JP2000206474A - Optical transmission circuit - Google Patents

Optical transmission circuit

Info

Publication number
JP2000206474A
JP2000206474A JP11009405A JP940599A JP2000206474A JP 2000206474 A JP2000206474 A JP 2000206474A JP 11009405 A JP11009405 A JP 11009405A JP 940599 A JP940599 A JP 940599A JP 2000206474 A JP2000206474 A JP 2000206474A
Authority
JP
Japan
Prior art keywords
optical
operating point
signal
circuit
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11009405A
Other languages
Japanese (ja)
Inventor
Shigeru Kuwano
茂 桑野
Atsuhiro Chiba
淳弘 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Electronics Corp
Original Assignee
NTT Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Electronics Corp filed Critical NTT Electronics Corp
Priority to JP11009405A priority Critical patent/JP2000206474A/en
Publication of JP2000206474A publication Critical patent/JP2000206474A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical transmission circuit which realizes optimum transmission characteristic according to a transmission line by stabilizing an operational point of an optical modulator and also by controlling the operational point. SOLUTION: This method varies the operational point at a stable operation time in the optical transmission circuit, constituted of a variable gain amplifier 4 amplitude modulating a low frequency signal with an inputted data signal and superimposing the low frequency signal on the data signal, an optical modulator 2 given the data signal superimposed with the low frequency signal and a bias voltage by the variable gain amplifier 4 and performing optical modulation and a bias control circuit for extracting low frequency signal components from the output beam of the optical modulator 2 and for controlling the bias voltage, based on the error information of the operational point of the optical modulator incorporated in the low frequency signal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、出力される光変調
信号の安定化をはかる光送信回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transmission circuit for stabilizing an output optical modulation signal.

【0002】[0002]

【従来の技術】現在実用化されつつある超高速光伝送シ
ステムでは、伝送されるデータ信号の電気−光変換手段
として、マッハツェンダ型光強度変調器(以下、MZ変
調器という)が用いられる。このMZ変調器を伝送シス
テムで使用するためには、MZ変調器の温度変動ならび
に経時変動に対しての安定な動作が必要とされる。しか
しながら、通常のMZ変調器単体では温度ならびに時間
に対して動作点のバイアス電圧が変動していく(以下、
ドリフトという)ため、なんらかの制御回路によって動
作点を安定化させる必要があり、例えば、入力されるデ
ータ信号で低周波信号の振幅変調を行いその低周波信号
成分を用いて制御を行う方法(特開平3−251815
号「光送信器、光変調器の制御回路および光変調方
法」)がある。図9にこの方法の構成例を示す。すなわ
ち、図9に示すように、データ信号は可変利得増幅器4
に入力され、この可変利得増幅器4に入力されたデータ
信号は低周波発振器3出力の低周波信号により利得を制
御されて増幅され、この可変利得増幅器4の出力はキャ
パシタ5で低周波成分が除去された後に光変調器2へと
入力される。このとき、光変調器2への入力信号は低周
波信号をデータ信号を搬送波として振幅変調した信号と
なる(図10参照)。光変調器2では、光源1の出力光
をキャパシタ5からの光変調器入力信号によって強度変
調し光分岐回路6へ出力する。光分岐回路6では光変調
器2の出力光が分岐され、光検出器7へ入力される。光
検出器7の出力は低周波増幅器8へ入力され、低周波成
分が抽出される。低周波増幅器8で抽出された低周波成
分は位相検波器9において低周波発振器3の出力信号と
同期検波され誤差信号が抽出される。位相検波器9で抽
出された誤差信号は積分器12へと入力される。この積
分器12の出力信号は終端抵抗14を有するバイアステ
ィ13へ入力され、このバイアスティ13で光変調器2
のバイアス電圧を制御する。このとき、積分器12の出
力には動作点からの誤差を時間的に積分した値が出力さ
れているため、フィードバックループが構成され、動作
点の安定化が図られる。この場合、変調器の動作点は一
意に決定され、動作点は常に変調器出力光信号のアイパ
ターンの交叉点がその振幅レベルの中心になるように制
御される。
2. Description of the Related Art Mach-Zehnder type optical intensity modulators (hereinafter, referred to as MZ modulators) are used in an ultrahigh-speed optical transmission system which is currently being put into practical use as an electric-optical conversion means for a transmitted data signal. In order to use this MZ modulator in a transmission system, the MZ modulator needs to operate stably with respect to temperature fluctuations and aging fluctuations. However, in a normal MZ modulator alone, the bias voltage at the operating point fluctuates with respect to temperature and time (hereinafter, referred to as “bias voltage”).
Therefore, it is necessary to stabilize the operating point by some kind of control circuit. For example, a method of modulating the amplitude of a low-frequency signal with an input data signal and performing control using the low-frequency signal component (Japanese Patent Laid-Open Publication No. 3-251815
No. "Optical transmitter, optical modulator control circuit and optical modulation method"). FIG. 9 shows a configuration example of this method. That is, as shown in FIG.
The gain of the data signal input to the variable gain amplifier 4 is controlled by the low frequency signal output from the low frequency oscillator 3, and the output of the variable gain amplifier 4 is removed by the capacitor 5 to remove the low frequency component. After that, it is input to the optical modulator 2. At this time, the input signal to the optical modulator 2 is a signal obtained by amplitude-modulating a low-frequency signal using a data signal as a carrier (see FIG. 10). In the optical modulator 2, the output light of the light source 1 is intensity-modulated by the optical modulator input signal from the capacitor 5 and output to the optical branching circuit 6. In the optical branching circuit 6, the output light of the optical modulator 2 is branched and input to the photodetector 7. The output of the photodetector 7 is input to the low-frequency amplifier 8, and a low-frequency component is extracted. The low-frequency component extracted by the low-frequency amplifier 8 is synchronously detected with the output signal of the low-frequency oscillator 3 by the phase detector 9 to extract an error signal. The error signal extracted by the phase detector 9 is input to the integrator 12. The output signal of the integrator 12 is input to a bias tee 13 having a terminating resistor 14, and the optical modulator 2
Is controlled. At this time, since a value obtained by temporally integrating the error from the operating point is output to the output of the integrator 12, a feedback loop is formed and the operating point is stabilized. In this case, the operating point of the modulator is uniquely determined, and the operating point is controlled such that the cross point of the eye pattern of the optical signal output from the modulator is always at the center of the amplitude level.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、光ファ
イバによる長距離伝送を行う場合、光ファイバに固有の
非線型性ならびに分散性の影響により、最適な伝送特性
を得るための動作点は必ずしもアイパターンの振幅レベ
ルの中心にあるとは限らない。
However, when performing long-distance transmission using an optical fiber, the operating point for obtaining optimum transmission characteristics is not always an eye pattern due to the nonlinearity and dispersibility inherent in the optical fiber. Is not always at the center of the amplitude level of

【0004】また、光ファイバを通して伝送を行う場
合、光ファイバに固有の非線型性ならびに分散性の影響
により、最適な伝送特性を得ることは単一の動作点のみ
では困難であり、伝送路に応じて変調器のチャープ特性
(強度変調により生じる位相変調特性)の極性を切替え
る必要がある。
In addition, when transmission is performed through an optical fiber, it is difficult to obtain optimum transmission characteristics only at a single operating point due to the influence of nonlinearity and dispersibility inherent in the optical fiber. It is necessary to switch the polarity of the chirp characteristic (phase modulation characteristic generated by intensity modulation) of the modulator accordingly.

【0005】本発明は上記の事情に鑑みてなされたもの
で、光変調器の動作点の安定化を行うと同時に動作点の
制御も可能とすることにより、伝送路に応じた最適な伝
送特性の実現が可能となる光送信回路を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and stabilizes an operating point of an optical modulator and enables control of the operating point. It is an object of the present invention to provide an optical transmission circuit capable of realizing the above.

【0006】また本発明は、制御回路の誤差信号検出出
力に対してオフセット電圧を付加する事により、動作点
の制御が可能な変調器制御回路を有する光送信回路を提
供することを目的する。
Another object of the present invention is to provide an optical transmission circuit having a modulator control circuit capable of controlling an operating point by adding an offset voltage to an error signal detection output of the control circuit.

【0007】また本発明は、制御回路の誤差信号検出出
力に対して極性切替回路を付加する事と、データ信号入
力部分に極性切替回路を付加し、それらを同時に切替え
る事により、出力光信号の極性に影響を与える事無く変
調器のチャープ特性の極性を切替える事が可能な光送信
回路を提供することを目的とする。
Further, according to the present invention, a polarity switching circuit is added to the error signal detection output of the control circuit, and a polarity switching circuit is added to the data signal input portion, and these are switched at the same time, so that the output optical signal is output. It is an object of the present invention to provide an optical transmission circuit capable of switching the polarity of a chirp characteristic of a modulator without affecting the polarity.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明の光送信回路は、入力されるデータ信号で低周
波信号の振幅変調を行いデータ信号に低周波信号を重畳
する回路と、この回路により低周波信号が重畳されたデ
ータ信号とバイアス電圧とが与えられ光変調を行う光変
調器と、この光変調器の出力光から前記低周波信号成分
を抽出し、低周波信号に含まれる変調器動作点の誤差情
報をもとに前記バイアス電圧の制御を行うバイアス制御
回路とから構成される光送信回路において、安定動作時
の動作点を可変する手段を有することを特徴とするもの
である。
In order to achieve the above object, an optical transmission circuit according to the present invention comprises a circuit for modulating the amplitude of a low-frequency signal with an input data signal and superimposing the low-frequency signal on the data signal; An optical modulator that performs optical modulation by applying a data signal on which a low-frequency signal is superimposed and a bias voltage by this circuit, and extracts the low-frequency signal component from output light of the optical modulator and includes the low-frequency signal component in the low-frequency signal A bias control circuit for controlling the bias voltage based on error information of a modulator operating point, wherein the optical transmitting circuit has means for varying an operating point during stable operation. It is.

【0009】また本発明は、上記光送信回路において、
安定動作時の動作点を可変する手段として、誤差情報検
出部にオフセット加算回路を付加し、安定動作時の動作
点を可変とすることを特徴とするものである。本発明で
は、制御回路の誤差信号検出出力に対してオフセット電
圧を加算する事により、動作点の制御が可能な変調器制
御回路を有する光送信回路を可能とするものである。
The present invention also provides the above optical transmission circuit,
As means for varying the operating point at the time of stable operation, an offset addition circuit is added to the error information detecting unit to vary the operating point at the time of stable operation. According to the present invention, by adding an offset voltage to an error signal detection output of a control circuit, an optical transmission circuit having a modulator control circuit capable of controlling an operating point is enabled.

【0010】また本発明は、上記光送信回路において、
安定動作時の動作点を可変する手段として、誤差情報検
出部ならびにデータ信号入力部に極性切替回路を付加
し、安定動作時の動作点を変調器の半波長電圧分だけず
らす機能を付加することを特徴とするものである。本発
明では、制御回路の誤差信号検出出力に対して極性切替
回路を付加する事とデータ入力部に極性切替回路を付加
することにより、変調器のチャープ特性の極性切替が可
能な光送信回路を実現するものである。
[0010] The present invention also provides the above optical transmission circuit,
To change the operating point during stable operation, add a polarity switching circuit to the error information detection unit and data signal input unit, and add a function to shift the operating point during stable operation by the half-wavelength voltage of the modulator. It is characterized by the following. In the present invention, by adding a polarity switching circuit to the error signal detection output of the control circuit and adding a polarity switching circuit to the data input unit, an optical transmission circuit capable of switching the polarity of the chirp characteristic of the modulator is provided. It will be realized.

【0011】[0011]

【発明の実施の形態】以下図面を参照して本発明の実施
形態例を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0012】図1は本発明の一実施形態例を示す構成説
明図である。
FIG. 1 is a structural explanatory view showing an embodiment of the present invention.

【0013】すなわち、データ信号は可変利得増幅器4
に入力され、この可変利得増幅器4に入力されたデータ
信号は低周波発振器3出力の低周波信号により利得を制
御されて増幅され、この可変利得増幅器4の出力はキャ
パシタ5で低周波成分が除去された後に光変調器2へと
入力される。このとき、光変調器2への入力信号は低周
波信号をデータ信号を搬送波として振幅変調した信号と
なる(図10参照)。光変調器2では、光源1の出力光
をキャパシタ5からの光変調器入力信号によって強度変
調し光分岐回路6へ出力する。このとき、前記光変調器
入力信号の平均振幅が光変調器2の半波長電圧と一致し
ていたとすると光変調器出力信号は図2及び図3に示す
ようになり、動作点に応じて低周波信号成分が変化す
る。図2は最適動作点を示し、図3(a)は動作点が正
方向ドリフト時を示し、図3(b)は動作点が負方向ド
リフト時を示す。光分岐回路6では光変調器2の出力光
が分岐され、光検出器7へ入力される。光検出器7の出
力は低周波増幅器8へ入力され、低周波成分が抽出され
る。低周波増幅器8で抽出された低周波成分は位相検波
器9において低周波発振器3の出力信号と同期検波され
誤差信号が抽出される。位相検波器9で抽出された誤差
信号は加算回路10においてオフセット発生回路11か
ら供給されるオフセット信号と加算され、積分器12へ
入力される。この積分器12の出力信号は終端抵抗14
を有するバイアスティ13へ入力され、このバイアステ
ィ13で光変調器2のバイアス電圧を制御する。このと
き、積分器12の出力には動作点からの誤差を時間的に
積分した値が出力されているため、フィードバックルー
プが構成され、動作点の安定化が図られる。動作が安定
化しているときの積分器12への入力信号は0となって
おり、このときの誤差信号とオフセット信号は相殺しあ
っているため、オフセット値を調整する事により動作点
を制御する事が可能となる。図4はオフセット調整によ
る動作点の制御を説明する図であり、(a)はオフセッ
トなしの場合、(b)は正のオフセット電圧の場合、
(c)は負のオフセット電圧の場合を示す。
That is, the data signal is supplied to the variable gain amplifier 4.
The gain of the data signal input to the variable gain amplifier 4 is controlled by the low frequency signal output from the low frequency oscillator 3, and the output of the variable gain amplifier 4 is removed by the capacitor 5 to remove the low frequency component. After that, it is input to the optical modulator 2. At this time, the input signal to the optical modulator 2 is a signal obtained by amplitude-modulating a low-frequency signal using a data signal as a carrier (see FIG. 10). In the optical modulator 2, the output light of the light source 1 is intensity-modulated by the optical modulator input signal from the capacitor 5 and output to the optical branching circuit 6. At this time, assuming that the average amplitude of the optical modulator input signal matches the half-wave voltage of the optical modulator 2, the optical modulator output signal becomes as shown in FIGS. The frequency signal component changes. 2 shows the optimum operating point, FIG. 3 (a) shows the operating point when drifting in the positive direction, and FIG. 3 (b) shows the operating point when drifting in the negative direction. In the optical branching circuit 6, the output light of the optical modulator 2 is branched and input to the photodetector 7. The output of the photodetector 7 is input to the low-frequency amplifier 8, and a low-frequency component is extracted. The low-frequency component extracted by the low-frequency amplifier 8 is synchronously detected with the output signal of the low-frequency oscillator 3 by the phase detector 9 to extract an error signal. The error signal extracted by the phase detector 9 is added to the offset signal supplied from the offset generation circuit 11 in the addition circuit 10 and input to the integrator 12. The output signal of this integrator 12 is
And the bias tee 13 controls the bias voltage of the optical modulator 2. At this time, since a value obtained by temporally integrating the error from the operating point is output to the output of the integrator 12, a feedback loop is formed and the operating point is stabilized. When the operation is stabilized, the input signal to the integrator 12 is 0, and the error signal and the offset signal at this time cancel each other. Therefore, the operating point is controlled by adjusting the offset value. Things become possible. 4A and 4B are diagrams for explaining control of an operating point by offset adjustment. FIG. 4A illustrates a case where there is no offset, FIG.
(C) shows the case of a negative offset voltage.

【0014】以上のように、本実施形態例の光送信回路
では光変調器の動作点の安定化を行うと同時に動作点の
制御も可能となるため、伝送路に応じた最適な伝送特性
の実現が可能となる。
As described above, in the optical transmission circuit of this embodiment, since the operating point of the optical modulator can be stabilized and the operating point can be controlled at the same time, the optimum transmission characteristics according to the transmission path can be obtained. Realization becomes possible.

【0015】図5は本発明の他の実施形態例を示す構成
説明図である。
FIG. 5 is a structural explanatory view showing another embodiment of the present invention.

【0016】すなわち、データ信号は極性切替回路16
へ入力され、この極性切替回路16へ入力されたデータ
信号は極性切替信号により極性が反転または非反転され
た後、可変利得増幅器4へ入力される。この可変利得増
幅器4へ入力されたデータ信号は低周波発振器3出力の
低周波信号により利得を制御されて増幅され、この可変
利得増幅器4の出力はキャパシタ5で低周波成分が除去
された後に光変調器2へと入力される。このとき、光変
調器2への入力信号は低周波信号をデータ信号を搬送波
として振幅変調した信号となる(図10参照)。光変調
器2では、光源1の出力光をキャパシタ5からの光変調
器入力信号によって強度変調し光分岐回路6へ出力す
る。このとき、前記光変調器入力信号の平均振幅が光変
調器2の半波長電圧と一致していたとすると光変調器出
力信号は図6及び図7に示すようになり、動作点に応じ
て低周波信号成分が変化する。図6は最適動作点を示
し、図7(a)は動作点が正方向ドリフト時を示し、図
7(b)は動作点が負方向ドリフト時を示す。光分岐回
路6では光変調器2の出力光が分岐され、光検出器7へ
と入力される。光検出器7の出力は低周波増幅器8へと
入力され、低周波成分が抽出される。低周波増幅器8で
抽出された低周波成分は位相検波器9において低周波発
振器3出力信号と同期検波され誤差信号が抽出される。
位相検波器9で抽出された誤差信号は極性切替回路15
において極性切替信号により極性が反転または非反転さ
れた後、積分器12へ入力される。この積分器12の出
力信号は終端抵抗14を有するバイアスティ13へ入力
され、このバイアスティ13で光変調器2のバイアス電
圧を制御する。このとき、積分器12の出力には動作点
からの誤差を時間的に積分した値が出力されているた
め、フィードバックループが構成され、動作点の安定化
が図られる。図8に示すように、極性反転時には誤差信
号の極性が反転するため、動作点は非反転時に対して半
波長電圧分だけずれるため光信号の極性は反転するが、
データ信号も同時に反転されているため、出力光信号と
入力データ信号の論理関係はチャープ特性の極性切替に
関わらず一定である。
That is, the data signal is supplied to the polarity switching circuit 16.
The polarity of the data signal input to the polarity switching circuit 16 is inverted or non-inverted by the polarity switching signal, and then input to the variable gain amplifier 4. The data signal input to the variable gain amplifier 4 has its gain controlled and amplified by the low frequency signal output from the low frequency oscillator 3, and the output of the variable gain amplifier 4 is removed after the low frequency component is removed by the capacitor 5. The signal is input to the modulator 2. At this time, the input signal to the optical modulator 2 is a signal obtained by amplitude-modulating a low-frequency signal using a data signal as a carrier (see FIG. 10). In the optical modulator 2, the output light of the light source 1 is intensity-modulated by the optical modulator input signal from the capacitor 5 and output to the optical branching circuit 6. At this time, assuming that the average amplitude of the optical modulator input signal is equal to the half-wave voltage of the optical modulator 2, the optical modulator output signal becomes as shown in FIGS. The frequency signal component changes. 6 shows the optimum operating point, FIG. 7 (a) shows the operating point when drifting in the positive direction, and FIG. 7 (b) shows the operating point when drifting in the negative direction. In the optical branching circuit 6, the output light of the optical modulator 2 is branched and input to the photodetector 7. The output of the photodetector 7 is input to the low-frequency amplifier 8, and a low-frequency component is extracted. The low-frequency component extracted by the low-frequency amplifier 8 is synchronously detected with the output signal of the low-frequency oscillator 3 by the phase detector 9 to extract an error signal.
The error signal extracted by the phase detector 9 is supplied to a polarity switching circuit 15.
After the polarity is inverted or non-inverted by the polarity switching signal, the signal is input to the integrator 12. The output signal of the integrator 12 is input to a bias tee 13 having a terminating resistor 14, and the bias tee 13 controls a bias voltage of the optical modulator 2. At this time, since a value obtained by temporally integrating the error from the operating point is output to the output of the integrator 12, a feedback loop is formed and the operating point is stabilized. As shown in FIG. 8, the polarity of the error signal is inverted at the time of the polarity inversion, so that the operating point is shifted by a half-wavelength voltage from the non-inversion time, so that the polarity of the optical signal is inverted.
Since the data signal is also inverted at the same time, the logical relationship between the output optical signal and the input data signal is constant regardless of the polarity switching of the chirp characteristic.

【0017】以上のように、本実施形態例の光送信回路
では光変調器の動作点の安定化を行うと同時に変調器の
チャープ特性の極性切替も可能となるため、伝送路に応
じた最適な伝送特性の実現が可能となる。
As described above, in the optical transmission circuit of this embodiment, the operating point of the optical modulator can be stabilized, and at the same time, the polarity of the chirp characteristic of the modulator can be switched. Transmission characteristics can be realized.

【0018】[0018]

【発明の効果】以上述べたように本発明によれば、光変
調器の動作点の安定化を行うと同時に動作点の制御も可
能とすることにより、伝送路に応じた最適な伝送特性の
実現が可能となる光送信回路を提供することができる。
As described above, according to the present invention, the operating point of the optical modulator is stabilized, and at the same time, the operating point can be controlled. An optical transmission circuit that can be realized can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態例を示す構成説明図であ
る。
FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention.

【図2】本発明の一実施形態例に係る光変調器出力信号
の一例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of an optical modulator output signal according to an embodiment of the present invention.

【図3】本発明の一実施形態例に係る光変調器出力信号
の他の例を示す説明図である。
FIG. 3 is an explanatory diagram illustrating another example of an optical modulator output signal according to an embodiment of the present invention.

【図4】本発明の一実施形態例に係るオフセット調整に
よる動作点の制御を示す説明図である。
FIG. 4 is an explanatory diagram showing control of an operating point by offset adjustment according to an embodiment of the present invention.

【図5】本発明の他の実施形態例を示す構成説明図であ
る。
FIG. 5 is a configuration explanatory view showing another embodiment of the present invention.

【図6】本発明の他の実施形態例に係る光変調器出力信
号の一例を示す説明図である。
FIG. 6 is an explanatory diagram showing an example of an optical modulator output signal according to another embodiment of the present invention.

【図7】本発明の他の実施形態例に係る光変調器出力信
号の他の例を示す説明図である。
FIG. 7 is an explanatory diagram showing another example of an optical modulator output signal according to another embodiment of the present invention.

【図8】本発明の他の実施形態例に係るチャープ特性の
極性切替を示す説明図である。
FIG. 8 is an explanatory diagram showing polarity switching of chirp characteristics according to another embodiment of the present invention.

【図9】従来の光送信回路を示す構成説明図である。FIG. 9 is a configuration explanatory diagram showing a conventional optical transmission circuit.

【図10】従来の光送信回路の光変調器入力信号を示す
説明図である。
FIG. 10 is an explanatory diagram showing an optical modulator input signal of a conventional optical transmission circuit.

【符号の説明】[Explanation of symbols]

1 光源 2 光変調器 3 低周波発振器 4 可変利得増幅器 5 キャパシタ 6 光分岐回路 7 光検出器 8 低周波増幅器 9 位相検波器 10 加算回路 11 オフセット発生回路 12 積分器 13 バイアスティ 14 終端抵抗 15 極性切替回路 16 極性切替回路 DESCRIPTION OF SYMBOLS 1 Light source 2 Optical modulator 3 Low frequency oscillator 4 Variable gain amplifier 5 Capacitor 6 Optical branch circuit 7 Photodetector 8 Low frequency amplifier 9 Phase detector 10 Addition circuit 11 Offset generation circuit 12 Integrator 13 Bias tee 14 Terminating resistor 15 Polarity Switching circuit 16 Polarity switching circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 入力されるデータ信号で低周波信号の振
幅変調を行いデータ信号に低周波信号を重畳する回路
と、この回路により低周波信号が重畳されたデータ信号
とバイアス電圧とが与えられ光変調を行う光変調器と、
この光変調器の出力光から前記低周波信号成分を抽出
し、低周波信号に含まれる変調器動作点の誤差情報をも
とに前記バイアス電圧の制御を行うバイアス制御回路と
から構成される光送信回路において、安定動作時の動作
点を可変する手段を有することを特徴とする光送信回
路。
1. A circuit for modulating the amplitude of a low-frequency signal with an input data signal and superimposing the low-frequency signal on the data signal, and a data signal on which the low-frequency signal is superimposed and a bias voltage are provided by the circuit. An optical modulator that performs optical modulation;
A bias control circuit that extracts the low-frequency signal component from the output light of the optical modulator and controls the bias voltage based on error information of a modulator operating point included in the low-frequency signal. An optical transmission circuit, comprising: means for varying an operating point during a stable operation in the transmission circuit.
【請求項2】 安定動作時の動作点を可変する手段とし
て、誤差情報検出部にオフセット加算回路を付加し、安
定動作時の動作点を可変とすることを特徴とする請求項
1記載の光送信回路。
2. The light according to claim 1, wherein an offset addition circuit is added to the error information detecting section as means for changing the operating point during the stable operation, and the operating point during the stable operation is made variable. Transmission circuit.
【請求項3】 安定動作時の動作点を可変する手段とし
て、誤差情報検出部ならびにデータ信号入力部に極性切
替回路を付加し、安定動作時の動作点を変調器の半波長
電圧分だけずらす機能を付加することを特徴とする請求
項1記載の光送信回路。
3. As a means for varying the operating point during stable operation, a polarity switching circuit is added to the error information detecting section and the data signal input section to shift the operating point during stable operation by a half-wavelength voltage of the modulator. The optical transmission circuit according to claim 1, wherein a function is added.
JP11009405A 1999-01-18 1999-01-18 Optical transmission circuit Pending JP2000206474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11009405A JP2000206474A (en) 1999-01-18 1999-01-18 Optical transmission circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11009405A JP2000206474A (en) 1999-01-18 1999-01-18 Optical transmission circuit

Publications (1)

Publication Number Publication Date
JP2000206474A true JP2000206474A (en) 2000-07-28

Family

ID=11719516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11009405A Pending JP2000206474A (en) 1999-01-18 1999-01-18 Optical transmission circuit

Country Status (1)

Country Link
JP (1) JP2000206474A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006048944A1 (en) * 2004-11-08 2006-05-11 Mitsubishi Denki Kabushiki Kaisha Optical transmitter and optical communication system
JPWO2005088876A1 (en) * 2004-03-17 2007-08-09 日本電信電話株式会社 Optical transmission system, optical transmission device and optical reception device of optical transmission system
JP2008242283A (en) * 2007-03-28 2008-10-09 Nippon Telegr & Teleph Corp <Ntt> Optical modulating device and optical transmitting device
WO2015129192A1 (en) * 2014-02-25 2015-09-03 日本電気株式会社 Optical transmitter provided with optical modulator, and method for controlling bias voltage of optical modulator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005088876A1 (en) * 2004-03-17 2007-08-09 日本電信電話株式会社 Optical transmission system, optical transmission device and optical reception device of optical transmission system
US7734194B2 (en) 2004-03-17 2010-06-08 Nippon Telegraph And Telephone Corporation Optical transmission system, optical transmitter for optical transmission system, and optical receiver for optical transmission system
JP4494401B2 (en) * 2004-03-17 2010-06-30 日本電信電話株式会社 Optical transmission system, optical transmission device and optical reception device of optical transmission system
US8005374B2 (en) 2004-03-17 2011-08-23 Nippon Telegraph And Telephone Corporation Optical transmission system, optical transmitter for optical transmission system, and optical receiver for optical transmission system
WO2006048944A1 (en) * 2004-11-08 2006-05-11 Mitsubishi Denki Kabushiki Kaisha Optical transmitter and optical communication system
JPWO2006048944A1 (en) * 2004-11-08 2008-05-22 三菱電機株式会社 Optical transmitter and optical communication system
US7801450B2 (en) 2004-11-08 2010-09-21 Mitsubishi Electric Corporation Optical transmitter and optical communication system
JP4643587B2 (en) * 2004-11-08 2011-03-02 三菱電機株式会社 Optical transmitter
JP2008242283A (en) * 2007-03-28 2008-10-09 Nippon Telegr & Teleph Corp <Ntt> Optical modulating device and optical transmitting device
WO2015129192A1 (en) * 2014-02-25 2015-09-03 日本電気株式会社 Optical transmitter provided with optical modulator, and method for controlling bias voltage of optical modulator

Similar Documents

Publication Publication Date Title
US6970655B2 (en) Method and circuit for generating single-sideband optical signal
US5170274A (en) Optical transmitter
JP2642499B2 (en) Optical transmitter, optical modulator control circuit, and optical modulation method
US7215894B2 (en) Optical transmitter device
US20020003648A1 (en) Optical transmitter, and method of controlling bias voltage to the optical transmitter
US5771255A (en) Laser light generator
JPH04192729A (en) Optical transmitter
CN103026289B (en) Compensation method, optical modulation system, and optical demodulation system
JP2008092172A (en) Optical transmitter
CN103248432A (en) Optical transmitter and method for controlling bias for optical modulator
JP3210061B2 (en) Operating point stabilizer for optical interferometer
JP3591346B2 (en) Light modulator
JP2848942B2 (en) Optical transmitter
US6917455B2 (en) Cascaded RZ and NRZ laser modulators having RZ/NRZ phase alignment bias control
JP2005202400A (en) Optical modulating apparatus having bias controller and bias control method using the same
US5646771A (en) Setting operation point in optical modulation apparatus
JP2004508737A (en) Composite secondary bias control method
JP2003177361A (en) Optical modulating device
US6539038B1 (en) Reference frequency quadrature phase-based control of drive level and DC bias of laser modulator
JP2018054907A (en) Optical module and method of controlling bias of optical modulator
JPH04294318A (en) Automatic control circuit for optical modulator bias
JP2000206474A (en) Optical transmission circuit
JPH08248366A (en) Light transmitter
USRE36088E (en) Optical transmitter
US6952534B1 (en) System and method for generating return-to-zero (RZ) optical data in a digital lightwave communications system