an acceleration operation. Reference numeral 40 denotes a control device which controls on / off of the inverter 10 and the opening / closing means 7 according to a predetermined algorithm (for example, for vector control of an AC motor). Note that description of detection of various quantities including voltage and current necessary for control, supply of a gate signal to the IGBT, and the like are omitted.

【0012】そして、インバータ運転の停止中には、制
御装置40により開閉手段7を開放することで、インバ
ータアームの各相ごとのコンデンサ31〜33は、フリ
ーホイーリングダイオード21〜26を介して、そのと
きPMモータ5が発生する無負荷誘起電圧までいわゆる
ピーク充電されるが、この電圧はPMモータの諸特性と
回転速度から決まる有限の電圧であり、ダイオード21
〜26によって全波整流された比較的安定した電圧であ
ることから、半導体素子11〜16とコンデンサ31〜
33の電圧定格を適切に選ぶことで、十分に対処でき
る。
When the inverter operation is stopped, the opening / closing means 7 is opened by the control device 40, so that the capacitors 31 to 33 for each phase of the inverter arm are connected via the freewheeling diodes 21 to 26. At that time, peak charging is performed up to the no-load induced voltage generated by the PM motor 5, but this voltage is a finite voltage determined by various characteristics and the rotation speed of the PM motor.
Since the voltage is a relatively stable voltage that has been full-wave rectified by the semiconductor elements 11 to 16 and the capacitors 31 to
By properly selecting the voltage rating of 33, it is possible to cope sufficiently.

【0013】また、無負荷誘起電圧は電力の一方向の導
通手段8によって電源1側と遮断されるため、惰行運転
中の無負荷誘起電圧が電源側に回生されることによって
生じる無用なブレーキ力の発生とそれに伴うエネルギー
の損失を防ぐことができる。さらに、電力の一方向の導
通手段8から電源側の電圧が通常の電源電圧以上に上昇
することがないので、大容量が要求されるフィルタコン
デンサ30は通常の電圧定格のものが適用可能であり、
過電圧で駆動システム外の電機品へ影響を及ぼすおそれ
もない。また、インバータの各アームに付随したスナバ
コンデンサ31,32および33の電圧はいわゆるピー
ク充電によって上昇するため、定格電圧を高くとる必要
があるが、フィルタコンデンサに比べて低容量でよいこ
とから選定は比較的容易である。
Since the no-load induced voltage is cut off from the power source 1 by the one-way conduction means 8, the unnecessary braking force generated by the regeneration of the no-load induced voltage during the coasting operation to the power source side. Can be prevented, and the energy loss accompanying the occurrence can be prevented. Further, since the voltage on the power supply side from the one-way conduction means 8 of the electric power does not rise more than the normal power supply voltage, the filter capacitor 30 requiring a large capacity can be applied with a normal voltage rating. ,
There is no danger of overvoltage affecting electrical components outside the drive system. Further, the voltage of the snubber capacitors 31, 32 and 33 attached to each arm of the inverter rises due to the so-called peak charging, so that it is necessary to increase the rated voltage. Relatively easy.

【0014】PMモータ5の回転中にインバータ運転を
再開する場合、制御装置40により開閉手段7を開放し
たままでインバータ運転を再開し、有効電力(トルク電
流)成分はゼロのまま、無効電力(励磁電流)成分のみ
を制御してPMモータの端子電圧が所定の値になるよう
にする。その結果、PMモータ5の磁束は弱められて誘
起電圧は低下するとともに、コンデンサ31〜33に充
電された電荷は、この間のインバータ動作のスイッチン
グ損失やPMモータ5の巻線の銅損で消費されて低下す
る。このときの損失が電源電圧に対するコンデンサ31
〜33の充電電圧の過剰分を上回っている場合は、電力
は一方向の導通手段8を介して電源側1から供給され
る。しかる後、開閉手段7を閉じることで、駆動(力
行)/回生(制動)運転にかかわらず、通常の運転動作
を始めることができる。回生(制動)運転の場合、負荷
電流がインバータ10を介してPMモータ5から電源1
側へ回生されることになるが、開閉手段7の開放中は上
述のように、トルク電流成分をゼロに制御することで、
開閉手段7を閉じたままでも回生動作による電圧上昇は
起こらない。
When the inverter operation is restarted while the PM motor 5 is rotating, the inverter operation is restarted while the opening / closing means 7 is opened by the control device 40, and the active power (torque current) component remains zero and the reactive power ( Only the exciting current component is controlled so that the terminal voltage of the PM motor becomes a predetermined value. As a result, the magnetic flux of the PM motor 5 is weakened, the induced voltage is reduced, and the electric charges charged in the capacitors 31 to 33 are consumed by the switching loss of the inverter operation and the copper loss of the winding of the PM motor 5 during this period. Lower. The loss at this time is caused by the loss of the capacitor 31 with respect to the power supply voltage.
If the charging voltage exceeds the excess of the charging voltage of ~ 33, power is supplied from the power supply side 1 via the one-way conduction means 8. Thereafter, by closing the opening / closing means 7, a normal driving operation can be started regardless of the driving (powering) / regenerative (braking) driving. In the case of regenerative (braking) operation, the load current is supplied from the PM motor 5 via the inverter 10 to the power supply 1.
As described above, while the opening / closing means 7 is open, by controlling the torque current component to zero,
Even when the opening / closing means 7 is closed, a voltage rise due to the regenerative operation does not occur.

【0015】以上の動作を状態遷移図で示すと図2のよ
うになる。なお、図1の架線電圧は常に印加、開閉器3
は常に閉としている。また、VPMおよびVINVはそれぞ
れPMモータの誘起電圧およびインバータの出力電圧を
示している。 モード1:初期状態 モード2:制御装置40は開閉手段7を開放状態にす
る。その結果、PMモータ5の運転状態,その無負荷誘
起電圧の有無にかかわらず、コンデンサ30の電圧は架
線電圧1と一致している。 モード3:制御装置40はインバータ運転に先立ち、
開閉手段7を開放のままでインバータ10を運転して、
PMモータ5の端子電圧が所定のレベルになるよう励磁
電流を制御する。このとき、PMモータ5の誘起電圧が
インバータ10の出力電圧以下であれば、励磁電流の通
流に伴う電力損失は、電力の一方向の導通手段8を介し
て電源1側から供給される。また、PMモータ5の誘起
電圧がインバータ10の出力電圧を超える場合、励磁電
流の通流に伴う電力損失は、インバータ10の各アーム
に備わるコンデンサ31〜33に充電されたエネルギ
ー、または、電力の一方向の導通手段8を介して電源側
から供給され、コンデンサ31〜33の電圧およびPM
モータ5の誘起電圧は所定の電圧に制御されるようにな
る。
FIG. 2 shows the above operation in a state transition diagram. The overhead line voltage shown in FIG.
Is always closed. V PM and V INV indicate the induced voltage of the PM motor and the output voltage of the inverter, respectively. Mode 1: Initial state Mode 2: The control device 40 makes the opening / closing means 7 open. As a result, the voltage of the capacitor 30 matches the overhead wire voltage 1 regardless of the operating state of the PM motor 5 and the presence or absence of the no-load induced voltage. Mode 3: The control device 40 performs the operation prior to the inverter operation,
By operating the inverter 10 with the opening / closing means 7 open,
The exciting current is controlled so that the terminal voltage of the PM motor 5 becomes a predetermined level. At this time, if the induced voltage of the PM motor 5 is equal to or lower than the output voltage of the inverter 10, the power loss accompanying the flow of the exciting current is supplied from the power source 1 via the one-way conduction means 8. When the induced voltage of the PM motor 5 exceeds the output voltage of the inverter 10, the power loss due to the passage of the exciting current is caused by the energy charged in the capacitors 31 to 33 provided in each arm of the inverter 10 or the power of the power. The power is supplied from the power supply side through the one-way conduction means 8 and the voltage of the capacitors 31 to 33 and the PM
The induced voltage of the motor 5 is controlled to a predetermined voltage.

【0016】モード4:制御装置40はPMモータ5
の誘起電圧が所定のレベルになったことを確認して、開
閉手段7を閉じる(接続する)。 モード5:制御装置40はPMモータ5のトルク分電
流の制御を開始して、所定の加速トルクまたは減速トル
クが得られるようにする。 モード6:加速または減速動作が終了したら、制御装
置40は、PMモータ5の端子電圧が所定のレベルに保
たれるようインバータ10の励磁電流を制御しながら、
トルク分電流を減少させる。 モード7:制御装置40はトルク分電流がゼロになっ
たところで、開閉手段7を開放するとともに励磁電流を
減少させ、励磁電流がゼロになったところで、インバー
タ10の運転を終了する。 以上を表にすると表1となる。
Mode 4: The control device 40 controls the PM motor 5
After confirming that the induced voltage has reached a predetermined level, the switching means 7 is closed (connected). Mode 5: The control device 40 starts controlling the torque component current of the PM motor 5 so as to obtain a predetermined acceleration torque or deceleration torque. Mode 6: When the acceleration or deceleration operation is completed, the control device 40 controls the excitation current of the inverter 10 so that the terminal voltage of the PM motor 5 is maintained at a predetermined level.
Decrease the current by the torque. Mode 7: The controller 40 opens and closes the switching means 7 when the torque current becomes zero and decreases the exciting current, and ends the operation of the inverter 10 when the exciting current becomes zero. Table 1 shows the above.

【表1】 [Table 1]

【0017】[0017]

【発明の効果】この発明によれば、下記のような効果を
期待することができる。 1)電動機の惰行運転中の無負荷誘起電圧によってピー
ク充電される部位が限定され、かつ、その電圧も安定し
ていることから、適切な電圧定格の素子,部品を適用す
ることで、電動機の無負荷誘起電圧による過電圧の対策
が容易となる。 2)電動機の惰行運転中の無負荷誘起電圧が電源側に回
生されることがないため、不必要なブレーキ力が発生し
ない。 3)惰行運転中に停止しているインバータを起動する場
合でも、インバータ起動および電動機巻線の初期励磁に
必要な電力を負荷側の高電圧を阻止した状態で供給でき
るため、容易に起動することができる。
According to the present invention, the following effects can be expected. 1) Since the peak charging portion is limited by the no-load induced voltage during the coasting operation of the motor and the voltage is stable, by applying elements and parts having appropriate voltage ratings, Countermeasures against overvoltage due to no-load induced voltage are facilitated. 2) Since the no-load induced voltage during the coasting operation of the motor is not regenerated to the power supply side, unnecessary braking force is not generated. 3) Even when starting the inverter that is stopped during coasting operation, the power required for starting the inverter and initial excitation of the motor windings can be supplied in a state where the high voltage on the load side is prevented, so that the inverter can be started easily. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】図1の動作を説明するための状態遷移図であ
る。
FIG. 2 is a state transition diagram for explaining the operation of FIG.

【図3】第1の従来例を示す構成図である。FIG. 3 is a configuration diagram showing a first conventional example.

【図4】界磁弱め制御の説明図である。FIG. 4 is an explanatory diagram of field weakening control.

【図5】第2の従来例を示す構成図である。FIG. 5 is a configuration diagram showing a second conventional example.

【符号の説明】[Explanation of symbols]

1…電源(架線)、2…パンタグラフ、3…遮断器、4…
フィルタリアクトル、5…永久磁石電動機(PM)、6…
断路器、7…開閉手段、8…一方向の導通手段、9…交
流電動機、10…インバータ、11〜16…半導体電力
変換素子、21〜26…フリーホイーリングダイオー
ド、30…フィルタコンデンサ(主コンデンサ)、31〜
33…スナバコンデンサ、40…制御装置。
1: Power supply (overhead wire), 2: Pantograph, 3: Circuit breaker, 4:
Filter reactor, 5 ... Permanent magnet motor (PM), 6 ...
Disconnecting switch, 7 opening / closing means, 8 one-way conducting means, 9 AC motor, 10 inverters, 11 to 16 semiconductor power conversion elements, 21 to 26 freewheeling diodes, 30 filter capacitors (main capacitors) ), 31-
33: snubber condenser, 40: control device.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H115 PA08 PC02 PC06 PG01 PG04 PI03 PU11 PU21 PV09 PV22 QE11 SE04 TO13 TR01 TU05 TZ09 5H560 AA08 BB04 BB07 BB12 EB01 JJ03 UA06 5H575 AA17 AA20 BB07 DD03 DD06 FF03 GG04 HA10 HB11 MM03 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H115 PA08 PC02 PC06 PG01 PG04 PI03 PU11 PU21 PV09 PV22 QE11 SE04 TO13 TR01 TU05 TZ09 5H560 AA08 BB04 BB07 BB12 EB01 JJ03 UA06 5H575 AA17 AA20 BB07 DD03 DD06 FF03 GG03

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 インバータの電源とインバータアーム間
に一方向導通手段と開閉手段との並列接続回路を直列に
挿入し、インバータを介して永久磁石形同期電動機を駆
動する駆動装置であって、 インバータの停止中には前記開閉手段を開放し、 インバータの運転開始時には前記開閉手段を開放したま
まで、前記電動機の端子電圧が所定の値になるように励
磁電流を制御し、前記電動機の端子電圧が所定値に達し
たとき前記開閉手段を閉とした状態で前記電動機のトル
ク電流を制御して電動機を加減速運転し、 運転中のインバータを停止させるときは、前記電動機の
端子電圧が所定値になるように励磁電流を制御したまま
でトルク電流をゼロに減少させた後、前記開閉手段を開
放し、しかる後励磁電流を減少させてインバータの運転
を停止させることを特徴とする電気車用永久磁石電動機
の駆動装置。
1. A driving device for driving a permanent magnet type synchronous motor via an inverter by inserting a parallel connection circuit of a one-way conduction means and an opening / closing means in series between a power source of an inverter and an inverter arm, the inverter comprising: When the inverter is stopped, the switching current is controlled so that the terminal voltage of the motor becomes a predetermined value while the switching device is opened when the operation of the inverter is started, and the terminal voltage of the motor is controlled. When the motor reaches a predetermined value, the motor is accelerated / decelerated by controlling the torque current of the motor with the opening / closing means closed, and when the inverter being operated is stopped, the terminal voltage of the motor becomes a predetermined value. After the torque current is reduced to zero while the excitation current is controlled so as to become, the opening / closing means is opened, and then the excitation current is reduced and the operation of the inverter is stopped. A driving device for a permanent magnet electric motor for an electric vehicle.
JP10930799A 1999-04-16 1999-04-16 A drive device for a permanent magnet motor for an electric vehicle. Expired - Lifetime JP4269197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10930799A JP4269197B2 (en) 1999-04-16 1999-04-16 A drive device for a permanent magnet motor for an electric vehicle.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10930799A JP4269197B2 (en) 1999-04-16 1999-04-16 A drive device for a permanent magnet motor for an electric vehicle.

Publications (2)

Publication Number Publication Date
JP2000308388A true JP2000308388A (en) 2000-11-02
JP4269197B2 JP4269197B2 (en) 2009-05-27

Family

ID=14506893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10930799A Expired - Lifetime JP4269197B2 (en) 1999-04-16 1999-04-16 A drive device for a permanent magnet motor for an electric vehicle.

Country Status (1)

Country Link
JP (1) JP4269197B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252192A (en) * 2006-03-14 2007-09-27 Gm Global Technology Operations Inc Y-shaped switching inverter for electric car or hybrid car
KR100764220B1 (en) 2004-03-23 2007-10-05 주식회사 만도 Fail safty control apparatus in motor driving system for car
JP2007336647A (en) * 2006-06-13 2007-12-27 Toshiba Corp Electric motor car controller
JP2008179285A (en) * 2007-01-25 2008-08-07 Toshiba Corp Motor drive system for railway vehicle
JP2009011029A (en) * 2007-06-26 2009-01-15 Hitachi Ltd Control device of electric vehicle, and electric vehicle
JP2010114969A (en) * 2008-11-05 2010-05-20 Mitsubishi Electric Corp Power conversion device
WO2010131344A1 (en) 2009-05-13 2010-11-18 三菱電機株式会社 Power conversion device, and method for controlling the condenser voltage of the power conversion device
JP2011109914A (en) * 2011-03-09 2011-06-02 Mitsubishi Electric Corp Dc power supply apparatus
WO2011118019A1 (en) 2010-03-26 2011-09-29 三菱電機株式会社 Power conversion device
JP2016005421A (en) * 2014-06-19 2016-01-12 本田技研工業株式会社 Motor control system
CN109936320A (en) * 2019-04-26 2019-06-25 福州大学 A kind of bi-motor series connection Direct Torque Control based on duty ratio modulation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10008854B2 (en) 2015-02-19 2018-06-26 Enphase Energy, Inc. Method and apparatus for time-domain droop control with integrated phasor current control

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100764220B1 (en) 2004-03-23 2007-10-05 주식회사 만도 Fail safty control apparatus in motor driving system for car
JP2007252192A (en) * 2006-03-14 2007-09-27 Gm Global Technology Operations Inc Y-shaped switching inverter for electric car or hybrid car
JP2007336647A (en) * 2006-06-13 2007-12-27 Toshiba Corp Electric motor car controller
US7965003B2 (en) 2007-01-25 2011-06-21 Kabushiki Kaisha Toshiba Motor drive system for railway vehicle
JP2008179285A (en) * 2007-01-25 2008-08-07 Toshiba Corp Motor drive system for railway vehicle
JP2009011029A (en) * 2007-06-26 2009-01-15 Hitachi Ltd Control device of electric vehicle, and electric vehicle
JP2010114969A (en) * 2008-11-05 2010-05-20 Mitsubishi Electric Corp Power conversion device
US8674631B2 (en) 2009-05-13 2014-03-18 Mitsubishi Electric Corporation Power conversion apparatus and method of controlling capacitor voltage of power conversion apparatus
EP2432117A4 (en) * 2009-05-13 2014-12-10 Mitsubishi Electric Corp Power conversion device, and method for controlling the condenser voltage of the power conversion device
WO2010131344A1 (en) 2009-05-13 2010-11-18 三菱電機株式会社 Power conversion device, and method for controlling the condenser voltage of the power conversion device
EP2432117A1 (en) * 2009-05-13 2012-03-21 Mitsubishi Electric Corporation Power conversion device, and method for controlling the condenser voltage of the power conversion device
WO2011118019A1 (en) 2010-03-26 2011-09-29 三菱電機株式会社 Power conversion device
CN102792577A (en) * 2010-03-26 2012-11-21 三菱电机株式会社 Power conversion device
KR101308791B1 (en) 2010-03-26 2013-09-17 미쓰비시덴키 가부시키가이샤 Power conversion device
JP5036918B2 (en) * 2010-03-26 2012-09-26 三菱電機株式会社 Power converter
US8975847B2 (en) 2010-03-26 2015-03-10 Mitsubishi Electric Corporation Power conversion device
JP2011109914A (en) * 2011-03-09 2011-06-02 Mitsubishi Electric Corp Dc power supply apparatus
JP2016005421A (en) * 2014-06-19 2016-01-12 本田技研工業株式会社 Motor control system
CN109936320A (en) * 2019-04-26 2019-06-25 福州大学 A kind of bi-motor series connection Direct Torque Control based on duty ratio modulation

Also Published As

Publication number Publication date
JP4269197B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
US8143824B2 (en) Regenerating braking system including synchronous motor with field excitation and control method thereof
JP3597591B2 (en) Motor drive
RU2466040C1 (en) Power inverter
EP2192684B1 (en) Variable magnetic flux drive system
KR101285486B1 (en) Power conversion device, and method for controlling the condenser voltage of the power conversion device
US8593101B2 (en) Power converting device with reduced switching loss
JP2000312494A (en) Operation of switched reluctance machine by dual supply voltage
CN102812238A (en) Pitch drive device capable of emergency operation for a wind or water power plant
JP5191351B2 (en) Power converter
JP4269197B2 (en) A drive device for a permanent magnet motor for an electric vehicle.
JP5036918B2 (en) Power converter
US20200067443A1 (en) Multigroup-multiphase rotating-electric-machine driving apparatus
JP7033958B2 (en) Rotating machine drive system
CN110266221A (en) A kind of brshless DC motor regeneration braking control system for electric vehicle
JP4827679B2 (en) Battery charging / discharging device for railway vehicles
WO2020137219A1 (en) Drive device for dynamo-electric machine, and method for driving
Swaminathan et al. Review on different topologies of power electronic converters and control strategies for motors in electric vehicles
JP6307983B2 (en) Inverter control device
JP3972322B2 (en) Electric vehicle control device
JP2015091145A (en) Motor control device
JP2005253264A (en) Electric rolling stock controlling device
KR101244811B1 (en) Method for maintaining a direct voltage at the input of a dc/ac voltage converter, recording medium for this method, and electric vehicle
JP2000316205A (en) Power source for car
JP2980469B2 (en) Inverter device
Zhang et al. Investigation and development of a new brushless DC generator system for extended-range electric vehicle application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term