JP2000092899A - Controller of induction motor - Google Patents

Controller of induction motor

Info

Publication number
JP2000092899A
JP2000092899A JP10251717A JP25171798A JP2000092899A JP 2000092899 A JP2000092899 A JP 2000092899A JP 10251717 A JP10251717 A JP 10251717A JP 25171798 A JP25171798 A JP 25171798A JP 2000092899 A JP2000092899 A JP 2000092899A
Authority
JP
Japan
Prior art keywords
current
voltage
induction motor
output
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10251717A
Other languages
Japanese (ja)
Inventor
Kazuya Ogura
和也 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP10251717A priority Critical patent/JP2000092899A/en
Publication of JP2000092899A publication Critical patent/JP2000092899A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a controller of an induction motor whereby its torque is stabilized when an output voltage in its vector controlling device is saturated. SOLUTION: In a voltage-saturation compensating circuit 10 of this controller, an output V1 of a current controlling portion 5 is compared with an inverter DC-sensing voltage Vdc, and the difference voltage between them is integrated. Further, in the voltage-saturation compensating circuit 10, there is provided with a limiter 14 whereby the foregoing integrated voltage is subtracted from a magnetic-flux portion λd* of the current command of an induction motor when the inverter DC-sensing voltage Vdc exceeds the output V1 of the current controlling portion 5, and the subtraction quantity to be subtracted from the foregoing magnetic flux portion λd* is made zero when the voltage Vdc does not exceed the voltage V1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、汎用誘導電動機の
ベクトル制御装置にあって、出力電圧飽和時のトルク安
定化に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vector control device for a general-purpose induction motor, and more particularly to a method for stabilizing torque when output voltage is saturated.

【0002】[0002]

【従来の技術】図5は、従来のベクトル制御装置のブロ
ック図であり、PWMインバータ1からの出力電流にて
駆動される誘導電動機2と、この誘導電動機2の電流i
u ,i V ,iw を検出する検出器3と、この検出器3の
電流iu ,iV ,iw を磁束分とトルク分電流に変換す
る検出電流変換部4と、電流指令の磁束分Id * とトル
ク分電流Iq * と検出電流変換部4からの磁束分id
トルク分iq とが一致するようにこれらを加え合せ比例
積分(PI)制御を行なう電流制御部5と、この電流制
御部5による出力電圧vd * ,vq * を3相変換する変換
部6と、インバータ直流検出電圧を上限として制限をか
ける電圧リミッタとを有する。また、図5中、Kλ,K
T は増幅器における磁束−電流換算ゲイン、トルク−電
流換算ゲインを示す。
2. Description of the Related Art FIG. 5 is a block diagram of a conventional vector control device.
FIG. 3 is a diagram showing output current from the PWM inverter 1.
The induction motor 2 to be driven and the current i of the induction motor 2
u, I V, IwAnd a detector 3 for detecting
Current iu, IV, IwIs converted to flux and torque current.
The detected current converter 4 and the magnetic flux I of the current commandd *And Tor
Current Iq *And the magnetic flux component i from the detected current converter 4dWhen
Torque iqAnd add them so that
A current control unit 5 for performing integral (PI) control;
Output voltage v by control unit 5d *, Vq *To three-phase conversion
Part 6 and limit the inverter DC detection voltage as the upper limit
And a voltage limiter. In FIG. 5, Kλ, K
TIs the flux-current conversion gain and torque-current in the amplifier.
Indicates the flow conversion gain.

【0003】かかる図5に示す如き構成のベクトル制御
では、電流制御部5による制御を定格速度で行なうため
には電圧余裕が必要となる。つまり、入力電源電圧の変
動や回生運転での出力電圧増大によってインバータが出
力し得る最大電圧を超えて電圧を出力しようとする場
合、つまり電圧飽和状態では、電流制御部が正常に動作
できないので、トルク脈動やトルク低減が生じてしま
う。このために誘導電動機の定格電圧を電源電圧より例
えば一割程度抑えて電圧飽和が生じない電圧余裕を設け
ている。
In the vector control having such a configuration as shown in FIG. 5, a voltage margin is required for controlling the current control unit 5 at a rated speed. In other words, if the inverter attempts to output a voltage exceeding the maximum voltage that the inverter can output due to fluctuations in the input power supply voltage or an increase in the output voltage during regenerative operation, that is, in a voltage saturation state, the current control unit cannot operate normally. This causes torque pulsation and torque reduction. For this purpose, the rated voltage of the induction motor is suppressed, for example, by about 10% from the power supply voltage to provide a voltage margin that does not cause voltage saturation.

【0004】したがって、例えば交流入力電圧が400
Vであってもインバータ出力電圧は400Vは出力でき
ず、一割程度低い定格電圧となる。
Therefore, for example, when the AC input voltage is 400
Even if it is V, the inverter output voltage cannot output 400 V, and the rated voltage is about 10% lower.

【0005】[0005]

【発明が解決しようとする課題】上述の如く、仮に電圧
飽和を生じた場合電圧リミッタ処理により電圧が上げら
れず、電流制御部5が十分動作できず正弦波状の電流を
流すことができず、電流脈動によるトルクリップルが生
じ、また、負荷が印加されている状態で電圧飽和が生じ
た場合にはトルクを発生するための十分な電流が流れず
トルクが低減する。この結果、誘導電動機の定格電圧を
実際上電源電圧よりも一割程度低い定格電圧としてき
た。
As described above, if voltage saturation occurs, the voltage cannot be increased by the voltage limiter process, the current control unit 5 cannot operate sufficiently, and a sinusoidal current cannot flow. When torque ripple occurs due to current pulsation and voltage saturation occurs in a state where a load is applied, a sufficient current for generating torque does not flow and torque is reduced. As a result, the rated voltage of the induction motor has been reduced to about 10% lower than the power supply voltage in practice.

【0006】汎用誘導電動機のように電動機の定格電圧
設定と入力電圧設定とが等しい場合には、少しの電源電
圧変動にて電圧飽和を生ずるので、定格速度で定格トル
クを出力できない状況に陥る。このため、従来のベクト
ル制御インバータを汎用誘導電動機に対して適用するこ
とができない。
When the rated voltage setting of the motor is equal to the input voltage setting as in a general-purpose induction motor, a slight power supply voltage fluctuation causes voltage saturation, so that a situation occurs in which a rated torque cannot be output at a rated speed. For this reason, the conventional vector control inverter cannot be applied to a general-purpose induction motor.

【0007】本発明は、上述の問題点に鑑み、電圧飽和
を生じたとしても出力トルクを一定に保つようにし、汎
用誘導電動機にも適用することができる誘導電動機の制
御装置を提供する。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a control device for an induction motor which can maintain a constant output torque even when voltage saturation occurs and can be applied to a general-purpose induction motor.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成する本
発明は、次の発明特定事項を有する。第1の発明は、誘
導電動機と、この誘導電動機の電流を検出する検出器
と、この検出器による電流を磁束分及びトルク分の電流
に変換する検出電流変換部と、電流指令の磁束分及びト
ルク分の電流と前記検出電流変換部の電流値とを一致さ
せるように前記誘導電動機の電圧を制御する電流制御部
と、この電流制御部の出力をインバータにて変換する誘
導電動機の制御装置において、前記電流制御部の出力と
インバータ直流検出電圧とを比較し積分して、前記イン
バータ直流検出電圧が前記電流制御部の出力を上回った
場合には、前記電流指令の磁束分を前記積分した出力に
て差し引き、下回った場合には前記磁束分を差し引く量
をゼロとするリミッタをかける電圧飽和補償回路を備え
たことを特徴とする。
The present invention that achieves the above object has the following matters specifying the invention. A first invention is an induction motor, a detector for detecting a current of the induction motor, a detection current conversion unit for converting the current by the detector into a current for a magnetic flux and a torque, a magnetic flux for a current command, In a current control unit that controls the voltage of the induction motor so that the current of the torque and the current value of the detection current conversion unit match each other, and a control device of the induction motor that converts an output of the current control unit by an inverter. Comparing and integrating the output of the current control unit and the inverter DC detection voltage, and when the inverter DC detection voltage exceeds the output of the current control unit, the integrated output of the magnetic flux of the current command. And a voltage saturation compensating circuit for applying a limiter for setting the amount of subtraction of the magnetic flux to zero when the difference is smaller than zero.

【0009】第2の発明は、第1の発明にあって、積分
出力の増減により積分時定数を異なる値とするようにし
たことを特徴とする。
According to a second aspect of the present invention, in the first aspect, the integration time constant is set to a different value by increasing or decreasing the integration output.

【0010】第3の発明は、第1の発明にあって、積分
を比例積分処理としたことを特徴とする。
A third invention is the first invention, characterized in that the integral is a proportional integral process.

【0011】第4の発明は、第1の発明にあって、磁束
回復時には補償残量によって低減量のリミッタをかける
ようにしたことを特徴とする。
According to a fourth aspect of the present invention, in the first aspect, a limiter of a reduction amount is applied depending on a remaining amount of the compensation at the time of magnetic flux recovery.

【0012】[0012]

【発明の実施の形態】ここで、図1〜図4を参照して本
発明による実施の形態の例を説明する。本発明にあって
は、図5に示すブロックにて電圧飽和が生じると二次磁
束を低減させて出力電圧を低下させることになるが、出
力トルクを一定に保つためには、電流リミッタに余裕が
ある場合には電流を増大させて同じ出力を得ることがで
きる。つまり、図6に示すようにA特性にて電圧が大き
く電流が小さい場合、同一の出力トルクを得るにはB特
性のように電圧が小さく電流が大きくなるようにしても
良く、励磁電流を低減させて二次磁束を低減させること
で電圧飽和対策が実現できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will now be described with reference to FIGS. In the present invention, when voltage saturation occurs in the block shown in FIG. 5, the secondary magnetic flux is reduced and the output voltage is reduced. However, in order to keep the output torque constant, the current limiter has a margin. In some cases, the same output can be obtained by increasing the current. That is, when the voltage is large and the current is small in the A characteristic as shown in FIG. 6, the voltage may be small and the current may be large as in the B characteristic in order to obtain the same output torque. By reducing the secondary magnetic flux, voltage saturation countermeasures can be realized.

【0013】ここで、図1にて一例を述べる。なお、図
1にて図5と同一部分には同符号を付す。すなわち、図
5において、1はPWMインバータ、2は誘導電動機、
3は検出器、4は検出電流変換部、5は電流制御部、6
は変換部である。
Here, an example will be described with reference to FIG. In FIG. 1, the same parts as those in FIG. 5 are denoted by the same reference numerals. That is, in FIG. 5, 1 is a PWM inverter, 2 is an induction motor,
3 is a detector, 4 is a detected current converter, 5 is a current controller, 6
Is a conversion unit.

【0014】図1においては、更に電圧飽和補償回路1
0が加えられている。この電圧飽和補償回路10では、
まず電流制御部5の出力電圧ベクトルvd * ,vq * の大
きさを演算器11にて計算し、得られた値V1と直流検
出電圧Vdcとを加算器12にて比較し、出力電圧V1が
直流検出電圧Vdcを超えた場合、積分ゲインKi とサン
プルホ−ルドZ-1による前回の出力とを加え合わせた積
分器13の出力にて補償量を得る。そして、磁束指令λ
d * からこの補償量を引くことにより、電流制御部5の
出力電圧超過分に基づく磁束低減を行なっている。ま
た、出力電圧V1が直流検出電圧Vdcを下回った場合に
は、補償量がゼロになるまで積分動作を続け、補償量が
マイナスにならないようリミッタ14によりゼロリミッ
タがかけられる。
In FIG. 1, a voltage saturation compensation circuit 1
0 has been added. In this voltage saturation compensation circuit 10,
First, the magnitudes of the output voltage vectors v d * and v q * of the current control unit 5 are calculated by the calculator 11, and the obtained value V 1 is compared with the DC detection voltage V dc by the adder 12, and the output is calculated. If the voltage V1 exceeds the DC detection voltage V dc, the integral gain K i and sample e - obtaining a compensation amount at the output of the integrator 13 to fit plus the previous output by field Z -1. And the magnetic flux command λ
By subtracting this compensation amount from d *, the magnetic flux is reduced based on the excess output voltage of the current control unit 5. When the output voltage V1 falls below the DC detection voltage Vdc , the integration operation is continued until the amount of compensation becomes zero, and the limiter 14 applies a zero limiter so that the amount of compensation does not become negative.

【0015】このように電圧飽和補償回路10により、
たとえ電圧飽和時であっても電流がリミッタにかからな
い限り電圧飽和を生じない場合と同じトルクを得ること
ができる。また、同時に電圧リミッタがかからないため
電圧リミッタによる電流リップル(トルクリップル)を
生じない制御を実現できる。
As described above, the voltage saturation compensation circuit 10
Even at the time of voltage saturation, the same torque as in the case where voltage saturation does not occur can be obtained unless the current is applied to the limiter. In addition, since the voltage limiter is not applied at the same time, it is possible to realize control that does not cause current ripple (torque ripple) due to the voltage limiter.

【0016】図2は、図1の変形例を示している。すな
わち、電圧飽和時には、トルクの低減やトルクリップル
等の特性悪化が生じるため、なるべく早く電圧飽和状態
から抜け出したい。また、逆に電圧飽和状態から回復し
た場合には速やかに磁束を復帰させたいがあまりにも急
に復帰させるとトルク脈動を生じたり電圧飽和時の安定
性を損なう可能性がある。この結果、電圧飽和補償量の
増加時と減少時にて積分時定数を変えることにした。つ
まり、図2に示すように電圧飽和補償回路10にあっ
て、プラスのときは積分ゲインKi1を選択し、マイナス
のときは積分ゲインKi2を選択するものである。選択は
スイッチにより行なわれる。
FIG. 2 shows a modification of FIG. That is, at the time of voltage saturation, characteristics such as torque reduction and torque ripple are deteriorated. Conversely, when the voltage is recovered from the voltage saturation state, it is desired to return the magnetic flux quickly. However, if the voltage is recovered too quickly, torque pulsation may occur or stability at the time of voltage saturation may be impaired. As a result, the integration time constant is changed when the voltage saturation compensation amount increases and decreases. That is, as shown in FIG. 2, in the voltage saturation compensating circuit 10, when the value is positive, the integral gain Ki1 is selected, and when the value is negative, the integral gain Ki2 is selected. The selection is made by a switch.

【0017】図3は、補償応答を高速化したい場合のブ
ロックである。すなわち、回生時補償応答を高速化した
い場合、図2の積分制御(I制御)を図3の比例積分制
御(PI制御)とすることにより、応答の高速化を図る
ことができる。Ki1 ,Ki2は積分ゲインKp1 ,Kp2は比
例ゲインである。
FIG. 3 is a block diagram when it is desired to speed up the compensation response. That is, when it is desired to speed up the regenerative compensation response, the response can be sped up by replacing the integral control (I control) in FIG. 2 with the proportional integral control (PI control) in FIG. Ki1 and Ki2 are integral gains Kp1 and Kp2 are proportional gains.

【0018】図4は、補償量をゆっくり低減させたい場
合のブロックであり、図3に示す構成でリミッタを更に
備えたものである。すなわち、磁束の回復時には補償量
をゆっくり低減させたいために、補償量が減少する場合
には、補償残量により低減量のリミッタ処理を行なうも
のである。すなわち、補償量の残量による低減リミッタ
15及びこのリミッタ15により比例積分制御出力を制
限するリミッタ16を有する。
FIG. 4 is a block diagram when it is desired to slowly reduce the compensation amount. The block shown in FIG. 3 is further provided with a limiter. In other words, when the magnetic flux is recovered, the amount of compensation is desired to be reduced slowly, and when the amount of compensation is reduced, a limiter process of the amount of reduction is performed based on the remaining amount of compensation. That is, it has a limiter 15 for reducing the amount of compensation by the remaining amount and a limiter 16 for limiting the output of the proportional integration control by the limiter 15.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、次
の効果を有する。第1の発明は、誘導電動機と、この誘
導電動機の電流を検出する検出器と、この検出器による
電流を磁束分及びトルク分の電流に変換する検出電流変
換部と、電流指令の磁束分及びトルク分の電流と前記検
出電流変換部の電流値とを一致させるように前記誘導電
動機の電圧を制御する電流制御部と、この電流制御部の
出力をインバータにて変換する誘導電動機の制御装置に
おいて、前記電流制御部の出力とインバータ直流検出電
圧とを比較し積分して、前記インバータ直流検出電圧が
前記電流制御部の出力を上回った場合には、前記電流指
令の磁束分を前記積分した出力にて差し引き、下回った
場合には前記磁束分を差し引く量をゼロとするリミッタ
をかける電圧飽和補償回路を備えたことを特徴としたこ
とにより、仮に電圧飽和時でも電流がリミッタにかから
ない限り電圧飽和を生じない場合と同じトルクを得るこ
とができ、また同時に電圧リミッタにかからないため電
圧リミッタによる電流リップルを生じない制御が可能と
なる。
According to the present invention as described above, the following effects can be obtained. A first invention is an induction motor, a detector for detecting a current of the induction motor, a detection current conversion unit for converting the current by the detector into a current for a magnetic flux and a torque, a magnetic flux for a current command, In a current control unit that controls the voltage of the induction motor so that the current of the torque and the current value of the detection current conversion unit match each other, and a control device of the induction motor that converts an output of the current control unit by an inverter. Comparing and integrating the output of the current control unit and the inverter DC detection voltage, and when the inverter DC detection voltage exceeds the output of the current control unit, the integrated output of the magnetic flux of the current command. And a voltage saturation compensating circuit that applies a limiter that reduces the amount of subtraction of the magnetic flux to zero when the voltage falls below the threshold value. If no voltage saturation unless applied to the limiter same torque can be obtained and, also it is possible to control that does not cause current ripple due to the voltage limiter for not applied to the voltage limiter at the same time.

【0020】また、積分出力の増減により積分時定数を
異なる値としたことで、回生時と磁束回復時とで高速応
答やトルク脈動の低減や電圧飽和安定性を増加できる。
Further, by setting the integration time constant to a different value depending on the increase or decrease of the integration output, high-speed response, reduction of torque pulsation, and increase of voltage saturation stability between regeneration and magnetic flux recovery can be achieved.

【0021】更には、比例及び積分制御の採用により高
速化が可能となり、電圧回復時の低減リミッタの採用に
てゆっくりとした動作が可能となる。
Furthermore, the speed can be increased by employing the proportional and integral control, and the slow operation can be achieved by employing the reduction limiter at the time of voltage recovery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る一例のブロック図。FIG. 1 is a block diagram of an example according to the present invention.

【図2】電圧飽和補償回路の変形例を示すブロック図。FIG. 2 is a block diagram showing a modification of the voltage saturation compensation circuit.

【図3】電圧飽和補償回路の他の例を示すブロック図。FIG. 3 is a block diagram showing another example of the voltage saturation compensation circuit.

【図4】電圧飽和補償回路のその他の例を示すブロック
図。
FIG. 4 is a block diagram showing another example of the voltage saturation compensation circuit.

【図5】ベクトル制御の従来例を示すブロック図。FIG. 5 is a block diagram showing a conventional example of vector control.

【図6】電圧飽和時の電流ベクトルを示す説明図。FIG. 6 is an explanatory diagram showing a current vector at the time of voltage saturation.

【符号の説明】[Explanation of symbols]

10 電圧飽和補償回路 11 演算器 12 加算器 13 積分量 14 リミッタ Reference Signs List 10 voltage saturation compensation circuit 11 arithmetic unit 12 adder 13 integration amount 14 limiter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 誘導電動機と、この誘導電動機の電流を
検出する検出器と、この検出器による電流を磁束分及び
トルク分の電流に変換する検出電流変換部と、電流指令
の磁束分及びトルク分の電流と前記検出電流変換部の電
流値とを一致させるように前記誘導電動機の電圧を制御
する電流制御部と、この電流制御部の出力をインバータ
にて変換する誘導電動機の制御装置において、 前記電流制御部の出力とインバータ直流検出電圧とを比
較し積分して、前記インバータ直流検出電圧が前記電流
制御部の出力を上回った場合には、前記電流指令の磁束
分を前記積分した出力にて差し引き、下回った場合には
前記磁束分を差し引く量をゼロとするリミッタをかける
電圧飽和補償回路を備えたことを特徴とする誘導電動機
の制御装置。
1. An induction motor, a detector for detecting a current of the induction motor, a detection current converter for converting a current by the detector into a current for a magnetic flux and a torque, a magnetic flux and a torque for a current command A current control unit that controls the voltage of the induction motor so that the current of the current and the current value of the detection current conversion unit match each other, and a control device of the induction motor that converts an output of the current control unit by an inverter. The output of the current control unit and the inverter DC detection voltage are compared and integrated, and when the inverter DC detection voltage exceeds the output of the current control unit, the integrated flux component of the current command is converted to the integrated output. A control device for an induction motor, comprising: a voltage saturation compensating circuit for applying a limiter for setting the amount by which the magnetic flux is subtracted to zero when the difference is smaller than zero.
【請求項2】 積分出力の増減により積分時定数を異な
る値とするようにした請求項1記載の誘導電動機の制御
装置。
2. The control device for an induction motor according to claim 1, wherein the integral time constant is set to a different value depending on the increase or decrease of the integral output.
【請求項3】 積分を比例積分とした請求項1記載の誘
導電動機の制御装置。
3. The induction motor control device according to claim 1, wherein the integral is a proportional integral.
【請求項4】 磁束回復時には補償残量によって低減量
のリミッタをかけるようにした請求項1記載の誘導電動
機の制御装置。
4. The control device for an induction motor according to claim 1, wherein a limiter of a reduction amount is applied according to a remaining amount of the compensation when the magnetic flux is recovered.
JP10251717A 1998-09-07 1998-09-07 Controller of induction motor Pending JP2000092899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10251717A JP2000092899A (en) 1998-09-07 1998-09-07 Controller of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10251717A JP2000092899A (en) 1998-09-07 1998-09-07 Controller of induction motor

Publications (1)

Publication Number Publication Date
JP2000092899A true JP2000092899A (en) 2000-03-31

Family

ID=17226948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10251717A Pending JP2000092899A (en) 1998-09-07 1998-09-07 Controller of induction motor

Country Status (1)

Country Link
JP (1) JP2000092899A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009463A1 (en) * 2001-07-13 2003-01-30 Mitsubishi Denki Kabushiki Kaisha Speed control device for ac electric motor
US6861813B2 (en) 2001-11-15 2005-03-01 Nissan Motor Co., Ltd. Motor control apparatus and motor control method
JP2007259607A (en) * 2006-03-24 2007-10-04 Fuji Electric Fa Components & Systems Co Ltd Motor controller
JP2008079387A (en) * 2006-09-20 2008-04-03 Nsk Ltd Method and apparatus for motor control
CN112737429A (en) * 2020-12-24 2021-04-30 珠海格力节能环保制冷技术研究中心有限公司 Motor and current compensation control method and device thereof, storage medium and processor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009463A1 (en) * 2001-07-13 2003-01-30 Mitsubishi Denki Kabushiki Kaisha Speed control device for ac electric motor
GB2380337A (en) * 2001-07-13 2003-04-02 Mitsubishi Electric Corp Early entry
GB2380337B (en) * 2001-07-13 2004-08-18 Mitsubishi Electric Corp Speed control apparatus of AC motor
US6809492B2 (en) 2001-07-13 2004-10-26 Mitsubishi Denki Kabushiki Kaisha Speed control device for AC electric motor
JPWO2003009463A1 (en) * 2001-07-13 2004-11-11 三菱電機株式会社 AC motor speed control device
JP4507493B2 (en) * 2001-07-13 2010-07-21 三菱電機株式会社 AC motor speed control device
US6861813B2 (en) 2001-11-15 2005-03-01 Nissan Motor Co., Ltd. Motor control apparatus and motor control method
JP2007259607A (en) * 2006-03-24 2007-10-04 Fuji Electric Fa Components & Systems Co Ltd Motor controller
JP2008079387A (en) * 2006-09-20 2008-04-03 Nsk Ltd Method and apparatus for motor control
CN112737429A (en) * 2020-12-24 2021-04-30 珠海格力节能环保制冷技术研究中心有限公司 Motor and current compensation control method and device thereof, storage medium and processor
CN112737429B (en) * 2020-12-24 2022-07-15 珠海格力节能环保制冷技术研究中心有限公司 Motor and current compensation control method and device thereof, storage medium and processor

Similar Documents

Publication Publication Date Title
KR100442494B1 (en) Control method and controller for torque of inverter
US6809492B2 (en) Speed control device for AC electric motor
US4037144A (en) Control device for use in shunt motor
EP0165020B1 (en) Power converter for ac load
JP2002095298A (en) Motor controller
JP3289618B2 (en) Motor control device
JP2000092899A (en) Controller of induction motor
JP2003088194A (en) Motor drive system
CN108540039B (en) Inverter control apparatus
JPH10164883A (en) Inverter control apparatus
JP2006211894A (en) Method and system for limiting current output by speed controller which operates according to v/f control law
JP2001037236A (en) Voltage control apparatus of power converting apparatus
JP3635887B2 (en) Torque boost method for inverter device
JPH07177783A (en) Method for controlling voltage-type inverter device
JP6980134B1 (en) Power conversion device, power conversion control device, and control method
JP3302854B2 (en) Induction motor control device
US4651078A (en) Device for driving an induction motor
JP3752804B2 (en) AC machine control device
JP2003111498A (en) Controller without speed sensor for induction motor
JP2010119248A (en) Power generating system
JPS585439Y2 (en) Acceleration/deceleration compensation circuit for squirrel cage motor using inverter
JPH10257797A (en) Feedback control system of power converter
JP2006094629A (en) Semiconductor power conversion device and its control method
JPH10323095A (en) Current control equipment of inverter
JPS58195489A (en) Controller for motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070724