JP2000224862A - Power conversion apparatus - Google Patents

Power conversion apparatus

Info

Publication number
JP2000224862A
JP2000224862A JP11021089A JP2108999A JP2000224862A JP 2000224862 A JP2000224862 A JP 2000224862A JP 11021089 A JP11021089 A JP 11021089A JP 2108999 A JP2108999 A JP 2108999A JP 2000224862 A JP2000224862 A JP 2000224862A
Authority
JP
Japan
Prior art keywords
phase
wire
neutral
reactor
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11021089A
Other languages
Japanese (ja)
Other versions
JP3724238B2 (en
Inventor
Jun Hirose
順 廣瀬
Mamoru Hieta
守 日永田
Takahiro Nonaka
孝宏 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP02108999A priority Critical patent/JP3724238B2/en
Publication of JP2000224862A publication Critical patent/JP2000224862A/en
Application granted granted Critical
Publication of JP3724238B2 publication Critical patent/JP3724238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a power conversion apparatus which prevents rise in the voltage rating of a device to be connected to a current intermediate circuit, even when a circuit is constituted by adding a neutral conductor to an AC circuit to be output by the power conversion apparatus, or even when an output AC current becomes high, whose weight and dimension are reduced and which prevents a drop in reliability. SOLUTION: A neutral-phase output arm 21, which is composed of a series circuit consisting of two sets of semiconductor switching elements is connected to the DC intermediate circuit of this power conversion apparatus. They are operated to be turned on and off alternately. The other end of a reactor 23 connected to the intermediate point of the neutral-phase output arm is pulled out as a neutral conductor 12. Thereby, a three-phase four-wire system three-phase alternating current or a single- phase three-wire system single-phase alternating current is obtained. In addition, when a smoothing capacitor is constituted by connecting an even number of pieces of capacitors in series, their intermediate point is connected to the neutral conductor 12. Alternatively, a battery 4 is connected across the intermediate point of the smoothing capacitor formed by connecting the even number of pieces of capacitors in series and the positive or negative pole of the DC intermediate circuit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、中性線を備えた
交流回路を得ると共に、電力変換装置の出力電圧が上昇
した場合でも、直流中間回路に接続する機器の電圧定格
を低い値のままにすることができる電力変換装置に関す
る。
BACKGROUND OF THE INVENTION The present invention provides an AC circuit having a neutral conductor, and maintains a low voltage rating of a device connected to a DC intermediate circuit even when an output voltage of a power converter increases. The present invention relates to a power conversion device that can

【0002】[0002]

【従来の技術】三相交流電力を送電・配電する場合に、
日本では三相3線式の回路構成が一般的であるが、これ
に中性線を加えて三相4線式回路にすれば、2種類の電
圧を得ることができて便利である。例えば、三相4線式
回路での線間電圧が380Vならば相電圧は220Vと
なる。そこでヨーロッパなどでは三相4線式回路で配電
することが多く、通常の単相電気品は220Vの電圧で
使用するが、ヒーターなど大容量の単相または三相電気
品は380Vの電圧で使用している。また、単相交流回
路も中性線を加えた単相3線式回路にすれば、例えば1
00Vと200Vの二重電圧が得られるので、近年では
日本の配電回路の大部分で、二重電圧が得られる単相3
線式回路が採用されている。
2. Description of the Related Art When transmitting and distributing three-phase AC power,
In Japan, a three-phase three-wire circuit configuration is generally used. However, if a three-phase four-wire circuit is formed by adding a neutral wire to the circuit, two types of voltages can be obtained, which is convenient. For example, if the line voltage in a three-phase four-wire circuit is 380 V, the phase voltage is 220 V. Therefore, in Europe and the like, power is often distributed using a three-phase four-wire circuit. Normal single-phase electrical products are used at 220V, but large-capacity single-phase or three-phase electrical products such as heaters are used at 380V. are doing. If the single-phase AC circuit is also a single-phase three-wire circuit with a neutral wire, for example,
Since a double voltage of 00 V and 200 V can be obtained, in recent years, most of the distribution circuits in Japan have a single-phase 3
A wire circuit is employed.

【0003】商用交流電源は、電圧や周波数が変動する
ことがあるし、停電することもある。そこで電圧や周波
数が変動すると悪影響を受ける恐れのある負荷は、商用
交流電源に接続した所謂CVCFインバータ(定電圧定
周波数インバータ)から交流電力を受電することで、電
圧や周波数の変動を回避している。また、負荷への電力
供給が絶対に中断されたくないという要望に対しては、
商用交流電源に所謂UPS(無停電電源装置)を接続
し、このUPSを介して交流電力を受電することで、停
電の恐れを回避している。これらCVCFインバータや
UPSは、三相交流ならば3線回路で出力し、単相交流
ならば2線回路で出力する。
[0003] The commercial AC power supply may fluctuate in voltage and frequency, or may fail. Therefore, a load that may be adversely affected by fluctuations in voltage and frequency receives AC power from a so-called CVCF inverter (constant voltage constant frequency inverter) connected to a commercial AC power supply to avoid fluctuations in voltage and frequency. I have. Also, if you do not want to interrupt the power supply to the load,
A so-called UPS (uninterruptible power supply) is connected to a commercial AC power supply, and AC power is received via the UPS, thereby avoiding the risk of power failure. These CVCF inverters and UPS output by a three-wire circuit for three-phase AC, and output by a two-wire circuit for single-phase AC.

【0004】図7は三相3線式の三相交流を出力する電
力変換装置の一般的な例を示した主回路接続図であっ
て、無停電電源装置の場合を示しているが、図7の一般
例回路において、交流電源1からの交流電力を直流電力
に変換する電源側変換器としての整流器2,この直流電
力を三相交流電力に変換する負荷側変換器としての三相
インバータ5,これら整流器2の直流側と三相インバー
タ5の直流側とを結合している直流中間回路に接続した
平滑コンデンサ3,およびバッテリー4とで三相無停電
電源装置10が構成されている。この三相無停電電源装
置10が出力する三相交流電力は、フィルターリアクト
ル6とフィルターコンデンサ7とでなるフィルター回路
で波形整形されたのちに、三相3線負荷8へ供給され
る。なお、三相無停電電源装置10の動作は本発明とは
無関係であるから、その説明は省略する。
FIG. 7 is a main circuit connection diagram showing a general example of a power converter for outputting a three-phase three-wire three-phase AC, and shows a case of an uninterruptible power supply. 7, a rectifier 2 as a power supply converter for converting AC power from the AC power supply 1 into DC power, and a three-phase inverter 5 as a load converter for converting this DC power into three-phase AC power. The three-phase uninterruptible power supply 10 is composed of the smoothing capacitor 3 and the battery 4 connected to a DC intermediate circuit connecting the DC side of the rectifier 2 and the DC side of the three-phase inverter 5. The three-phase AC power output from the three-phase uninterruptible power supply 10 is supplied to the three-phase three-wire load 8 after being shaped by a filter circuit including the filter reactor 6 and the filter capacitor 7. The operation of the three-phase uninterruptible power supply 10 is irrelevant to the present invention, and a description thereof will be omitted.

【0005】図8は電力変換装置が出力する三相3線式
の三相交流から三相4線式の三相交流を得る従来例を示
した主回路接続図であって、無停電電源装置の場合を示
しているが、図8の従来例回路は、図7で既述の一般的
な無停電電源装置の交流出力側に、リアクトルのスター
接続でなる中性点発生用リアクトル11を接続した構成
である。この中性点発生用リアクトル11のスター接続
点から引き出した線が中性線12であって、三相無停電
電源装置10の出力側の三相3線式回路にこの中性線1
2を合体させることで三相4線式回路が得られ、これを
三相4線負荷13に接続すれば良い。
FIG. 8 is a main circuit connection diagram showing a conventional example of obtaining a three-phase four-wire three-phase AC from a three-phase three-wire three-phase AC output from a power converter. In the conventional circuit of FIG. 8, the reactor 11 for neutral point generation, which is a star-connected reactor, is connected to the AC output side of the general uninterruptible power supply described in FIG. This is the configuration. A line drawn from the star connection point of the reactor 11 for generating a neutral point is a neutral line 12, and the neutral line 1 is connected to a three-phase three-wire circuit on the output side of the three-phase uninterruptible power supply 10.
By combining the two, a three-phase four-wire circuit is obtained, which may be connected to the three-phase four-wire load 13.

【0006】なお図示は省略しているが、中性点発生用
リアクトル11の代わりに3組の単巻変圧器をスター接
続すれば、そのスター接続点から中性線12を引き出す
ことができて三相4線式回路が得られるし、このスター
接続した単巻変圧器のタップを三相4線負荷13に接続
すれば、三相無停電電源装置10の出力電圧とは異なっ
た電圧を三相4線負荷13に印加することができる。更
にこれも図示は省略しているが、三相無停電電源装置1
0と三相4線負荷13との間に、例えば一次側巻線がデ
ルタ接続で二次側巻線がスター接続の三相変圧器を挿入
し、二次側巻線のスター接続点を引き出して中性線12
にすれば、三相無停電電源装置10と三相4線負荷13
とを絶縁し、且つ三相4線負荷13の電圧が三相無停電
電源装置10の出力電圧とは異なった値となる三相4線
式回路が得られる。なお単相2線式回路に、単相用の中
性点発生用リアクトルや単相用の単巻変圧器または2巻
線変圧器を前述と同様にして使用することにより単相3
線式回路が得られるが、その図示と説明は省略する。
Although not shown, if three sets of autotransformers are star-connected in place of the reactor 11 for generating a neutral point, the neutral wire 12 can be drawn from the star connection point. A three-phase four-wire circuit is obtained. If the tap of the star-connected autotransformer is connected to the three-phase four-wire load 13, a voltage different from the output voltage of the three-phase uninterruptible power supply 10 is generated. It can be applied to the phase 4 wire load 13. Although not shown, the three-phase uninterruptible power supply 1
Between the zero and the three-phase four-wire load 13, for example, a three-phase transformer in which the primary winding has a delta connection and the secondary winding has a star connection is inserted, and a star connection point of the secondary winding is drawn. Neutral line 12
The three-phase uninterruptible power supply 10 and the three-phase four-wire load 13
And a three-phase four-wire circuit in which the voltage of the three-phase four-wire load 13 is different from the output voltage of the three-phase uninterruptible power supply 10 is obtained. A single-phase two-wire circuit is provided with a single-phase neutral point generating reactor, a single-phase single-turn transformer or a two-winding transformer in the same manner as described above.
Although a linear circuit is obtained, its illustration and description are omitted.

【0007】[0007]

【発明が解決しようとする課題】三相インバータの出力
回路は通常は三相3線式であり、単相インバータの出力
回路も単相2線式が通常であるから、これらに中性線を
増やして三相4線式回路または単相3線式回路を得よう
とすると、中性点発生用リアクトルあるいは単巻変圧器
あるいは2巻線変圧器などを使用しなければならない
が、これらはいずれも鉄と銅が主要材料であるために、
大きな重量と寸法を必要とすることから、装置全体を大
形化,大重量化させる欠点を有し、価格も高くなる不都
合がある。また電力変換装置の出力電圧が、例えば40
0V程度に上昇するとこれに比例して直流中間回路電圧
もほぼ600Vに上昇する。直流中間回路に接続する平
滑コンデンサは極めて大きな静電容量を必要とすること
から、一般にアルミ電解コンデンサを使用するが、高耐
圧のアルミ電解コンデンサは製作が困難である。そこで
複数のアルミ電解コンデンサを直列に接続して使用する
ことになるが、このとき各コンデンサが分担する電圧を
均等化させるために抵抗を接続するが、この抵抗の発生
損失が無視できない大きさになって装置の効率を低下さ
せると共に温度を上昇させる不具合を生じる。
The output circuit of a three-phase inverter is usually a three-phase three-wire system, and the output circuit of a single-phase inverter is also usually a single-phase two-wire system. In order to obtain a three-phase four-wire circuit or a single-phase three-wire circuit, it is necessary to use a reactor for generating a neutral point, an autotransformer, or a two-winding transformer. Because iron and copper are the main materials,
Since a large weight and size are required, there is a disadvantage that the whole apparatus becomes large and heavy, and there is a disadvantage that the price becomes high. When the output voltage of the power converter is, for example, 40
When the voltage rises to about 0 V, the DC intermediate circuit voltage rises to approximately 600 V in proportion to this. Since a smoothing capacitor connected to a DC intermediate circuit requires an extremely large capacitance, an aluminum electrolytic capacitor is generally used. However, it is difficult to manufacture an aluminum electrolytic capacitor having a high withstand voltage. Therefore, multiple aluminum electrolytic capacitors are connected in series and used.In this case, resistors are connected to equalize the voltage shared by each capacitor. This lowers the efficiency of the apparatus and raises the temperature.

【0008】更に、無停電電源装置の場合は、直流中間
回路電圧の上昇に伴って停電をバックアップするバッテ
リーの電圧も高くせざるを得ない。そのためにバッテリ
ーセルの直列数が多くなって信頼性が低下する不具合を
生じるし、高圧化によりバッテリー保護装置も大形化,
高価格化する不具合を有する。
Furthermore, in the case of an uninterruptible power supply, the voltage of a battery for backing up a power failure must be increased with an increase in the DC intermediate circuit voltage. As a result, the number of battery cells connected in series increases, causing a problem that reliability is reduced.
There is a problem of high price.

【0009】そこでこの発明の目的は、電力変換装置が
出力する交流回路に中性線を付加した回路構成にしたい
場合や、出力交流電圧が高くなっても、直流中間回路に
接続する機器の電圧定格の上昇を回避して、装置の重量
・寸法の低減と、信頼性低下の回避とを図ることにあ
る。
Accordingly, an object of the present invention is to provide a circuit configuration in which a neutral wire is added to an AC circuit output from a power converter, or to reduce the voltage of equipment connected to a DC intermediate circuit even if the output AC voltage increases. An object of the present invention is to reduce the weight and size of the device and avoid a decrease in reliability by avoiding an increase in rating.

【0010】[0010]

【課題を解決するための手段】前記の目的を達成するた
めに、この発明の電力変換装置は、2組の半導体スイッ
チ素子を直列接続した構成の中性相出力アームを電力変
換装置の直流中間回路の正負極間に接続してこれら両素
子を交互にオン・オフ動作させるが、この中性相出力ア
ームの中間点に接続したリアクトルの他端を中性線とし
て引き出すことで、三相電力変換装置ならば三相4線式
の三相交流を得るし、単相電力変換装置ならば単相3線
式の単相交流を得るものとする。
In order to achieve the above object, a power converter according to the present invention comprises a neutral phase output arm having a structure in which two sets of semiconductor switch elements are connected in series, and a DC intermediate of the power converter. These two elements are alternately turned on and off by connecting between the positive and negative electrodes of the circuit.The other end of the reactor connected to the neutral point of the neutral phase output arm is pulled out as a neutral line, so that the three-phase power In the case of a converter, a three-phase four-wire three-phase AC is obtained, and in the case of a single-phase power converter, a single-phase three-wire single-phase AC is obtained.

【0011】または、電力変換装置を構成する直流中間
回路の正負極間に接続する平滑コンデンサは偶数個のコ
ンデンサの直列接続で構成し、2組の半導体スイッチ素
子を直列接続した構成の中性相出力アームを前記直流中
間回路の正負極間に接続してこれら両素子を交互にオン
・オフ動作させるが、この中性相出力アームの中間点に
接続したリアクトルの他端と前記平滑コンデンサの中間
点とを短絡し、このリアクトルの他端を中性線として引
き出すことで、三相電力変換装置ならば三相4線式の三
相交流を得るし、単相電力変換装置ならば単相3線式の
単相交流を得るものとする。
Alternatively, the smoothing capacitor connected between the positive and negative electrodes of the DC intermediate circuit forming the power conversion device is formed by connecting an even number of capacitors in series, and the neutral phase is formed by connecting two sets of semiconductor switch elements in series. An output arm is connected between the positive and negative electrodes of the DC intermediate circuit to turn on and off these two elements alternately, but the other end of the reactor connected to the intermediate point of the neutral phase output arm and an intermediate point of the smoothing capacitor By short-circuiting the point and the other end of this reactor as a neutral wire, a three-phase power converter can obtain a three-phase four-wire three-phase AC, and a single-phase power converter can obtain a single-phase three-phase AC. Wire-type single-phase alternating current shall be obtained.

【0012】または、電力変換装置を構成する直流中間
回路の正負極間に接続する平滑コンデンサは偶数個のコ
ンデンサの直列接続で構成し、2組の半導体スイッチ素
子を直列接続した構成の中性相出力アームを前記直流中
間回路の正負極間に接続してこれら両素子を交互にオン
・オフ動作させるが、この中性相出力アームの中間点に
接続したリアクトルの他端と前記平滑コンデンサの中間
点とを短絡し、前記平滑コンデンサの中間点と前記直流
中間回路の正負いずれかの極との間にバッテリーを接続
し、前記リアクトルの他端を中性線として引き出すこと
で、三相電力変換装置ならば三相4線式の三相交流を得
るし、単相電力変換装置ならば単相3線式の単相交流を
得るものとする。
Alternatively, the smoothing capacitor connected between the positive and negative electrodes of the DC intermediate circuit constituting the power conversion device is formed by connecting an even number of capacitors in series, and the neutral phase is formed by connecting two sets of semiconductor switch elements in series. An output arm is connected between the positive and negative electrodes of the DC intermediate circuit to turn on and off these two elements alternately, but the other end of the reactor connected to the intermediate point of the neutral phase output arm and an intermediate point of the smoothing capacitor Point, a battery is connected between the intermediate point of the smoothing capacitor and either the positive or negative pole of the DC intermediate circuit, and the other end of the reactor is pulled out as a neutral line, thereby providing three-phase power conversion. If the device is a three-phase four-wire type three-phase alternating current, a single-phase power converter is used to obtain a single-phase three-wire type single-phase alternating current.

【0013】[0013]

【発明の実施の形態】図1は本発明の第1実施例を表し
た主回路接続図であって、請求項1に対応するが、この
図1に図示の交流電源1,整流器2,平滑コンデンサ
3,バッテリー4,三相インバータ5,フィルターリア
クトル6,フィルターコンデンサ7,および三相4線負
荷13の名称・用途・機能は、図7で既述の一般例回路
の場合と同じであるから、同じ部分の説明は省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a main circuit connection diagram showing a first embodiment of the present invention, and corresponds to claim 1. The AC power supply 1, the rectifier 2, and the smoothing circuit shown in FIG. The names, uses, and functions of the capacitor 3, the battery 4, the three-phase inverter 5, the filter reactor 6, the filter capacitor 7, and the three-phase four-wire load 13 are the same as those of the general circuit described above with reference to FIG. The description of the same parts is omitted.

【0014】図1の第1実施例回路では、中性相出力ア
ーム21,中性相アーム駆動回路22,および中性点出
力リアクトル23を追加して三相無停電電源装置20を
構成している。すなわちIGBT(絶縁ゲートバイポー
ラトランジスタ)などの半導体スイッチ素子の2組を直
列接続している中性相出力アーム21を直流中間回路の
正負極間に接続し、正極側IGBTと負極側IGBTを
中性相アーム駆動回路22からの信号により交互にオン
・オフ動作させるのであるが、この中性相アーム駆動回
路22の中間点(正極側IGBTと負極側IGBTの結
合点)に中性点出力リアクトル23を接続し、当該中性
点出力リアクトル23の他端を中性線12として三相4
線負荷13に接続する。
In the circuit of the first embodiment shown in FIG. 1, a three-phase uninterruptible power supply 20 is constructed by adding a neutral phase output arm 21, a neutral phase arm drive circuit 22, and a neutral point output reactor 23. I have. That is, the neutral phase output arm 21 connecting two sets of semiconductor switch elements such as IGBTs (insulated gate bipolar transistors) in series is connected between the positive and negative electrodes of the DC intermediate circuit, and the positive and negative IGBTs are neutralized. The on / off operation is performed alternately by a signal from the phase arm drive circuit 22. The neutral point output reactor 23 is provided at an intermediate point of the neutral phase arm drive circuit 22 (a junction point between the positive side IGBT and the negative side IGBT). And the other end of the neutral point output reactor 23 is set to the neutral
Connect to line load 13.

【0015】中性相アーム駆動回路22により正極側I
GBTと負極側IGBTとを交互に1対1の時間比率で
オン・オフ動作させるのであるが、このときのオン・オ
フ周波数は任意である。このオン・オフ動作に伴って発
生する高周波数成分は中性点出力リアクトル23で吸収
されるから、当該中性点出力リアクトル23の出力電圧
は仮想中性点電位と等しくなる。三相インバータ5は交
流出力の線間電圧を制御するだけであるが、これにより
仮想中性点電位に対する相電圧が制御されるので、三相
無停電電源装置20は三相4線式の三相交流を三相4線
負荷13へ与えることができる。
The positive side I
The GBT and the negative electrode IGBT are alternately turned on and off at a time ratio of 1: 1. The on / off frequency at this time is arbitrary. Since the high frequency components generated by the on / off operation are absorbed by the neutral point output reactor 23, the output voltage of the neutral point output reactor 23 becomes equal to the virtual neutral point potential. Although the three-phase inverter 5 only controls the line voltage of the AC output, the three-phase uninterruptible power supply 20 can control the phase voltage with respect to the virtual neutral point potential. Phase alternating current can be provided to the three-phase four-wire load 13.

【0016】図2は本発明の第2実施例を表した主回路
接続図であって、請求項2に対応するが、この第2実施
例回路は単相3線式回路を実現するために、前述した第
1実施例回路の三相インバータ5を単相インバータ35
に変更することで単相無停電電源装置30が得られる
し、三相のフィルターリアクトル6とフィルターコンデ
ンサ7を単相のフィルターリアクトル36とフィルター
コンデンサ37に交換すれば、単相3線式の単相交流電
力を単相3線負荷14へ供給できるが、これらの動作説
明は省略する。
FIG. 2 is a main circuit connection diagram showing a second embodiment of the present invention, and corresponds to claim 2. This second embodiment is a circuit for realizing a single-phase three-wire circuit. The three-phase inverter 5 of the circuit of the first embodiment is replaced with a single-phase inverter 35.
The single-phase uninterruptible power supply 30 can be obtained by replacing the three-phase filter reactor 6 and the filter capacitor 7 with the single-phase filter reactor 36 and the filter capacitor 37. Although the phase AC power can be supplied to the single-phase three-wire load 14, the description of these operations will be omitted.

【0017】図3は本発明の第3実施例を表した主回路
接続図であって、請求項3に対応するが、この第3実施
例回路は、図1で既述の第1実施例回路の直流中間回路
に接続している平滑コンデンサ3として、偶数個(図3
では2個)の平滑コンデンサ43Pと43Nの直列接続
を採用することで三相無停電電源装置40を構成してい
るのが、図1の第1実施例回路とは異なる点であり、こ
れを除けばすべて同じであるから、同じ部分の説明は省
略する。
FIG. 3 is a main circuit connection diagram showing a third embodiment of the present invention, which corresponds to claim 3. The circuit of the third embodiment is the same as that of the first embodiment shown in FIG. As the smoothing capacitor 3 connected to the DC intermediate circuit of the circuit, an even number (FIG.
The three-phase uninterruptible power supply 40 is configured by adopting a series connection of the two smoothing capacitors 43P and 43N, which is different from the circuit of the first embodiment of FIG. Except for the above, the description is omitted for the same parts.

【0018】この第3実施例回路では、平滑コンデンサ
43Pと43Nとの接続部を中性点出力リアクトル23
の他端(すなわち中性線12)に接続しているので、こ
の地点の電位は前述したように仮想中性点電位となる。
よって平滑コンデンサ43Pの電圧と平滑コンデンサ4
3Nの電圧とは等しくなり、電圧分担をバランスさせる
抵抗は不要になる。
In the circuit of the third embodiment, the connection between the smoothing capacitors 43P and 43N is connected to the neutral point output reactor 23.
(That is, the neutral line 12), the potential at this point becomes the virtual neutral point potential as described above.
Therefore, the voltage of the smoothing capacitor 43P and the smoothing capacitor 4
This is equal to the voltage of 3N, so that a resistor for balancing voltage sharing is not required.

【0019】図4は本発明の第4実施例を表した主回路
接続図であって、請求項4に対応するが、この第4実施
例回路は単相3線式回路は、前述した第3実施例回路の
三相インバータ5を単相インバータ35に変えた単相無
停電電源装置50と、三相のフィルターリアクトル6と
フィルターコンデンサ7を単相のフィルターリアクトル
36とフィルターコンデンサ37に交換することで実現
できる。従ってこの第4実施例の動作説明は省略する。
FIG. 4 is a main circuit connection diagram showing a fourth embodiment of the present invention, which corresponds to claim 4. The circuit of the fourth embodiment is a single-phase three-wire circuit which is the same as that of the first embodiment. In the third embodiment, the single-phase uninterruptible power supply 50 in which the three-phase inverter 5 of the circuit is changed to the single-phase inverter 35, and the three-phase filter reactor 6 and the filter capacitor 7 are replaced with the single-phase filter reactor 36 and the filter capacitor 37. This can be achieved by: Therefore, description of the operation of the fourth embodiment will be omitted.

【0020】図5は本発明の第5実施例を表した主回路
接続図であって、請求項5に対応するが、この第5実施
例回路は、図3で既述の第3実施例回路の直流中間回路
に接続しているバッテリー4を、平滑コンデンサ43P
と43Nの結合点と直流中間回路の負極との間(結合点
と直流中間回路の正極との間であっても同じ)に接続す
ることで三相無停電電源装置を構成しているのが異なる
点であり、これを除けばすべて同じであるから、同じ部
分の説明は省略する。
FIG. 5 is a main circuit connection diagram showing a fifth embodiment of the present invention, and corresponds to claim 5. The circuit of the fifth embodiment is the same as that of the third embodiment shown in FIG. The battery 4 connected to the DC intermediate circuit of the circuit is connected to a smoothing capacitor 43P.
And the connection point 43N and the negative terminal of the DC intermediate circuit (the same applies between the connection point and the positive terminal of the DC intermediate circuit) to constitute a three-phase uninterruptible power supply. Except for this point, all of them are the same.

【0021】この第5実施例回路では、平滑コンデンサ
43Pと43Nの電圧は、前述したようにいずれも直流
中間回路電圧の半分になることから、バッテリー4の電
圧を従来よりも低下させることができる。
In the circuit of the fifth embodiment, since the voltages of the smoothing capacitors 43P and 43N are both half of the DC intermediate circuit voltage as described above, the voltage of the battery 4 can be reduced as compared with the prior art. .

【0022】図6は本発明の第6実施例を表した主回路
接続図であって、請求項6に対応するが、この第6実施
例回路は、前述した第5実施例回路の三相インバータ5
を単相インバータ35に変えた単相無停電電源装置70
にすることと、三相のフィルターリアクトル6とフィル
ターコンデンサ7を単相のフィルターリアクトル36と
フィルターコンデンサ37に交換することで単相3線式
回路を実現できる。従ってこの第6実施例の動作説明は
省略する。
FIG. 6 is a main circuit connection diagram showing a sixth embodiment of the present invention, and corresponds to claim 6. This sixth embodiment circuit is a three-phase circuit of the fifth embodiment circuit. Inverter 5
-Phase uninterruptible power supply 70 in which
By replacing the three-phase filter reactor 6 and the filter capacitor 7 with the single-phase filter reactor 36 and the filter capacitor 37, a single-phase three-wire circuit can be realized. Therefore, description of the operation of the sixth embodiment will be omitted.

【0023】[0023]

【発明の効果】通常の電力変換装置は三相3線式か単相
2線式の交流を出力する構成であるから、中性線を備え
た三相4線式か単相3線式の交流を得るには、変圧器や
リアクトルのように鉄と銅を主要材料にした大形で大重
量の機器が必要であった。また電力変換装置の出力交流
電圧の上昇に伴って直流中間回路電圧も上昇することか
ら、この直流中間回路に接続するアルミ電解コンデンサ
を使用した平滑コンデンサや、電源の停電をバックアッ
プするバッテリーの電圧が高くなることで、装置の効率
低下,発熱の増大,信頼性の低下,保護用機器の大形化
や高価格化など、いろいろな不具合が発生するようにな
ってきている。
Since the ordinary power converter is configured to output a three-phase three-wire type or a single-phase two-wire type alternating current, a three-phase four-wire type or a single-phase three-wire type having a neutral wire is provided. To obtain AC, large and heavy equipment such as transformers and reactors made mainly of iron and copper was required. Also, since the DC intermediate circuit voltage also increases with the increase in the output AC voltage of the power converter, the voltage of the smoothing capacitor using an aluminum electrolytic capacitor connected to this DC intermediate circuit and the voltage of the battery that backs up the power failure is reduced. As the temperature increases, various inconveniences such as a decrease in the efficiency of the device, an increase in heat generation, a decrease in the reliability, and an increase in the size and the price of the protection device are occurring.

【0024】本発明は、電力変換装置の直流中間回路に
半導体スイッチ素子でなる中性相出力アームを接続し
て、これを1対1の時間比率で交互にオン・オフ動作さ
せる。これにより、この中性相出力アームの中間点に接
続した中性点出力リアクトルを介して仮想中性点電位を
得ることができるのでここから中性線を引き出せば、徹
や銅を使った大形・大重量機器を使用せずに、三相4線
式または単相3線式の交流が簡単に得られるから、装置
の大形化や大重量化を回避し、価格を低減できる効果が
得られる。
According to the present invention, a neutral phase output arm composed of a semiconductor switch element is connected to a DC intermediate circuit of a power conversion device, and this is turned on and off alternately at a time ratio of 1: 1. As a result, a virtual neutral point potential can be obtained via the neutral point output reactor connected to the intermediate point of the neutral phase output arm. Since three-phase four-wire or single-phase three-wire AC can be easily obtained without using large-sized and heavy equipment, the effect of avoiding large and heavy equipment and reducing costs can be achieved. can get.

【0025】更に直流中間回路に接続する平滑コンデン
サを偶数個のコンデンサの直列接続で構成し、これの中
間点を前記の仮想中性点電位発生地点に接続すれば、電
圧バランス用抵抗を使用しなくても直列接続した各コン
デンサの電圧を均等化できるから、直流中間回路が高電
圧化しても装置の効率低下や発熱を回避できる効果が得
られる。
Further, if the smoothing capacitor connected to the DC intermediate circuit is formed by connecting an even number of capacitors in series, and the intermediate point thereof is connected to the virtual neutral point potential generation point, a voltage balancing resistor can be used. Even without this, the voltages of the capacitors connected in series can be equalized, so that even if the voltage of the DC intermediate circuit is increased, the effect that the efficiency of the device is reduced and heat generation can be avoided can be obtained.

【0026】更に電源停電時のバックアップ用バッテリ
ーを、前記の分割した平滑コンデンサの一部に並列接続
することが可能になるので、直流中間回路が高電圧化し
てもバッテリー電圧を低く維持できる。従ってバッテリ
ー保護装置が簡略化できるし、バッテリーセルの直列数
を少なくできることで信頼性の低下を回避できる効果も
得られる。
Further, since a backup battery at the time of power failure can be connected in parallel to a part of the divided smoothing capacitor, the battery voltage can be kept low even if the DC intermediate circuit is increased in voltage. Therefore, the battery protection device can be simplified, and the number of battery cells connected in series can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を表した主回路接続図FIG. 1 is a main circuit connection diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施例を表した主回路接続図FIG. 2 is a main circuit connection diagram showing a second embodiment of the present invention.

【図3】本発明の第3実施例を表した主回路接続図FIG. 3 is a main circuit connection diagram showing a third embodiment of the present invention.

【図4】本発明の第4実施例を表した主回路接続図FIG. 4 is a main circuit connection diagram showing a fourth embodiment of the present invention.

【図5】本発明の第5実施例を表した主回路接続図FIG. 5 is a main circuit connection diagram showing a fifth embodiment of the present invention.

【図6】本発明の第6実施例を表した主回路接続図FIG. 6 is a main circuit connection diagram showing a sixth embodiment of the present invention.

【図7】三相3線式の三相交流を出力する電力変換装置
の一般的な例を示した主回路接続図
FIG. 7 is a main circuit connection diagram showing a general example of a power converter that outputs a three-phase three-wire three-phase AC.

【図8】電力変換装置が出力する三相3線式の三相交流
から三相4線式の三相交流を得る従来例を示した主回路
接続図
FIG. 8 is a main circuit connection diagram showing a conventional example of obtaining a three-phase four-wire three-phase AC from a three-phase three-wire three-phase AC output from a power converter.

【符号の説明】[Explanation of symbols]

1 交流電源 2 電源側変換器としての整流器 3 平滑コンデンサ 4 バッテリー 5 負荷側変換器としての三相インバータ 6,36 フィルターリアクトル 7,37 フィルターコンデンサ 8 三相3線負荷 10 三相無停電電源装置 11 中性点発生用リアクトル 12 中性線 13 三相4線負荷 14 単相3線負荷 20,40,60 三相無停電電源装置 21 中性相出力アーム 22 中性相アーム駆動回路 23 中性点出力リアクトル 30,50,70 単相無停電電源装置 35 負荷側変換器としての単相インバー
タ 43P,43N 平滑コンデンサ
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Rectifier as power supply side converter 3 Smoothing capacitor 4 Battery 5 Three phase inverter as load side converter 6,36 Filter reactor 7,37 Filter capacitor 8 Three phase three wire load 10 Three phase uninterruptible power supply 11 Neutral point generating reactor 12 Neutral wire 13 Three phase four wire load 14 Single phase three wire load 20, 40, 60 Three phase uninterruptible power supply 21 Neutral phase output arm 22 Neutral phase arm drive circuit 23 Neutral point Output reactor 30, 50, 70 Single-phase uninterruptible power supply 35 Single-phase inverter 43P, 43N as load-side converter Smoothing capacitor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野中 孝宏 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 5H007 AA06 BB05 CA01 CB05 CC01 CC09 HA02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Takahiro Nonaka 1-1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa F-term in Fuji Electric Co., Ltd. 5H007 AA06 BB05 CA01 CB05 CC01 CC09 HA02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】交流を直流に変換する電源側変換器と、直
流を三相交流に変換する負荷側変換器と、これら電源側
変換器の直流側と負荷側変換器の直流側とを結合してい
る直流中間回路と、この直流中間回路に接続した平滑コ
ンデンサと、で構成して三相3線式の三相交流を出力す
る電力変換装置において、 2組の半導体スイッチ素子の直列接続でなる中性相出力
アームを前記電力変換装置を構成している直流中間回路
の正負極間に接続して両素子を交互にオン・オフ動作さ
せ、この中性相出力アームの中間点にリアクトルの一端
を接続し、このリアクトルの他端を中性線にして三相4
線式の三相交流を得ることを特徴とする電力変換装置。
A power converter for converting AC to DC, a load converter for converting DC to three-phase AC, and a DC side of the power converter and a DC side of the load converter are coupled. In a power converter that outputs a three-phase three-wire three-phase alternating current, which is composed of a DC intermediate circuit and a smoothing capacitor connected to the DC intermediate circuit, two sets of semiconductor switch elements are connected in series. A neutral phase output arm is connected between the positive and negative electrodes of the DC intermediate circuit constituting the power conversion device, and both elements are alternately turned on and off, and a reactor is provided at an intermediate point of the neutral phase output arm. One end is connected and the other end of this reactor
A power converter characterized by obtaining a three-phase alternating current of a wire type.
【請求項2】交流を直流に変換する電源側変換器と、直
流を単相交流に変換する負荷側変換器と、これら電源側
変換器の直流側と負荷側変換器の直流側とを結合してい
る直流中間回路と、この直流中間回路に接続した平滑コ
ンデンサと、で構成して単相2線式の単相交流を出力す
る電力変換装置において、 2組の半導体スイッチ素子の直列接続でなる中性相出力
アームを前記電力変換装置を構成している直流中間回路
の正負極間に接続して両素子を交互にオン・オフ動作さ
せ、この中性相出力アームの中間点にリアクトルの一端
を接続し、このリアクトルの他端を中性線にして単相3
線式の単相交流を得ることを特徴とする電力変換装置。
2. A power converter for converting AC to DC, a load converter for converting DC to single-phase AC, and a DC side of the power converter and a DC side of the load converter are coupled. In a power converter that outputs a single-phase two-wire single-phase alternating current constituted by a DC intermediate circuit and a smoothing capacitor connected to the DC intermediate circuit, two sets of semiconductor switch elements are connected in series. A neutral phase output arm is connected between the positive and negative electrodes of the DC intermediate circuit constituting the power conversion device, and both elements are alternately turned on and off, and a reactor is provided at an intermediate point of the neutral phase output arm. One end is connected and the other end of this reactor is
A power converter characterized by obtaining a single-phase AC of a wire system.
【請求項3】交流を直流に変換する電源側変換器と、直
流を三相交流に変換する負荷側変換器と、これら電源側
変換器の直流側と負荷側変換器の直流側とを結合してい
る直流中間回路と、この直流中間回路に接続した平滑コ
ンデンサと、で構成して三相3線式の三相交流を出力す
る電力変換装置において、 前記平滑コンデンサは偶数個のコンデンサの直列接続で
構成し、2組の半導体スイッチ素子の直列接続でなる中
性相出力アームを前記電力変換装置を構成している直流
中間回路の正負極間に接続して両素子を交互にオン・オ
フ動作させ、この中性相出力アームの中間点にリアクト
ルの一端を接続し、前記平滑コンデンサの中間点と前記
リアクトルの他端とを短絡し、このリアクトルの他端を
中性線にして三相4線式の三相交流を得ることを特徴と
する電力変換装置。
3. A power converter for converting AC into DC, a load converter for converting DC into three-phase AC, and a DC side of the power converter and a DC side of the load converter are coupled. A DC intermediate circuit, and a smoothing capacitor connected to the DC intermediate circuit, to output a three-phase three-wire three-phase AC, wherein the smoothing capacitor includes an even number of capacitors connected in series. A neutral phase output arm consisting of a series connection of two semiconductor switch elements is connected between the positive and negative electrodes of a DC intermediate circuit constituting the power converter, and both elements are alternately turned on and off. Operate, connect one end of the reactor to the middle point of this neutral phase output arm, short-circuit the middle point of the smoothing capacitor and the other end of the reactor, make the other end of the reactor a neutral wire, Obtaining 4-wire three-phase AC A power converter characterized by the above-mentioned.
【請求項4】交流を直流に変換する電源側変換器と、直
流を単相交流に変換する負荷側変換器と、これら電源側
変換器の直流側と負荷側変換器の直流側とを結合してい
る直流中間回路と、この直流中間回路に接続した平滑コ
ンデンサと、で構成して単相2線式の単相交流を出力す
る電力変換装置において、 前記平滑コンデンサは偶数個のコンデンサの直列接続で
構成し、2組の半導体スイッチ素子の直列接続でなる中
性相出力アームを前記電力変換装置を構成している直流
中間回路の正負極間に接続して両素子を交互にオン・オ
フ動作させ、この中性相出力アームの中間点にリアクト
ルの一端を接続し、前記平滑コンデンサの中間点と前記
リアクトルの他端とを短絡し、このリアクトルの他端を
中性線にして単相3線式の単相交流を得ることを特徴と
する電力変換装置。
4. A power converter for converting AC to DC, a load converter for converting DC to single-phase AC, and a DC side of the power converter and a DC side of the load converter are coupled. A DC intermediate circuit, and a smoothing capacitor connected to the DC intermediate circuit, and outputs a single-phase two-wire single-phase alternating current, wherein the smoothing capacitor includes an even number of capacitors connected in series. A neutral phase output arm consisting of a series connection of two sets of semiconductor switch elements is connected between the positive and negative electrodes of a DC intermediate circuit constituting the power converter, and both elements are turned on and off alternately. Operate, connect one end of the reactor to the middle point of this neutral phase output arm, short-circuit the middle point of the smoothing capacitor and the other end of the reactor, make the other end of this reactor a neutral wire, Obtaining 3-wire single-phase AC A power converter characterized by the above-mentioned.
【請求項5】交流を直流に変換する電源側変換器と、直
流を三相交流に変換する負荷側変換器と、これら電源側
変換器の直流側と負荷側変換器の直流側とを結合してい
る直流中間回路と、この直流中間回路に接続した平滑コ
ンデンサと、で構成して三相3線式の三相交流を出力す
る電力変換装置において、 前記平滑コンデンサは偶数個のコンデンサの直列接続で
構成し、2組の半導体スイッチ素子の直列接続でなる中
性相出力アームを前記電力変換装置を構成している直流
中間回路の正負極間に接続して両素子を交互にオン・オ
フ動作させ、この中性相出力アームの中間点にリアクト
ルの一端を接続し、前記平滑コンデンサの中間点と前記
リアクトルの他端とを短絡し、前記平滑コンデンサの中
間点と前記直流中間回路の正負いずれかの極との間にバ
ッテリーを接続し、前記リアクトルの他端を中性線にし
て三相4線式の三相交流を得ることを特徴とする電力変
換装置。
5. A power converter for converting AC to DC, a load converter for converting DC to three-phase AC, and connecting a DC side of the power converter and a DC side of the load converter. A DC intermediate circuit, and a smoothing capacitor connected to the DC intermediate circuit, to output a three-phase three-wire three-phase AC, wherein the smoothing capacitor includes an even number of capacitors connected in series. A neutral phase output arm consisting of a series connection of two semiconductor switch elements is connected between the positive and negative electrodes of a DC intermediate circuit constituting the power converter, and both elements are alternately turned on and off. One end of the reactor is connected to the intermediate point of the neutral phase output arm, the intermediate point of the smoothing capacitor is short-circuited to the other end of the reactor, and the intermediate point of the smoothing capacitor and the positive and negative of the DC intermediate circuit are connected. With either pole A power conversion device, wherein a battery is connected between the two reactors, and the other end of the reactor is set to a neutral wire to obtain a three-phase four-wire three-phase alternating current.
【請求項6】交流を直流に変換する電源側変換器と、直
流を単相交流に変換する負荷側変換器と、これら電源側
変換器の直流側と負荷側変換器の直流側とを結合してい
る直流中間回路と、この直流中間回路に接続した平滑コ
ンデンサと、で構成して単相2線式の単相交流を出力す
る電力変換装置において、 前記平滑コンデンサは偶数個のコンデンサの直列接続で
構成し、2組の半導体スイッチ素子の直列接続でなる中
性相出力アームを前記電力変換装置を構成している直流
中間回路の正負極間に接続して両素子を交互にオン・オ
フ動作させ、この中性相出力アームの中間点とリアクト
ルの一端を接続し、前記平滑コンデンサの中間点と前記
リアクトルの他端とを短絡し、前記平滑コンデンサの中
間点と前記直流中間回路の正負いずれかの極との間にバ
ッテリーを接続し、前記リアクトルの他端を中性線にし
て単相3線式の単相交流を得ることを特徴とする電力変
換装置。
6. A power converter for converting AC to DC, a load converter for converting DC to single-phase AC, and connecting a DC side of the power converter and a DC side of the load converter. A DC intermediate circuit, and a smoothing capacitor connected to the DC intermediate circuit. The power conversion device outputs a single-phase two-wire single-phase alternating current. A neutral phase output arm consisting of a series connection of two semiconductor switch elements is connected between the positive and negative electrodes of a DC intermediate circuit constituting the power converter, and both elements are alternately turned on and off. The intermediate point of the neutral phase output arm is connected to one end of the reactor, the intermediate point of the smoothing capacitor is short-circuited to the other end of the reactor, and the intermediate point of the smoothing capacitor and the positive and negative of the DC intermediate circuit are connected. With either pole A power conversion device characterized in that a battery is connected between the two reactors, and the other end of the reactor is used as a neutral wire to obtain a single-phase three-wire single-phase alternating current.
【請求項7】請求項1乃至請求項6に記載の電力変換装
置において、前記中性相出力アームを構成する直列接続
した2組の半導体スイッチ素子には、オンとオフが交互
で且つオンとオフが等しい時間となる動作をさせること
を特徴とする電力変換装置。
7. The power converter according to claim 1, wherein the two sets of semiconductor switch elements connected in series constituting the neutral phase output arm are alternately turned on and off and turned on and off. An electric power conversion device, wherein an operation is performed such that an off time is equal.
JP02108999A 1999-01-29 1999-01-29 Power converter Expired - Fee Related JP3724238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02108999A JP3724238B2 (en) 1999-01-29 1999-01-29 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02108999A JP3724238B2 (en) 1999-01-29 1999-01-29 Power converter

Publications (2)

Publication Number Publication Date
JP2000224862A true JP2000224862A (en) 2000-08-11
JP3724238B2 JP3724238B2 (en) 2005-12-07

Family

ID=12045157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02108999A Expired - Fee Related JP3724238B2 (en) 1999-01-29 1999-01-29 Power converter

Country Status (1)

Country Link
JP (1) JP3724238B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780882A1 (en) * 2004-07-05 2007-05-02 HONDA MOTOR CO., Ltd. Power supply
KR100729852B1 (en) 2005-12-14 2007-06-18 한국전기연구원 Control system with three-phase and four-wire type converter for doubly-fed induction generator
JP2007159276A (en) * 2005-12-06 2007-06-21 Fuji Electric Systems Co Ltd Three-phase four-wire ac-ac conversion device
JP2007259688A (en) * 2006-02-24 2007-10-04 Fuji Electric Holdings Co Ltd Three phase ac-ac conversion apparatus
JP2007274825A (en) * 2006-03-31 2007-10-18 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion device
CN101610040A (en) * 2008-06-17 2009-12-23 山洋电气株式会社 Current-control type electric power converter and output current wave improvement method thereof
JP2010063329A (en) * 2008-09-08 2010-03-18 Fuji Electric Systems Co Ltd Power converter
JP2010063328A (en) * 2008-09-08 2010-03-18 Fuji Electric Systems Co Ltd Parallel redundant system of power converter
WO2010055713A1 (en) * 2008-11-12 2010-05-20 株式会社 東芝 Interconnection inverter
JP2010187431A (en) * 2009-02-10 2010-08-26 Fuji Electric Systems Co Ltd Uninterruptible power supply
US8472215B2 (en) 2010-01-13 2013-06-25 Kabushiki Kaisha Toshiba Grid-tie inverter for interconnecting AC voltage to electric power grid
DE102012005622A1 (en) * 2012-03-22 2013-09-26 Sew-Eurodrive Gmbh & Co. Kg Circuit arrangement and arrangement of capacitors
JP2016518809A (en) * 2013-08-30 2016-06-23 華為技術有限公司Huawei Technologies Co.,Ltd. Power conversion circuit and power conversion system
US9787217B2 (en) 2013-08-30 2017-10-10 Huawei Technologies Co., Ltd. Power conversion circuit and power conversion system
JP2018014887A (en) * 2017-10-17 2018-01-25 京セラ株式会社 Inverter
CN108832821A (en) * 2018-08-21 2018-11-16 国家电网公司 A kind of dual-purpose two level low-frequency power circuit of single-phase three-phase
CN111614076A (en) * 2019-02-22 2020-09-01 株洲中车时代电气股份有限公司 Power supply system for three-phase four-wire system

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780882A1 (en) * 2004-07-05 2007-05-02 HONDA MOTOR CO., Ltd. Power supply
EP1780882A4 (en) * 2004-07-05 2009-11-11 Honda Motor Co Ltd Power supply
JP2007159276A (en) * 2005-12-06 2007-06-21 Fuji Electric Systems Co Ltd Three-phase four-wire ac-ac conversion device
KR100729852B1 (en) 2005-12-14 2007-06-18 한국전기연구원 Control system with three-phase and four-wire type converter for doubly-fed induction generator
JP2007259688A (en) * 2006-02-24 2007-10-04 Fuji Electric Holdings Co Ltd Three phase ac-ac conversion apparatus
JP2007274825A (en) * 2006-03-31 2007-10-18 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion device
CN101610040A (en) * 2008-06-17 2009-12-23 山洋电气株式会社 Current-control type electric power converter and output current wave improvement method thereof
JP2010063329A (en) * 2008-09-08 2010-03-18 Fuji Electric Systems Co Ltd Power converter
JP2010063328A (en) * 2008-09-08 2010-03-18 Fuji Electric Systems Co Ltd Parallel redundant system of power converter
WO2010055713A1 (en) * 2008-11-12 2010-05-20 株式会社 東芝 Interconnection inverter
KR101218953B1 (en) * 2008-11-12 2013-01-04 가부시끼가이샤 도시바 System interconnection inverter
US8514596B2 (en) 2008-11-12 2013-08-20 Kabushiki Kaisha Toshiba System interconnection inverter with bypass path
JP2010187431A (en) * 2009-02-10 2010-08-26 Fuji Electric Systems Co Ltd Uninterruptible power supply
US8472215B2 (en) 2010-01-13 2013-06-25 Kabushiki Kaisha Toshiba Grid-tie inverter for interconnecting AC voltage to electric power grid
DE102012005622A1 (en) * 2012-03-22 2013-09-26 Sew-Eurodrive Gmbh & Co. Kg Circuit arrangement and arrangement of capacitors
WO2013139433A1 (en) 2012-03-22 2013-09-26 Sew-Eurodrive Gmbh & Co. Kg Circuit arrangement and arrangement of capacitors
US9912222B2 (en) 2012-03-22 2018-03-06 Sew-Eurodrive Gmbh & Co. Kg Circuit configuration and system of capacitors
DE102012005622B4 (en) 2012-03-22 2022-03-10 Sew-Eurodrive Gmbh & Co Kg circuit arrangement
JP2016518809A (en) * 2013-08-30 2016-06-23 華為技術有限公司Huawei Technologies Co.,Ltd. Power conversion circuit and power conversion system
US9787217B2 (en) 2013-08-30 2017-10-10 Huawei Technologies Co., Ltd. Power conversion circuit and power conversion system
JP2018014887A (en) * 2017-10-17 2018-01-25 京セラ株式会社 Inverter
CN108832821A (en) * 2018-08-21 2018-11-16 国家电网公司 A kind of dual-purpose two level low-frequency power circuit of single-phase three-phase
CN108832821B (en) * 2018-08-21 2023-06-27 国家电网公司 Single-phase three-phase dual-purpose two-level low-frequency power supply circuit
CN111614076A (en) * 2019-02-22 2020-09-01 株洲中车时代电气股份有限公司 Power supply system for three-phase four-wire system
CN111614076B (en) * 2019-02-22 2023-05-12 株洲中车时代电气股份有限公司 Power supply system for three-phase four-wire system

Also Published As

Publication number Publication date
JP3724238B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
JP2000224862A (en) Power conversion apparatus
JP4399405B2 (en) AC voltage controller using phase advance current
JP2007058676A5 (en)
TWI232629B (en) Power converter of a hybrid power filter
JP2000228826A (en) Power supply device according to quality
CN112564508B (en) Power module online replacement control device and method for power electronic transformer system
WO2017019152A1 (en) Solid-state phase-splitting transformer
Wada et al. Mitigation method of 3rd-harmonic voltage for a three-phase four-wire distribution system based on a series active filter for the neutral conductor
JP3431506B2 (en) Multiple inverter device
JPH06253549A (en) Uninterruptible power supply
US20130258729A1 (en) Medium voltage power apparatus
CN107834865B (en) High-voltage frequency converter and system
US3281641A (en) Rectifier apparatus
US2428586A (en) Vapor-electric device
JP2000037078A (en) Multilevel power converter
JP2002044953A (en) Rectifier of three-phase half-voltage output type
JP2680385B2 (en) Auxiliary power supply for electric vehicles
WO1997029494A1 (en) A parallel winding voltage-regulating apparatus
CN219659470U (en) Isolated high-frequency online uninterrupted power supply
EP4325709A1 (en) Alternating current/direct current power conversion system
JPH0419994Y2 (en)
JPS6046778A (en) Power converter
JP2682241B2 (en) Power failure countermeasure device
JP3079610B2 (en) Power supply unbalance countermeasure device
JP2000358372A (en) Three-phase rectifier

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees