JP2000189510A - Bone repair material - Google Patents

Bone repair material

Info

Publication number
JP2000189510A
JP2000189510A JP10368287A JP36828798A JP2000189510A JP 2000189510 A JP2000189510 A JP 2000189510A JP 10368287 A JP10368287 A JP 10368287A JP 36828798 A JP36828798 A JP 36828798A JP 2000189510 A JP2000189510 A JP 2000189510A
Authority
JP
Japan
Prior art keywords
bone repair
chitin
average
porous block
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10368287A
Other languages
Japanese (ja)
Other versions
JP3559461B2 (en
Inventor
Yasuo Nakajima
康雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP36828798A priority Critical patent/JP3559461B2/en
Publication of JP2000189510A publication Critical patent/JP2000189510A/en
Application granted granted Critical
Publication of JP3559461B2 publication Critical patent/JP3559461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To fit a bone repair material to a defective part without worrying about directions and to enable good bone repair by using a porous block material formed by mixing CM chitin and calcium phosphate material granules and specifying the average pore diameter of the surface and the average minor axis and average major axis of the pores in the central part. SOLUTION: The bone repair material is formed of the porous block body formed by mixing CM chitin and the calcium phosphate material granules. The average pore diameter of the surface is specified to 3 to 150 μm and the difference between the average minor axis and average major axis of the pores in the central section is specified to <=20 μm. The ratio of the initial compression strength value in the central part to the initial compression strength value on the surface of the porous block body is specified 80 to 100%. According thereto, orientability is not admitted in the CM chitin fibers in the central molding and the HAP grains are uniformly dispersed and the directivity of the pores is nearly uniform and the molding has specified strength in any directions. Further, the seepage of liquid and the advance of cells take place uniformly from any surfaces. Then, the bone repair may be improved by fitting the bone repair material to the defective part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、老齢、疾病、事故
などによって失われた骨欠損部を再建するために充填さ
れる骨修復材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bone repair material which is filled to reconstruct a bone defect lost due to aging, disease, accident or the like.

【0002】[0002]

【従来の技術】従来より、上記骨修復材として、リン酸
カルシウム系材料の顆粒が用いられてきた。この顆粒は
骨欠損部に顆粒状態のまま充填されるもので、顆粒周囲
に新生骨が早期に増生し、この新生骨が各顆粒を包含し
て、上記骨欠損部を充填修復することを期待するもので
あった。
2. Description of the Related Art Granules of calcium phosphate-based materials have been conventionally used as the bone repair material. These granules are filled in the bone defect area in the granular state, and new bone grows rapidly around the granule, and it is expected that this new bone will contain each granule and fill and repair the bone defect area. Was to do.

【0003】[0003]

【従来技術の課題】しかしながら、上記従来技術には次
のような問題があった。すなわち、顆粒状態のまま充填
されるのでポケット形状をなす骨欠損部以外には使用が
極めて困難である。また、欠損部への固定が困難で、充
填、縫合後に湿潤する血液、生体液による流出が起こり
易く、この流出により、欠損部が軟組織に充満されてし
まったり、流出した顆粒により、二次的な炎症を励起す
る恐れがある。さらに、骨形成が進行したとしても、顆
粒が多量に存在することにより新生骨の占有密度が小さ
く構造的に脆弱な状態である。また骨修復後のインプラ
ント埋入を考える場合、ハイドロキシアパタイト(以
下、HAPと略称する)の存在や骨質の脆弱性の為、ド
リル等による後加工は実質上不可能であるという不具合
があった。
However, the above prior art has the following problems. That is, since it is filled in a granular state, it is extremely difficult to use it except for a bone defect having a pocket shape. In addition, it is difficult to fix to the defect, and it is easy for blood and biological fluids that become wet after filling and suturing to flow out. May excite severe inflammation. Furthermore, even if bone formation progresses, the occupation density of new bone is small due to the presence of a large amount of granules, and it is in a state of structural weakness. In addition, when implant implantation after bone repair is considered, there is a problem that post-processing with a drill or the like is practically impossible due to the presence of hydroxyapatite (hereinafter abbreviated as HAP) and the fragility of bone quality.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
本発明は、CMキチンとリン酸カルシウム系材料顆粒と
を混合した多孔性ブロック体からなり、表面の平均孔径
が3〜150μm であるとともに、中心部における孔の
平均短径と平均長径の差が20μm 以下であることを特
徴とする。さらに、このように構成される多孔性ブロッ
ク体は表面と中心部の平均孔径の差が20μm 以下であ
ることが好ましい。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention comprises a porous block obtained by mixing CM chitin and calcium phosphate-based material granules. The difference between the average minor axis and the average major axis of the holes in the portion is 20 μm or less. Further, it is preferable that the difference in the average pore diameter between the surface and the center of the porous block body thus configured is 20 μm or less.

【0005】また、上記多孔性ブロック体は、一方向プ
レスによって1/2の体積に圧縮した時の初期圧縮強度
が0.2〜8.0MPaであることが好ましい。さら
に、表面と中心部の上記初期強度の差が20%以内であ
ること、すなわち表面の初期圧縮強度値に対する中心部
の初期圧縮強度値の比が80〜100%であることが好
ましい。
It is preferable that the porous block body has an initial compressive strength of 0.2 to 8.0 MPa when compressed to a half volume by a one-way press. Further, it is preferable that the difference in the initial strength between the surface and the central portion is within 20%, that is, the ratio of the initial compressive strength value of the central portion to the initial compressive strength value of the surface is 80 to 100%.

【0006】このような本発明の骨修復材は以下のよう
な手順で作製することができる。
[0006] Such a bone repair material of the present invention can be produced by the following procedure.

【0007】まず、CMキチン水溶液を調整しこれを凍
結し粉砕して得た顆粒と、別途分級しておいたHAP顆
粒とを混合して金型に充填し、プレス成形する。その
後、一定の成形圧で保持し、CMキチン凍結体顆粒同士
を溶着させる。さらに、凍結乾燥し、真空中で熱処理を
行う。このようにして得た成形体に対し、低い濃度のC
Mキチン水溶液で表面をコーティングする。そして、再
度の凍結乾燥と真空中での熱処理を行う。
First, a CM chitin aqueous solution is prepared, and the granules obtained by freezing and pulverizing the same and the separately classified HAP granules are mixed, filled in a mold, and press-molded. Thereafter, the mixture is held at a constant molding pressure, and the CM chitin frozen body granules are welded to each other. Furthermore, it freeze-drys and heat-processes in a vacuum. A low concentration of C
The surface is coated with an aqueous solution of M chitin. Then, freeze-drying and heat treatment in a vacuum are performed again.

【0008】以上のような方法で本発明の骨修復材を作
製することができ、本発明では、特に低い濃度のCMキ
チン水溶液で表面にコーティングした後、再度の凍結乾
燥と真空中での熱処理を行うことを特徴とする。
[0008] The bone repair material of the present invention can be produced by the above method. In the present invention, after the surface is coated with a particularly low-concentration aqueous solution of CM chitin, freeze-drying and heat treatment in a vacuum are performed again. Is performed.

【0009】[0009]

【作用】上記本発明の骨修復材は、成形体中のCMキチ
ン繊維に配向が見られない為、どの方向でも一定の強
度、を有する。そして配向がないので、欠損部への充填
時に方向を気にせず欠損部にフィットさせても構わな
い。
The bone repair material of the present invention has a certain strength in any direction because no orientation is observed in the CM chitin fiber in the molded product. Since there is no orientation, it is possible to fit the defective portion without worrying about the direction when filling the defective portion.

【0010】また、ほぼ一様な孔サイズによる多孔体な
ので、体液の浸潤、細胞の進入がどの面からも均等に起
こる。
[0010] Further, since the porous body has a substantially uniform pore size, infiltration of body fluids and invasion of cells occur evenly from any surface.

【0011】また、HAP顆粒が均一に分散しているた
め、CMキチンの繊維を足場にして成長してきた骨芽細
胞により欠損部のあらゆる部位からHAPを核として骨
形成を促進する。さらに、CMキチンの繊維に配向がな
いので、成形体をはさみやメスで容易に加工できる。
[0011] Further, since the HAP granules are uniformly dispersed, osteoblasts grown on the CM chitin fiber as a scaffold promote bone formation using HAP as a nucleus from any part of the defect. Further, since the CM chitin fiber has no orientation, the molded body can be easily processed with scissors or a scalpel.

【0012】また、本発明の骨修復材によれば、付加的
に行うコーティング処理により、メス等によるトリミン
グを行っても型くずれやHAPの脱落が生じにくい。
Further, according to the bone repair material of the present invention, the additional coating treatment makes it difficult for the HAP to fall out of shape even when trimming with a scalpel or the like.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態を詳しく
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail.

【0014】本発明の骨修復材は、CMキチンとリン酸
カルシウム系材料顆粒とを混合した多孔性ブロック体か
らなり、表面の平均孔径が3〜150μm であるととも
に、中心部位における孔の平均短径と平均長径の差が2
0μm 以下であることを特徴とする。さらに、このよう
に構成される多孔性ブロック体は表面と中心部の平均孔
径の差が20μm 以下であることが好ましい。
The bone repair material of the present invention comprises a porous block obtained by mixing CM chitin and calcium phosphate-based material granules, and has an average pore diameter on the surface of 3 to 150 μm and an average minor diameter of pores at a central portion. Difference in average major axis is 2
0 μm or less. Further, it is preferable that the difference in the average pore diameter between the surface and the center of the porous block body thus configured is 20 μm or less.

【0015】また、上記多孔性ブロック体は、一方向プ
レスによって1/2の体積に圧縮した時の初期強度が
0.2〜8.0MPaであることが好ましい。さらに、
表面と中心部の上記初期強度の差が20%以内であるこ
とが好ましい。
The porous block preferably has an initial strength of 0.2 to 8.0 MPa when compressed to a half volume by a one-way press. further,
It is preferable that the difference in the initial strength between the surface and the center is within 20%.

【0016】このような本発明の骨修復材の製造方法を
説明するに、まず、3〜20wt%の濃度でCMキチン水
溶液を調整しこれを−40℃以下で凍結する。また別
途、HAP顆粒を50〜300μm に分級しておく。こ
れら凍結したものを粉砕して得た顆粒と分級したHAP
顆粒を1/1〜1/20=HAP重量/CMキチン重量
で混合し、混合物を金型に充填し、プレス成形する。そ
の後、一定の成形圧で60分以内保持し、CMキチン凍
結体顆粒同士を溶着させる。さらに、−100〜−20
℃で凍結乾燥し、真空中で例えば120〜160℃×2
4hの熱処理を行う。
In order to explain the method for producing such a bone repair material of the present invention, first, a CM chitin aqueous solution is prepared at a concentration of 3 to 20% by weight and frozen at -40 ° C or lower. Separately, the HAP granules are classified to 50 to 300 μm. Granules obtained by crushing these frozen products and classified HAP
The granules are mixed at 1/1 to 1/20 = HAP weight / CM chitin weight, the mixture is filled in a mold and pressed. Thereafter, the frozen CM chitin granules are welded to each other by maintaining the molding pressure at a constant molding pressure within 60 minutes. Furthermore, -100 to -20
Lyophilized at 120 ° C. and, for example, 120-160 ° C. × 2 in vacuum
The heat treatment is performed for 4 hours.

【0017】このようにして得た成形体に対し、1〜5
wt%の低い濃度のCMキチン水溶液で表面をコーティン
グする。そして、再度−100〜−20℃で凍結乾燥
し、最後に、真空中で120〜160℃×24hの熱処
理を行う。
With respect to the molded body obtained in this manner, 1 to 5
The surface is coated with a low concentration of wt% CM chitin aqueous solution. Then, freeze-drying is performed again at -100 to -20C, and finally, heat treatment is performed at 120 to 160C for 24 hours in a vacuum.

【0018】なお、上記製造方法において各条件を上記
の範囲内とするのが好ましい理由は以下のとおりであ
る。
The reason why it is preferable to set each condition within the above range in the above-mentioned manufacturing method is as follows.

【0019】最初に調整するCMキチンの濃度が3wt%
未満の場合、成形体の強度が著しく小さくなり取り扱い
困難となり、他方20wt%を越えると水溶液になり難く
なってしまう。
The concentration of CM chitin to be adjusted first is 3 wt%.
When the amount is less than the above, the strength of the molded body is remarkably reduced and handling becomes difficult. On the other hand, when it exceeds 20% by weight, it becomes difficult to form an aqueous solution.

【0020】HAP顆粒の分級範囲の下限が50μm 未
満の場合、マクロファージ等の細胞に呑食さやすく、他
方、300μm を越えるとHAPの分布が不均一となる
傾向がある。
When the lower limit of the classification range of HAP granules is less than 50 μm, cells such as macrophages tend to be swallowed, while when it exceeds 300 μm, the distribution of HAP tends to be uneven.

【0021】前記HAP重量/CMキチン重量が1/1
未満の場合、HAP顆粒の密度が大きくなり過ぎ、骨新
生のためのスペースが不十分となり、他方、1/20よ
り大きくなるとHAP顆粒が少なすぎて、HAPの石灰
化の核としての効果が得られない。
The HAP weight / CM chitin weight is 1/1.
If it is less than 1, the density of the HAP granules becomes too large and the space for bone formation becomes insufficient. I can't.

【0022】金型のプレス成形圧が0.1kgf/ mm 2
満の場合、成形体の強度が著しく小さくなり取り扱い困
難となり、他方8.0kgf/ mm 2 より大きい場合、成形
時の圧力伝達が悪く、クラックやHAPの破折が起こり
易くなる恐れがある。
When the press forming pressure of the mold is less than 0.1 kgf / mm 2 , the strength of the formed body becomes extremely small and handling becomes difficult. On the other hand, when it is more than 8.0 kgf / mm 2 , pressure transmission during molding is poor. , Cracks and breakage of the HAP may occur easily.

【0023】成形体の凍結温度が−20℃より高い場
合、CMキチンの繊維に配向が発生する恐れがあり、他
方−100℃より低い場合、熱膨張差によるクラック発
生の恐れがある。
If the freezing temperature of the molded body is higher than -20 ° C., orientation may occur in the CM chitin fiber, while if it is lower than -100 ° C., cracks may occur due to the difference in thermal expansion.

【0024】コーティング用のCMキチンの濃度が1wt
%未満の場合、コーティングの効果が現れ難く、他方5
wt%より高くても内部までの含浸が少なくなるのでコー
ティングの効果が現れ難い傾向となる。
The concentration of CM chitin for coating is 1 wt.
%, The effect of the coating is unlikely to appear, while 5
Even if it is higher than wt%, the impregnation into the interior is reduced, so that the effect of the coating tends to hardly appear.

【0025】真空熱処理温度が120℃未満の場合、骨
が再生される前の早期に分解吸収されるため、軟組織の
介入等により良好な骨修復が得られない恐れがある。
When the temperature of the vacuum heat treatment is lower than 120 ° C., the bone is decomposed and absorbed at an early stage before the bone is regenerated, so that there is a possibility that a good bone repair cannot be obtained due to the intervention of soft tissue or the like.

【0026】他方、160℃より高温の場合、溶解が遅
延され、分解吸収が遅すぎるので、骨再生の妨げとなる
恐れがある。
On the other hand, if the temperature is higher than 160 ° C., dissolution is delayed, and decomposition and absorption are too slow, which may hinder bone regeneration.

【0027】また、成形体の孔径に関して上記のように
限定した理由は以下の通りである。
The reason for limiting the hole diameter of the molded body as described above is as follows.

【0028】すなわち、表面の平均孔径が3μm 未満の
場合、内部への細胞の進入が遅れ、骨再生の妨げとな
り、他方、150μm を越える場合、強度的に脆く、欠
損部への挿入時に崩壊する可能性が高くなる恐れがあ
る。
That is, when the average pore diameter on the surface is less than 3 μm, the penetration of the cells into the inside is delayed, which hinders bone regeneration. The likelihood is high.

【0029】次に、中心部位の孔の平均短径と平均長径
の差が20μm より大きい場合、成形体の異方性が強す
ぎるため、メスでのトリミング時等に切断方向より型く
ずれを引き起こしてしまう恐れがある。
Next, if the difference between the average minor axis and the average major axis of the hole at the central portion is larger than 20 μm, the anisotropy of the molded product is too strong, and the shape of the molded product is distorted from the cutting direction when trimming with a scalpel. There is a risk that it will.

【0030】そして、表面と中心部の平均孔径の差が2
0μm より大きい場合、細胞の進入が不均一となり、骨
修復が不完全になる部分が発生してしまう恐れがある。
The difference in average pore diameter between the surface and the center is 2
If it is larger than 0 μm, the cells may not enter uniformly, and there may be a part where the bone repair is incomplete.

【0031】次に、成形体の孔径の測定方法について説
明する。
Next, a method of measuring the pore diameter of the molded product will be described.

【0032】まず、成形体内の任意平面をSEMにて撮
影し、そのSEM写真を市販のパーソナルコンピュータ
ーを用い、画像修正、回析を行うソフトにより、平均孔
径を自動的に求める。また、中心部の孔の平均長径と平
均短径についても同様に求める。
First, an arbitrary plane in the molded body is photographed with an SEM, and the SEM photograph is automatically obtained by using a commercially available personal computer by software for image correction and diffraction. In addition, the average major axis and average minor axis of the hole at the center are similarly obtained.

【0033】また、成形体の特性として孔の方向性の偏
り(異方性)を次のような方法で測定することができ
る。
The bias (anisotropic) of the directionality of the hole as a characteristic of the molded article can be measured by the following method.

【0034】まず成形体のXYZ3軸平面について上記
の如くSEM写真を撮影する。3軸それぞれの線と重な
る単位長さあたりの孔の数Ncを算出し、平均セル直径
1.5/Ncを求める。この平均セル直径につき、Y
軸、Z軸に対するX軸の平均直径の比を求め、この比が
1に近づくほど前記異方性が小さく、1から離れるほど
異方性が大きいと判断することができる。因みに、上記
比が1.2の場合、2つの軸方向での剛性(ヤング率)
の比が2以上になる。
First, an SEM photograph is taken of the XYZ three-axis plane of the molded body as described above. The number Nc of holes per unit length overlapping each of the three axes is calculated, and the average cell diameter 1.5 / Nc is determined. For this average cell diameter, Y
The ratio of the average diameter of the X axis to the axis and the Z axis is determined, and it can be determined that the anisotropy decreases as the ratio approaches 1, and the anisotropy increases as the ratio increases from 1. Incidentally, when the above ratio is 1.2, the rigidity (Young's modulus) in two axial directions
Becomes 2 or more.

【0035】[0035]

【実施例】以下、本発明の実施例を比較例とともに具体
的に説明する。まず、各実施例品と比較例品を以下の方
法で作製した。
EXAMPLES Examples of the present invention will be specifically described below along with comparative examples. First, each example product and comparative product were produced by the following method.

【0036】作製方法 (実施例品1)5wt%CMキチン水溶液を調整し、液体
窒素中に滴下し、液体窒素中の凍結顆粒体を冷却下で粉
砕して細粉にする。
Preparation Method (Example Product 1) A 5 wt% CM chitin aqueous solution is prepared , dropped into liquid nitrogen, and the frozen granules in liquid nitrogen are pulverized under cooling to fine powder.

【0037】この細粉にHAP(粒径63〜150μm
)を1/5の重量比で混合し、混合物を金型に充填
し、プレスする。
HAP (particle size 63-150 μm)
) Are mixed at a weight ratio of 1/5, and the mixture is filled in a mold and pressed.

【0038】その後、4kg/mm2 の成形圧で保持し
て成形し、−78℃で凍結後、凍結乾燥し、160℃×
24hrの熱処理を施す。
Thereafter, molding was carried out while holding at a molding pressure of 4 kg / mm 2 , frozen at −78 ° C., freeze-dried, and dried at 160 ° C. ×
A heat treatment is performed for 24 hours.

【0039】得られた成形体を減圧下で3wt%CMキチ
ン水溶液で含浸コーティングを行い、再度−78℃で凍
結後、凍結乾燥し、140℃×24hrの熱処理を施し
多孔性ブロック体を得た。
The obtained compact was impregnated and coated with a 3 wt% CM chitin aqueous solution under reduced pressure, frozen again at -78 ° C., freeze-dried, and subjected to a heat treatment at 140 ° C. × 24 hr to obtain a porous block. .

【0040】(実施例品2)10wt%CMキチン水溶液
を調整し、液体窒素中に滴下し、液体窒素中の凍結顆粒
体を冷却下で粉砕して細粉にする。
(Example product 2) A 10 wt% CM chitin aqueous solution is prepared, dropped into liquid nitrogen, and the frozen granules in liquid nitrogen are ground under cooling to fine powder.

【0041】この細粉にHAP(粒径63〜150μm
)を1/5の重量比で混合し、混合物を金型に充填
し、プレスする。
HAP (particle size 63-150 μm)
) Are mixed at a weight ratio of 1/5, and the mixture is filled in a mold and pressed.

【0042】その後、4kg/mm2 の成形圧で保持し
て成形し、−78℃で凍結後、凍結乾燥し、160℃×
24hrの熱処理を施す。
Thereafter, molding was carried out while holding at a molding pressure of 4 kg / mm 2 , frozen at −78 ° C., freeze-dried, and dried at 160 ° C. ×
A heat treatment is performed for 24 hours.

【0043】得られた成形体を減圧下で1wt%CMキチ
ン水溶液で含浸コーティングを行い、再度−78℃で凍
結後、凍結乾燥し、140℃×24hrの熱処理を施し
多孔性ブロック体を得た。
The obtained compact was impregnated and coated with a 1 wt% CM chitin aqueous solution under reduced pressure, frozen again at -78 ° C., freeze-dried, and subjected to a heat treatment at 140 ° C. × 24 hr to obtain a porous block. .

【0044】(実施例品3)3wt%CMキチン水溶液を
調整し、液体窒素中に滴下し、液体窒素中の凍結顆粒体
を冷却下で粉砕して細粉にする。
(Example Product 3) A 3 wt% CM chitin aqueous solution is prepared, dropped into liquid nitrogen, and the frozen granules in liquid nitrogen are ground under cooling to fine powder.

【0045】この細粉にHAP(粒径63〜150μm
)を1/5の重量比で混合し、混合物を金型に充填
し、プレスする。
HAP (particle size: 63 to 150 μm)
) Are mixed at a weight ratio of 1/5, and the mixture is filled in a mold and pressed.

【0046】その後、4kg/mm2 の成形圧で保持し
て成形し、−40℃で凍結後、凍結乾燥し、160℃×
24hrの熱処理を施す。
Thereafter, molding was carried out while holding at a molding pressure of 4 kg / mm 2 , frozen at −40 ° C., freeze-dried, and dried at 160 ° C. ×
A heat treatment is performed for 24 hours.

【0047】得られた成形体を減圧下で1wt%CMキチ
ン水溶液で含浸コーティングを行い、再度−40℃で凍
結後、凍結乾燥し、140℃×24hrの熱処理を施し
多孔性ブロック体を得た。
The obtained molded product was impregnated and coated with a 1 wt% CM chitin aqueous solution under reduced pressure, frozen again at -40 ° C., freeze-dried, and subjected to a heat treatment at 140 ° C. × 24 hr to obtain a porous block. .

【0048】(比較例品1)10wt%CMキチン水溶液
を調整し、液体窒素中に滴下し、液体窒素中の凍結顆粒
体を冷却下で粉砕して細粉にする。
(Comparative Example Product 1) A 10 wt% CM chitin aqueous solution is prepared, dropped into liquid nitrogen, and the frozen granules in liquid nitrogen are ground under cooling to fine powder.

【0049】この細粉にHAP(粒径63〜150μm
)を1/5の重量比で混合し、混合物を金型に充填
し、プレスする。
HAP (particle size 63-150 μm)
) Are mixed at a weight ratio of 1/5, and the mixture is filled in a mold and pressed.

【0050】その後、4kg/mm2 の成形圧で保持し
て成形し、−78℃で凍結後、凍結乾燥し、160℃×
24hrの熱処理を施す。
Thereafter, molding was carried out while holding at a molding pressure of 4 kg / mm 2 , frozen at −78 ° C., freeze-dried, and dried at 160 ° C. ×
A heat treatment is performed for 24 hours.

【0051】得られた成形体を減圧下で5wt%CMキチ
ン水溶液で含浸コーティングを行い、再度−78℃で凍
結後、凍結乾燥し、140℃×24hrの熱処理を施し
多孔性ブロック体を得た。
The obtained molded body was impregnated and coated with a 5 wt% CM chitin aqueous solution under reduced pressure, frozen again at -78 ° C., freeze-dried, and subjected to a heat treatment at 140 ° C. × 24 hr to obtain a porous block. .

【0052】(比較例品2)1wt%CMキチン水溶液を
調整し、液体窒素中に滴下し、液体窒素中の凍結顆粒体
を冷却下で粉砕して細粉にする。
(Comparative Example Product 2) A 1 wt% CM chitin aqueous solution is prepared, dropped into liquid nitrogen, and the frozen granules in liquid nitrogen are ground under cooling to fine powder.

【0053】この細粉にHAP(粒径63〜150μm
)を1/5の重量比で混合し、混合物を金型に充填
し、プレスする。
HAP (particle size 63-150 μm)
) Are mixed at a weight ratio of 1/5, and the mixture is filled in a mold and pressed.

【0054】その後、4kg/mm2 の成形圧で保持し
て成形し、−20℃で凍結後、凍結乾燥し、160℃×
24hrの熱処理を施し多孔性ブロック体を得た。
Thereafter, molding was carried out while holding at a molding pressure of 4 kg / mm 2 , frozen at −20 ° C., freeze-dried, and dried at 160 ° C. ×
Heat treatment was performed for 24 hours to obtain a porous block.

【0055】(比較例品3)1wt%CMキチン水溶液を
調整し、液体窒素中に滴下し、液体窒素中の凍結顆粒体
を冷却下で粉砕して細粉にする。
(Comparative Example Product 3) An aqueous solution of 1 wt% CM chitin is prepared and dropped into liquid nitrogen, and the frozen granules in liquid nitrogen are pulverized under cooling to fine powder.

【0056】この細粉にHAP(粒径63〜150μm
)を1/5の重量比で混合し、混合物を金型に充填
し、プレスする。
HAP (particle size 63-150 μm)
) Are mixed at a weight ratio of 1/5, and the mixture is filled in a mold and pressed.

【0057】その後、4kg/mm2 の成形圧で保持し
て成形し、−78℃で凍結後、凍結乾燥し、160℃×
24hrの熱処理を施す。
Thereafter, molding was carried out while holding at a molding pressure of 4 kg / mm 2 , frozen at −78 ° C., freeze-dried, and dried at 160 ° C. ×
A heat treatment is performed for 24 hours.

【0058】得られた成形体を減圧下で3wt%CMキチ
ン水溶液で含浸コーティングを行い、再度−78℃で凍
結後、凍結乾燥し、140℃×24hrの熱処理を施し
多孔性ブロック体を得た。
The obtained compact was impregnated and coated with a 3 wt% CM chitin aqueous solution under reduced pressure, frozen again at -78 ° C., freeze-dried, and subjected to a heat treatment at 140 ° C. × 24 hr to obtain a porous block. .

【0059】(比較例品4)5wt%CMキチン水溶液を
調整し、その溶液にHAP(粒径63〜150μm )を
1/5の重量比で混合し、混合物を金型に充填した状態
で液体窒素中に入れて瞬間凍結した。そして、凍結乾燥
し、160℃×24hrの熱処理を施し多孔性ブロック
体を得た。
(Comparative Example Product 4) A 5 wt% CM chitin aqueous solution was prepared, and HAP (particle size: 63 to 150 μm) was mixed with the solution at a weight ratio of 1/5. Flash frozen in nitrogen. Then, it was freeze-dried and subjected to a heat treatment at 160 ° C. for 24 hours to obtain a porous block.

【0060】特性評価 これら実施例品と比較例品について表面と中心部の各平
均孔径、および中心部の孔の平均長径と平均短径の差、
前記構造異方性、前記成形体の圧縮強度(X軸、Y軸、
Z軸)、中心部分のみの圧縮強度(X軸、Y軸、Z軸の
平均)を計測した。また、メスによるトリミングの際の
操作性についても評価した。
Characteristic evaluation For these examples and comparative examples, the average pore diameter of the surface and the central portion, the difference between the average major axis and the average minor axis of the central hole,
The structural anisotropy, the compressive strength of the molded body (X axis, Y axis,
The Z axis) and the compressive strength of only the central portion (average of the X axis, Y axis, and Z axis) were measured. In addition, the operability during trimming with a scalpel was also evaluated.

【0061】次に、実施例品と比較例品の成形体をテナ
ガザル脛骨の欠損部に埋入した。4週間後に埋入部の標
本を作製し、生物学的評価を行った。
Next, the molded products of the product of the example and the product of the comparative example were implanted into a defect of the tibia of a gibbon. Four weeks later, specimens of the implanted part were prepared and subjected to biological evaluation.

【0062】これらの特性評価結果を表1に示す。Table 1 shows the results of these characteristic evaluations.

【0063】[0063]

【表1】 [Table 1]

【0064】表1から明らかなように、実施例品はいず
れも表面の平均孔径が5〜150μm の範囲にあり、中
心部の孔の平均長径と平均短径の差が20μm 未満、且
つ構造異方性が1.1未満であるとともに、成形体の全
体としての圧縮強度(1/2体積に圧縮した時の初期圧
縮強度)の各X軸、Y軸、Z軸の差が20%以下であっ
た。さらに、多孔性ブロック体表面の初期圧縮強度値に
対する中心部の初期圧縮強度値の比が80〜100%で
あった。そして、これら実施例品はトリミングの操作性
が良好で、また、生物学的評価では、成形体が吸収され
るのとHAPの周りに骨形成が起こるのが同期的に進
み、新生骨形成の足場として有効に機能していることが
確認された。
As is clear from Table 1, all of the examples had an average surface pore diameter in the range of 5 to 150 μm, the difference between the average major axis and the average minor axis of the central hole was less than 20 μm, and the structure was different. When the anisotropy is less than 1.1 and the difference between the X-axis, Y-axis, and Z-axis of the overall compressive strength of the molded body (initial compressive strength when compressed to 1/2 volume) is 20% or less. there were. Further, the ratio of the initial compressive strength value at the center to the initial compressive strength value on the surface of the porous block was 80 to 100%. These examples have good operability of trimming. In biological evaluation, the absorption of the molded body and the formation of bone around the HAP proceed synchronously, and the formation of new bone It was confirmed that it was functioning effectively as a scaffold.

【0065】これに対して、比較例1は表面の平均孔径
が2μm と小さく、前記構造異方性が1.5と大きく、
成形体の圧縮強度(1/2体積に圧縮した時の初期圧縮
強度)の各X軸、Y軸、Z軸の差が20%より大きく、
さらに多孔性ブロック体表面の初期圧縮強度値に対する
中心部の初期圧縮強度値の比が80〜100%の範囲外
であった。そして、トリミングの操作性は良かったが、
生体内吸収性が悪く、骨形成が不十分となってしまっ
た。
On the other hand, in Comparative Example 1, the average pore diameter on the surface was as small as 2 μm, the structural anisotropy was as large as 1.5,
The difference between the X-axis, Y-axis, and Z-axis of the compression strength of the molded body (initial compression strength when compressed to 1/2 volume) is larger than 20%,
Further, the ratio of the initial compressive strength value at the center to the initial compressive strength value on the surface of the porous block was out of the range of 80 to 100%. And although the operability of trimming was good,
Poor bioabsorption and insufficient bone formation.

【0066】比較例2は、表面の平均孔径が150μm
より大きく、トリミングの際に型くずれが起こりやすか
った。比較例3は、表面と中心部の各平均孔径の差が5
0μm もあって且つ、前記構造異方性が1.5と大き
く、成形体の圧縮強度の各X軸、Y軸、Z軸の差が20
%より大きかった。また、多孔性ブロック体表面の初期
圧縮強度値に対する中心部の初期圧縮強度値の比が80
〜100%の範囲外であった。さらに、強度が小さくメ
スによるトリミングが困難であった。
In Comparative Example 2, the average pore diameter on the surface was 150 μm.
It was larger, and it was easy to lose shape during trimming. In Comparative Example 3, the difference between the average pore diameters of the surface and the center was 5%.
0 μm, the structural anisotropy is as large as 1.5, and the difference in compressive strength between the X-axis, Y-axis, and Z-axis of the compact is 20 μm.
%. The ratio of the initial compressive strength value at the center to the initial compressive strength value on the surface of the porous block body is 80%.
100100%. Furthermore, the strength was small and it was difficult to trim with a scalpel.

【0067】比較例4は、表面と中心部の各平均孔径の
差が80μm 以上もあって且つ、前記構造異方性が3.
6よりも大きく、成形体の圧縮強度の各X軸、Y軸、Z
軸の差が20%より大きかった。また、多孔性ブロック
体表面の初期圧縮強度値に対する中心部の初期圧縮強度
値の比が80〜100%の範囲外であった。そして、強
度は良好であったが、メスによるトリミングが困難であ
り、また、生物学的評価においても、HAPの集積とい
う不具合があった。
In Comparative Example 4, the difference in average pore diameter between the surface and the central portion was 80 μm or more, and the structural anisotropy was 3.
X-axis, Y-axis, Z
The difference in axes was greater than 20%. The ratio of the initial compressive strength value at the center to the initial compressive strength value on the surface of the porous block was out of the range of 80 to 100%. And although the strength was good, it was difficult to trim with a scalpel, and in the biological evaluation, there was a problem that HAP was accumulated.

【0068】[0068]

【発明の効果】叙上のように本発明によれば、上記本発
明の骨修復材は、成形体中のCMキチン繊維に配向が見
られず、HAP顆粒が均一に分散し、また、孔の方向性
もほぼ一様であり、どの方向でも一定の強度を有する。
また、体液の浸潤、細胞の進入がどの面からも均等に起
こる。したがって、欠損部への充填時に方向を気にせず
欠損部にフィットさせることができるとともに、理想的
な骨増生により良好な骨修復が可能となった。
As described above, according to the present invention, the bone repair material of the present invention has no orientation in the CM chitin fibers in the molded product, the HAP granules are uniformly dispersed, and Are almost uniform, and have a constant strength in any direction.
In addition, infiltration of body fluids and entry of cells occur evenly from any surface. Therefore, it is possible to fit the defective part without worrying about the direction when filling the defective part, and it is possible to perform a good bone repair by ideal bone growth.

【0069】なお、本発明によれば、付加的に行うコー
ティング処理により、メス等によるトリミングを行って
も型くずれやHAPの脱落が生じにくい。
In addition, according to the present invention, even if trimming is performed with a scalpel or the like, it is difficult for the mold to lose its shape or the HAP to fall off due to the additional coating treatment.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】CMキチンとリン酸カルシウム系材料顆粒
とを混合した多孔性ブロック体からなり、表面の平均孔
径が3〜150μm であるとともに、中心部における孔
の平均短径と平均長径の差が20μm 以下であることを
特徴とする骨修復材。
1. A porous block comprising a mixture of CM chitin and calcium phosphate-based material granules having an average pore diameter of 3 to 150 μm on the surface and a difference between the average minor axis and average major axis of pores at the center of 20 μm. A bone repair material characterized by the following.
【請求項2】上記多孔性ブロック体表面の初期圧縮強度
値に対する中心部の初期圧縮強度値の比が80〜100
%であることを特徴とする請求項1記載の骨修復材。
2. The ratio of the initial compressive strength value of the central portion to the initial compressive strength value of the surface of the porous block body is 80 to 100.
%. 2. The bone repair material according to claim 1, wherein
JP36828798A 1998-12-25 1998-12-25 Bone repair material Expired - Fee Related JP3559461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36828798A JP3559461B2 (en) 1998-12-25 1998-12-25 Bone repair material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36828798A JP3559461B2 (en) 1998-12-25 1998-12-25 Bone repair material

Publications (2)

Publication Number Publication Date
JP2000189510A true JP2000189510A (en) 2000-07-11
JP3559461B2 JP3559461B2 (en) 2004-09-02

Family

ID=18491441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36828798A Expired - Fee Related JP3559461B2 (en) 1998-12-25 1998-12-25 Bone repair material

Country Status (1)

Country Link
JP (1) JP3559461B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035101A1 (en) * 2002-09-09 2004-04-29 Kaneka Corporation Support for tissue regeneration and process for producing the same
US6903146B2 (en) 2001-05-02 2005-06-07 Pentax Corporation Prosthetic filler for a living body and method of manufacturing the prosthetic filler
JP2006006757A (en) * 2004-06-28 2006-01-12 Kyocera Corp Bone defect filler, and method for producing the same
CN103463683A (en) * 2013-09-09 2013-12-25 浙江大学 Preparation method of chitosan/calcium phosphate bone tissue healing porous scaffold
JP2018528888A (en) * 2015-07-17 2018-10-04 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique Method for producing porous monolith material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903146B2 (en) 2001-05-02 2005-06-07 Pentax Corporation Prosthetic filler for a living body and method of manufacturing the prosthetic filler
WO2004035101A1 (en) * 2002-09-09 2004-04-29 Kaneka Corporation Support for tissue regeneration and process for producing the same
US7445793B2 (en) 2002-09-09 2008-11-04 Kaneka Corporation Support for tissue regeneration and process for producing the same
JP2006006757A (en) * 2004-06-28 2006-01-12 Kyocera Corp Bone defect filler, and method for producing the same
CN103463683A (en) * 2013-09-09 2013-12-25 浙江大学 Preparation method of chitosan/calcium phosphate bone tissue healing porous scaffold
JP2018528888A (en) * 2015-07-17 2018-10-04 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique Method for producing porous monolith material
EP3325033B1 (en) * 2015-07-17 2022-01-12 Centre National De La Recherche Scientifique Method for producing a porous monolithic material

Also Published As

Publication number Publication date
JP3559461B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP4195485B2 (en) Osteogenic agent and production method
US4693986A (en) Ceramic process and products
JP3362267B2 (en) Bioimplant material and method for producing the same
US5034352A (en) Calcium phosphate materials
AU2005332589B2 (en) Shaped article
JP4358374B2 (en) Method for producing biological implant material
JPH10314295A (en) Bone filling material and its manufacture
DE69914207T2 (en) FOAM CERAMICS
US7326464B2 (en) Calcium phosphate microgranules
KR100892906B1 (en) Porous calcium phosphate ceramic and method for producing same
JP3559461B2 (en) Bone repair material
CA2969103C (en) Porous composite, bone regeneration material, and method for producing porous composite
CN114761048B (en) Collagen matrix or particle blend of bone substitute material
US20110097373A1 (en) Bone prosthetic material and method of manufacturing the same
JP6005046B2 (en) Porous body and method for producing porous body
JP4866765B2 (en) Calcium phosphate sintered porous body and calcium phosphate sintered porous granule
Sopyan et al. Fabrication of porous ceramic scaffolds via polymeric sponge method using sol-gel derived strontium doped hydroxyapatite powder
JP5793045B2 (en) Method for producing ceramic porous body
JP2783565B2 (en) Calcium phosphate compound granules and method for producing the same
JP2576404B2 (en) Bone defect, bone void and bone resorbing part manufacturing method
JP3470038B2 (en) Bone repair material and method for producing the same
JP3176241B2 (en) Bone repair material and its manufacturing method
KR950010812B1 (en) Process for the preparation of sintering apatite ceramics
KR101767458B1 (en) Ceramics with multi pore structure and method for manufacturing the same using spray pyrolysis and gas forming method
JPH02116684A (en) Production of porous body of calcium phosphate compound

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees