JP2000021408A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000021408A
JP2000021408A JP10185150A JP18515098A JP2000021408A JP 2000021408 A JP2000021408 A JP 2000021408A JP 10185150 A JP10185150 A JP 10185150A JP 18515098 A JP18515098 A JP 18515098A JP 2000021408 A JP2000021408 A JP 2000021408A
Authority
JP
Japan
Prior art keywords
mixture
binder
secondary battery
electrolyte secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10185150A
Other languages
Japanese (ja)
Inventor
Kenji Hara
賢二 原
Toshikazu Maejima
敏和 前島
Masahisa Okuda
昌久 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP10185150A priority Critical patent/JP2000021408A/en
Publication of JP2000021408A publication Critical patent/JP2000021408A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the charging and discharging cycle lifetime characteristics and stability of a nonaqueous electrolyte secondary battery, using the a manganese compound oxide for positive electrode. SOLUTION: This secondary battery has a positive electrode, including the lithium manganese compound oxide expressed with formula Li(1+x)Nm(2-x)MO4 (0<=x<=0.2, M is at least one or more kinds of metallic elements except for Mn, 0.01×(2-x)<=M<=0.2×(2-x)) in the mix, a negative electrode including the material capable of repeating the doping and de-doping of the lithium with charge and discharge in the mix, and the nonaqueous electrolyte, in which lithium ion can be moved. In this case, the mix of the positive electrode or the negative electrode includes the conductive material and the binder, and the binder includes thermoplastic resin having a carboxyl group or an amide group, and this resin is bridged by the cross-linking agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池に関し、特にその高容量化及びサイクル寿命特性の向
上を目的とした電極合剤の結着剤の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement in a binder for an electrode mixture for the purpose of increasing its capacity and improving cycle life characteristics.

【0002】[0002]

【従来の技術】近年、電子技術の進歩により電子機器の
性能が向上し、小型化、ポータブル化が進み電源として
高エネルギー密度の電池が望まれている。従来の二次電
池として、鉛蓄電池、ニッケルカドミウム電池が挙げら
れるが、エネルギー密度の高い電池を得るという点では
未だ不十分である。そこで、これらの電池に替わるもの
として、高エネルギー密度の非水電解液二次電池が開発
され、急速に普及している。一般の非水電解液二次電池
は、正極にリチウムコバルト複合酸化物等のリチウム複
合金属酸化物を、負極にはリチウムを吸蔵・放出可能で
優れた可とう性を持ちリチウムの析出の恐れが少ない炭
素材料を用い、これらと結着剤とをN−メチル−2−ピ
ロリドン(NMP)に分散させてスラリーとした合剤を
集電体である金属箔上に両面塗布し、溶剤を乾燥した後
ローラープレス機にて圧縮成形して正・負極板を得てい
る。結着剤としては主にポリフッ化ビニリデン(PVD
F)が多用されている。しかしながら、ポリフッ化ビニ
リデンを結着剤として使用した場合、集電体と合剤との
界面の密着及び合剤中の物質粒子相互間の密着性が劣る
ため、極板の裁断工程や捲回工程等において合剤の一部
が集電体から剥離・脱落して微少短絡や電池容量ばらつ
きの原因となる。また、充放電を繰り返すことにより特
に負極の炭素材料が膨張・収縮するため、合剤が集電体
から剥離・脱落したり、合剤中の物質粒子相互間の密着
の低下により、集電効率の低下、リチウムとの反応の不
均一が生じて電池容量を次第に低下させるという問題が
あった。また、特開平6−172452号公報に記載さ
れているようにフッ化ビニリデンを主成分とする単量体
と不飽和二塩基性モノエステルとを共重合して得られた
フッ化ビニリデン系共重合体を結着剤として使用した場
合は、集電体と合剤との界面の密着強度は向上するもの
の、高電圧下での異常温度上昇により前記フッ化ビニリ
デン系共重合体が分解されてフッ化水素を発生し、負極
板表面のリチウム層間化合物(GIC)や析出した金属
リチウムと反応して異常発熱し、電池を破裂・爆発に至
らしめる惧れがあった。
2. Description of the Related Art In recent years, the performance of electronic devices has been improved due to advances in electronic technology, miniaturization and portability have progressed, and high energy density batteries have been desired as power sources. Conventional secondary batteries include a lead storage battery and a nickel cadmium battery, but they are still insufficient in obtaining a battery having a high energy density. Therefore, as an alternative to these batteries, non-aqueous electrolyte secondary batteries with a high energy density have been developed and are rapidly becoming popular. General non-aqueous electrolyte secondary batteries have a lithium composite metal oxide such as a lithium-cobalt composite oxide for the positive electrode and lithium for the negative electrode. Using a small amount of carbon material, these and a binder were dispersed in N-methyl-2-pyrrolidone (NMP) to form a slurry, and the mixture was coated on both sides of a metal foil as a current collector, and the solvent was dried. Thereafter, the positive and negative electrode plates are obtained by compression molding with a roller press. The binder is mainly polyvinylidene fluoride (PVD)
F) is frequently used. However, when polyvinylidene fluoride is used as the binder, the adhesion at the interface between the current collector and the mixture and the adhesion between the material particles in the mixture are inferior. In such a case, a part of the mixture is peeled or dropped off from the current collector, which causes a minute short circuit or a variation in battery capacity. In addition, since the carbon material of the negative electrode expands and contracts in particular due to repeated charge and discharge, the mixture is peeled or dropped from the current collector, and the adhesion between the material particles in the mixture is reduced, so that the current collection efficiency is reduced And the reaction with lithium is not uniform, which causes a problem that the battery capacity is gradually reduced. Further, as described in JP-A-6-172452, a vinylidene fluoride copolymer obtained by copolymerizing a monomer containing vinylidene fluoride as a main component and an unsaturated dibasic monoester is used. When the union is used as a binder, the adhesion strength at the interface between the current collector and the union is improved, but the vinylidene fluoride copolymer is decomposed due to an abnormal temperature rise under a high voltage, and the fluoropolymer is decomposed. Hydrogen was generated and reacted with the lithium intercalation compound (GIC) on the surface of the negative electrode plate or precipitated metallic lithium, causing abnormal heat generation, which could cause the battery to burst or explode.

【0003】更に、上記のフッ素樹脂系以外の結着剤と
して、アクリルゴム、スチレンブタジエンゴム等の合成
ゴムやエポキシ樹脂等の熱硬化性樹脂が挙げられるが、
これらは単体で使用され、電解液に対して溶解若しくは
大きく膨潤して、集電体と合剤との界面の密着及び合剤
中の物質粒子相互間の密着性を長期間維持できず、ガラ
ス転移温度が高いためもあって、合剤中に吸着又は残存
した水分及びN−メチル−2−ピロリドンを除去するの
に時間を要する。また、熱硬化性樹脂を用いる場合は、
これを硬化させるために180℃以上の温度で加熱する
必要があり、硬化不足の場合は上記同様に耐電解液性が
著しく低下する。ジエン系合成ゴムは、耐電解液性を有
するものの合剤中での均一分散が非常に困難であるた
め、セルロースや界面活性剤等を添加して分散させる
と、これらが電解液に溶解して電池の充放電効率を低下
させる。
Further, examples of the binder other than the fluororesin-based resins include synthetic rubbers such as acrylic rubber and styrene-butadiene rubber, and thermosetting resins such as epoxy resins.
These are used alone, dissolve or largely swell in the electrolytic solution, and cannot maintain the adhesion at the interface between the current collector and the mixture and the adhesion between the material particles in the mixture for a long period of time. Due to the high transition temperature, it takes time to remove water and N-methyl-2-pyrrolidone adsorbed or remaining in the mixture. When using a thermosetting resin,
In order to cure this, it is necessary to heat at a temperature of 180 ° C. or higher. If the curing is insufficient, the resistance to the electrolytic solution is significantly reduced as described above. Diene-based synthetic rubbers have resistance to electrolytes, but they are very difficult to disperse evenly in the mixture, so when cellulose and surfactants are added and dispersed, they dissolve in the electrolyte. Decrease the charging and discharging efficiency of the battery.

【0004】[0004]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、集電体と合剤との界面の密着及び合剤中の
物質粒子相互間の密着性を向上させることにより、微少
短絡や電池容量ばらつきを抑制しつつ、結着剤添加量の
低減により、電池の高容量化を図りながら、充放電サイ
クルによる電池容量低下を改善し、かつ電池内温度が異
常昇温した場合でも破裂・爆発する惧れのない安全性の
高い非水電解液二次電池を提供することである。
The problem to be solved by the present invention is to improve the adhesion at the interface between the current collector and the mixture and the adhesion between the material particles in the mixture to achieve a fine short circuit. In addition to reducing battery capacity fluctuations and reducing the amount of binder added, the battery capacity is increased, the battery capacity is reduced due to charge / discharge cycles, and the battery ruptures even if the battery temperature rises abnormally. -To provide a highly safe non-aqueous electrolyte secondary battery that is not likely to explode.

【0005】[0005]

【課題を解決するための手段】本発明は、一般式Li
(1+x)Mn(2-x)MO4(0≦x≦0.2、MはMn以外の少なくと
も1種以上の金属元素で0.01×(2-x)≦M≦0.2×(2-x))
で示されるリチウムマンガン複合酸化物を合剤中に含む
正極と、充電・放電によりリチウムがドープ・脱ドープ
を繰り返し可能な物質を合剤中に含む負極と、リチウム
イオンの移動が可能な非水電解液とを有する非水電解液
二次電池であって、前記正極または負極の合剤中に導電
材と結着剤を含み、該結着剤はカルボキシル基又はアミ
ド基を有する熱可塑性樹脂を含み、該樹脂が架橋剤によ
り架橋されていること、前記結着剤の含有量は、前記合
剤中の1〜15重量%であること、前記架橋剤は、ポリイ
ソシアネート化合物、エポシキ樹脂、メラミン樹脂、金
属キレートの内の少なくとも1種であり、前記熱可塑性
樹脂100 重量部に対し、0.1〜10 重量部含まれることを
特徴とするものである。
According to the present invention, there is provided a compound of the general formula Li
(1 + x) Mn (2-x) MO 4 (0 ≦ x ≦ 0.2, M is at least one metal element other than Mn and 0.01 × (2-x) ≦ M ≦ 0.2 × (2-x) )
A positive electrode containing lithium manganese composite oxide in the mixture, a negative electrode containing a substance capable of repeatedly doping and undoping lithium by charge and discharge in the mixture, and a non-aqueous solution capable of moving lithium ions. A non-aqueous electrolyte secondary battery having an electrolyte solution, comprising a conductive material and a binder in the mixture of the positive electrode or the negative electrode, the binder comprises a thermoplastic resin having a carboxyl group or an amide group. The resin is cross-linked by a cross-linking agent, the content of the binder is 1 to 15% by weight in the mixture, and the cross-linking agent is a polyisocyanate compound, an epoxy resin, melamine. It is at least one of a resin and a metal chelate, and is contained in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the thermoplastic resin.

【0006】上記結着剤は、カルボキシル基又はアミド
基を有していることから、集電体である金属箔との密着
性に優れ、充放電を繰り返しても合剤が集電体から剥離
・脱落することなく充放電サイクルによる電池容量低下
を改善できる。また、架橋剤で架橋されていることによ
り、耐電解液性及び耐熱性に優れ、高温下で使用されて
も長期間集電体と合剤との界面の密着及び合剤中の物質
粒子相互間の密着強度を維持できる。集電体と合剤との
界面の密着及び合剤中の物質粒子相互間の密着強度が向
上すると、合剤中の結着剤量を低減でき、その結果活物
質量を増やすことが可能で、電池体積エネルギー密度を
増大できる。更に、結着剤の分子中にフッ素を含有して
いないことから、電池温度が異常に上昇しても分解する
ことがなく、電池が破裂・爆発する惧れがなく安全性が
高い。更にまた、正極のリチウムマンガン複合酸化物の
粒子表面の一部を覆うように結着剤が存在するため、正
極から溶出するMn量を低減でき、正極の電子伝導性を確
保し、一方で溶出したMnによる負極の劣化も抑制できる
ため、充放電サイクルによる電池容量低下を改善でき
る。
[0006] Since the binder has a carboxyl group or an amide group, it has excellent adhesion to a metal foil as a current collector, and the mixture is separated from the current collector even after repeated charge and discharge. -It is possible to improve battery capacity reduction due to charge / discharge cycles without falling off. In addition, by being cross-linked with a cross-linking agent, it has excellent resistance to electrolytes and heat, and even when used at high temperatures, adheres to the interface between the current collector and the mixture for a long period of time and interacts with the material particles in the mixture. The adhesion strength between them can be maintained. When the adhesion at the interface between the current collector and the mixture and the adhesion strength between the material particles in the mixture are improved, the amount of the binder in the mixture can be reduced, and as a result, the amount of the active material can be increased. As a result, the battery volume energy density can be increased. Furthermore, since fluorine is not contained in the molecules of the binder, the battery does not decompose even if the battery temperature rises abnormally, and there is no fear of the battery exploding or exploding, so that the safety is high. Furthermore, since a binder is present so as to cover a part of the surface of the lithium manganese composite oxide particles of the positive electrode, the amount of Mn eluted from the positive electrode can be reduced, and the electron conductivity of the positive electrode is secured, while the elution is performed. Since the deterioration of the negative electrode due to the Mn can also be suppressed, a decrease in battery capacity due to a charge / discharge cycle can be improved.

【0007】結着剤の熱可塑性樹脂としては、イソブチ
ルアクリレート、オクチルアクリレート、ノニルアクリ
レート、ラウリルアクリレート、ブチルメタクリレート
及び2−エチルヘキシルメタクリレート等のアクリル酸
及び/又はメタクリル酸のC4〜C12アルキルエステル
と、メタクリル酸、イタコン酸、マレイン酸、フマル酸
やアクリルアミド及びメタクリルアミド等のポリアクリ
ル酸等のカルボキシル基又はアミド基の官能基を有する
不飽和単量体との共重合体やポリアミドやポリアミドイ
ミドやポリアミドビスマレイミドやポリブチレンテレフ
タレート、ポリエチレンテレフタレートなどのポリエス
テルなどが挙げられ、これら単独のほか併用しても構わ
ない。
Examples of the thermoplastic resin as the binder include C4-C12 alkyl esters of acrylic acid and / or methacrylic acid such as isobutyl acrylate, octyl acrylate, nonyl acrylate, lauryl acrylate, butyl methacrylate and 2-ethylhexyl methacrylate, and methacrylic acid. Copolymers with unsaturated monomers having a carboxyl group or amide group functional group such as acid, itaconic acid, maleic acid, fumaric acid, polyacrylic acid such as acrylamide and methacrylamide, and polyamides, polyamideimides, and polyamidebis Examples thereof include polyesters such as maleimide, polybutylene terephthalate, and polyethylene terephthalate. These may be used alone or in combination.

【0008】架橋剤としては、ポリイソシアネート化合
物のほか、エポシキ樹脂、メラミン樹脂及び金属キレー
ト等が挙げられ、ポリイソシアネート化合物としては、
トリレンジイソシアネート、ヘキサメチレンイソシアネ
ート、イソホロンジイソシアネート及びこれらの誘導体
が使用できる。
Examples of the crosslinking agent include an epoxy resin, a melamine resin, and a metal chelate in addition to a polyisocyanate compound.
Tolylene diisocyanate, hexamethylene isocyanate, isophorone diisocyanate and derivatives thereof can be used.

【0009】[0009]

【発明の実施の形態】1.結着剤の作製 n−ブチルアクリレート90重量部、アクリル酸10重量
部、アゾビスイソブチルニトリル0.3重量部、酢酸エチ
ル100重量部を混合する。この溶液の30%を温度計、
攪拌機、ビューレット及び還流装置の備わったフラスコ
に入れ、攪拌しながら80℃まで加熱する。80℃で1
時間攪拌させた後、攪拌を続け、残りの溶液を1時間か
けて徐々に加える。全て溶液を加えた後、更に2時間攪
拌・還流を続けてカルボキシル基の官能基を有するアク
リル系共重合体を作製した。
BEST MODE FOR CARRYING OUT THE INVENTION Preparation of binder 90 parts by weight of n-butyl acrylate, 10 parts by weight of acrylic acid, 0.3 parts by weight of azobisisobutylnitrile and 100 parts by weight of ethyl acetate are mixed. 30% of this solution is thermometer,
Place in a flask equipped with a stirrer, burette and reflux device and heat to 80 ° C. with stirring. 1 at 80 ° C
After stirring for an hour, stirring is continued and the remaining solution is added slowly over 1 hour. After all the solution was added, stirring and reflux were continued for another 2 hours to produce an acrylic copolymer having a carboxyl functional group.

【0010】2.正極の作製 平均粒径10μmのマンガン酸リチウムと平均粒径3μmの
炭素粉末の導電材とカルボキシル基又はアミド基を有す
るアクリル系共重合体の結着剤とポリイソシアネート化
合物の架橋剤とをN−メチル−2−ピロリドンに投入混
合して、スラリー状の合剤溶液を作製する。厚み20μm
のアルミニウム箔の両面にこの合剤溶液を塗布、乾燥、
養生(結着剤の架橋)、圧延し、その後54mm幅に切断
して短冊状の正極シートを作製した。本実施例では Li
1.107Mn1.8934という組成のマンガン酸リチウムを用
いたが、可逆的にリチウムイオンを挿入・放出できる遷
移金属酸化物であればよい。また、Li,V,Cr,Fe,C
o,Ni,Mo,W,Zn,B,Mgから選ばれる少なくとも1
種以上の金属でマンガンサイトまたはリチウムサイトを
置換したリチウムマンガン複合酸化物でも良い。
[0010] 2. Preparation of Positive Electrode A lithium-manganate having an average particle diameter of 10 μm, a conductive material of carbon powder having an average particle diameter of 3 μm, a binder of an acrylic copolymer having a carboxyl group or an amide group, and a cross-linking agent of a polyisocyanate compound were used. The mixture is added to and mixed with methyl-2-pyrrolidone to prepare a slurry mixture solution. 20μm thickness
Apply this mixture solution to both sides of the aluminum foil of
Curing (crosslinking of the binder), rolling, and then cutting to a width of 54 mm produced a strip-shaped positive electrode sheet. In this embodiment, Li
Although lithium manganate having a composition of 1.107 Mn 1.893 O 4 was used, any transition metal oxide capable of reversibly inserting and releasing lithium ions may be used. Li, V, Cr, Fe, C
at least one selected from o, Ni, Mo, W, Zn, B, Mg
A lithium manganese composite oxide in which a manganese site or a lithium site is substituted with at least one kind of metal may be used.

【0011】3.負極の作製 平均粒径20μmの非晶質炭素の負極炭素材料とカルボキ
シル基又はアミド基を有するアクリル系共重合体の結着
剤とポリイソシアネート化合物の架橋剤とをN−メチル
−2−ピロリドンに投入混合して、スラリー状の合剤溶
液を作製する。厚み10μmの銅箔の両面にこの合剤溶液
を塗布、乾燥、養生(結着剤の架橋)、圧延し、その後
56mm幅に切断して短冊状の負極シートを作製した。負
極炭素材料としてはピッチコークス、石油コークス、黒
鉛、炭素繊維、活性炭等や又はこれらの混合物でも良
い。
3. Preparation of Negative Electrode A negative carbon material of amorphous carbon having an average particle diameter of 20 μm, a binder of an acrylic copolymer having a carboxyl group or an amide group, and a crosslinking agent of a polyisocyanate compound were converted into N-methyl-2-pyrrolidone. The mixture is charged and mixed to prepare a slurry mixture solution. This mixture solution is applied to both sides of a 10 μm thick copper foil, dried, cured (crosslinking of binder), rolled, and then
It was cut to a width of 56 mm to produce a strip-shaped negative electrode sheet. The negative electrode carbon material may be pitch coke, petroleum coke, graphite, carbon fiber, activated carbon, or a mixture thereof.

【0012】4.電解液の作製 プロピレンカーボネートとジメチルカーボネートを体積
比で1:1に混合した有機溶媒に電解質のLiPF6を1m
ol/lの濃度で溶解して電解液を作製した。有機溶媒とし
ては、プロピレンカーボネイト、エチレンカーボネイ
ト、1、2―ジメトキシエタン、1、2―ジエトキシエ
タン、ジエチルカーボネイト、γ−ブチルラクトン、テ
トラヒドロフラン、ジエチルエーテル、スルホラン、ア
セトニトリル等の単独若しくはこれらのうちの2種類以
上の混合溶媒が使用でき、電解質もLiClO4、LiPF
6、LiPF4、LiBF4、LiCl、LiBr、CH3SO3Li、Li
AsF6等が使用できる。
4. Preparation of Electrolyte Solution 1 m of electrolyte LiPF 6 was added to an organic solvent in which propylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1.
The solution was dissolved at a concentration of ol / l to prepare an electrolytic solution. As the organic solvent, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl carbonate, γ-butyl lactone, tetrahydrofuran, diethyl ether, sulfolane, acetonitrile, etc. alone or among these Two or more mixed solvents can be used, and the electrolyte is LiClO 4 , LiPF
6, LiPF 4 , LiBF 4 , LiCl, LiBr, CH 3 SO 3 Li, Li
AsF 6 or the like can be used.

【0013】4.電池の作製 上記で作製した正極と負極に厚さ25μm幅58mmのポリ
エチレン微多孔膜からなるセパレータを介して捲回し、
スパイラル状の捲回群を作製する。この捲回群を電池缶
に挿入し、予め負極集電体の銅箔に溶接しておいたニッ
ケルタブ端子を電池缶底に溶接する。電解液を電池容器
に5ml注入した。次に、予め正極集電体のアルミニウ
ム箔に溶接したアルミニウムタブ端子を蓋に溶接して、
蓋を絶縁性のガスケットを介して電池缶の上部に配置さ
せ、この部分をかしめて密閉し、直径18mm、高さ65m
mの円筒型電池を作製した。
4. Preparation of the battery The positive electrode and the negative electrode prepared above were wound around a separator made of a microporous polyethylene film having a thickness of 25 μm and a width of 58 mm,
A spiral wound group is prepared. The wound group is inserted into a battery can, and a nickel tab terminal previously welded to the copper foil of the negative electrode current collector is welded to the bottom of the battery can. 5 ml of the electrolyte was injected into the battery container. Next, an aluminum tab terminal previously welded to the aluminum foil of the positive electrode current collector was welded to the lid,
The lid is placed on top of the battery can via an insulating gasket, this part is caulked and sealed, diameter 18 mm, height 65 m
m was manufactured.

【0014】[0014]

【実施例】アクリル系共重合体の結着剤に対するポリイ
ソシアネート化合物の架橋剤の添加量の異なる負極板の
密着強度を図1に示す。架橋剤の添加量が多くなるに連
れて集電体と合剤との界面の密着及び合剤中の物質粒子
相互間の密着強度の低下、過剰な架橋剤の残存による充
放電効率の低下、早期から結着剤のゲル化が始まる等の
問題が生じる。また、架橋剤の添加量が少なくなると結
着剤の架橋密度が低下し、その結果耐電解液性が劣る。
従って、結着剤100重量部に対し0.1〜10重量部、好まし
くは0.5〜5重量部添加することが望ましい。
EXAMPLE FIG. 1 shows the adhesion strength of negative electrode plates having different addition amounts of a crosslinking agent of a polyisocyanate compound to a binder of an acrylic copolymer. As the amount of the cross-linking agent increases, the adhesion of the interface between the current collector and the mixture and the reduction in the adhesion strength between the material particles in the mixture, and the decrease in charge / discharge efficiency due to the excessive cross-linking agent remaining, Problems such as the gelling of the binder start at an early stage occur. In addition, when the amount of the crosslinking agent added is small, the crosslinking density of the binder is reduced, and as a result, the electrolyte resistance is poor.
Therefore, it is desirable to add 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the binder.

【0015】次に負極合剤に対するアクリル系共重合体
の結着剤の添加量の異なる負極板の密着強度を図2に示
す。結着剤の添加量が多くなるに連れて密着強度は向上
している。結着剤の添加量は1〜15重量%で、好ましく
は3〜10重量%である。負極合剤に対し、結着剤を15重
量%以上添加しても密着強度は変わらず、むしろ体積エ
ネルギー密度を低下させる。
Next, FIG. 2 shows the adhesion strength of the negative electrode plates with different addition amounts of the binder of the acrylic copolymer to the negative electrode mixture. As the amount of binder added increases, the adhesion strength increases. The amount of the binder added is 1 to 15% by weight, preferably 3 to 10% by weight. Even if 15% by weight or more of the binder is added to the negative electrode mixture, the adhesion strength is not changed, but the volume energy density is rather lowered.

【0016】作製した電池を、充電電流 1400mA、制
限電圧4.2Vで定電圧充電した後、放電電流280mAで放
電終止電圧2.5Vに至るまで放電して初回容量を測定し
た。この充放電を1サイクルとして、周囲温度50℃で
同様の充放電を初回容量の70%以下に至るまで繰り返し
た。結果を図3に示す。本発明の結着剤を使用した非水
電解質二次電池は、集電体と合剤層界面及び合剤層相互
間の優れた密着性を維持しているため、500サイクル経
過後でもほとんど容量低下は認められない。
The prepared battery was charged at a constant current of 1400 mA and a limit voltage of 4.2 V, and then discharged at a discharge current of 280 mA until the discharge end voltage reached 2.5 V to measure the initial capacity. With this charge / discharge as one cycle, the same charge / discharge was repeated at an ambient temperature of 50 ° C. until the capacity reached 70% or less of the initial capacity. The results are shown in FIG. The non-aqueous electrolyte secondary battery using the binder of the present invention maintains excellent adhesion between the current collector and the mixture layer interface and between the mixture layers. No decrease is observed.

【0017】[0017]

【発明の効果】本発明の非水電解質二次電池によれば、
結着剤がカルボキシル基又はアミド基を有していること
から、集電体である金属箔との密着性に優れ、充放電を
繰り返しても合剤が集電体から剥離・脱落することなく
充放電サイクルによる電池容量低下を改善できる。ま
た、架橋剤で架橋されていることにより、耐電解液性及
び耐熱性に優れ、高温下で使用されても長期間集電体と
合剤との界面の密着及び合剤中の物質粒子相互間の密着
強度を維持できる。集電体と合剤との界面の密着及び合
剤中の物質粒子相互間の密着強度が向上すると、合剤中
の結着剤量を低減でき、その結果活物質量を増やすこと
が可能で、電池体積エネルギー密度を増大できる。更
に、結着剤の分子中にフッ素を含有していないことか
ら、電池温度が異常に上昇しても分解することがなく、
電池が破裂・爆発する惧れがなく安全性が高い。更にま
た、正極のリチウムマンガン複合酸化物の粒子表面の一
部を覆うように結着剤が存在するため、正極から溶出す
るMn量を低減でき、正極の電子伝導性を確保し、一方で
溶出したMnによる負極の劣化も抑制できるため、充放電
サイクルによる電池容量低下を改善できる。
According to the non-aqueous electrolyte secondary battery of the present invention,
Because the binder has a carboxyl group or an amide group, it has excellent adhesion to the metal foil that is the current collector, and the mixture does not peel off or fall off the current collector even after repeated charge and discharge. Battery capacity reduction due to charge / discharge cycles can be improved. In addition, by being cross-linked with a cross-linking agent, it has excellent resistance to electrolytes and heat, and even when used at high temperatures, adheres to the interface between the current collector and the mixture for a long period of time and interacts with the material particles in the mixture. The adhesion strength between them can be maintained. When the adhesion at the interface between the current collector and the mixture and the adhesion strength between the material particles in the mixture are improved, the amount of the binder in the mixture can be reduced, and as a result, the amount of the active material can be increased. As a result, the battery volume energy density can be increased. Furthermore, since fluorine is not contained in the molecules of the binder, it does not decompose even if the battery temperature rises abnormally,
High safety with no risk of the battery exploding. Furthermore, since a binder is present so as to cover a part of the surface of the lithium manganese composite oxide particles of the positive electrode, the amount of Mn eluted from the positive electrode can be reduced, and the electron conductivity of the positive electrode is secured, while the elution is performed. Since the deterioration of the negative electrode due to the Mn can also be suppressed, a decrease in battery capacity due to a charge / discharge cycle can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例で用いた結着剤に対する架橋剤の割合
と負極密着強度との関係を示した図である。
FIG. 1 is a graph showing the relationship between the ratio of a crosslinking agent to a binder used in this example and the adhesive strength of a negative electrode.

【図2】本実施例で用いた負極合剤中の結着剤の割合と
負極密着強度との関係を示した図である。
FIG. 2 is a diagram showing a relationship between a ratio of a binder in a negative electrode mixture used in the present example and a negative electrode adhesion strength.

【図3】本実施例の非水電解液二次電池のサイクル寿命
試験結果を示した図である。
FIG. 3 is a diagram showing a cycle life test result of the nonaqueous electrolyte secondary battery of the present example.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA02 AA04 AA10 BB05 BB11 BC01 BD00 BD04 5H014 AA02 EE01 EE10 HH00 HH01 5H029 AJ03 AJ05 AJ12 AK03 AL06 AM03 AM07 DJ08 EJ12 HJ01 HJ02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA02 AA04 AA10 BB05 BB11 BC01 BD00 BD04 5H014 AA02 EE01 EE10 HH00 HH01 5H029 AJ03 AJ05 AJ12 AK03 AL06 AM03 AM07 DJ08 EJ12 HJ01 HJ02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一般式Li(1+x)Mn(2-x)MO4(0≦x≦0.2、
MはMn以外の少なくとも1種以上の金属元素で0.01×(2
-x)≦M≦0.2×(2-x))で示されるリチウムマンガン複合
酸化物を合剤中に含む正極と、充電・放電によりリチウ
ムがドープ・脱ドープを繰り返し可能な物質を合剤中に
含む負極と、リチウムイオンの移動が可能な非水電解液
とを有する非水電解液二次電池であって、前記正極また
は負極の合剤中に導電材と結着剤を含み、該結着剤はカ
ルボキシル基又はアミド基を有する熱可塑性樹脂を含
み、該樹脂が架橋剤により架橋されていることを特徴と
する非水電解液二次電池。
(1) The general formula Li (1 + x) Mn (2-x) MO 4 (0 ≦ x ≦ 0.2,
M is at least one metal element other than Mn and is 0.01 × (2
-x) ≦ M ≦ 0.2 × (2-x)) A positive electrode containing a lithium manganese composite oxide in the mixture and a substance capable of repeating doping and undoping of lithium by charge and discharge in the mixture A non-aqueous electrolyte secondary battery having a negative electrode and a non-aqueous electrolyte capable of moving lithium ions, wherein the mixture of the positive electrode or the negative electrode contains a conductive material and a binder, and A non-aqueous electrolyte secondary battery, wherein the adhesive comprises a thermoplastic resin having a carboxyl group or an amide group, and the resin is cross-linked by a cross-linking agent.
【請求項2】前記結着剤の含有量は、前記合剤中の1〜
15重量%であることを特徴とする請求項1記載の非水電
解液二次電池。
2. The content of the binder is 1 to 3 in the mixture.
The non-aqueous electrolyte secondary battery according to claim 1, wherein the content is 15% by weight.
【請求項3】前記架橋剤は、ポリイソシアネート化合
物、エポシキ樹脂、メラミン樹脂、金属キレートの内の
少なくとも1種であり、前記熱可塑性樹脂100重量部に
対し、0.1〜10 重量部含まれることを特徴とする請求項
1記載の非水電解液二次電池。
3. The crosslinking agent is at least one of a polyisocyanate compound, an epoxy resin, a melamine resin, and a metal chelate, and is contained in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the thermoplastic resin. The non-aqueous electrolyte secondary battery according to claim 1.
JP10185150A 1998-06-30 1998-06-30 Nonaqueous electrolyte secondary battery Pending JP2000021408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10185150A JP2000021408A (en) 1998-06-30 1998-06-30 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10185150A JP2000021408A (en) 1998-06-30 1998-06-30 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000021408A true JP2000021408A (en) 2000-01-21

Family

ID=16165744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10185150A Pending JP2000021408A (en) 1998-06-30 1998-06-30 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000021408A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256616A (en) * 1999-03-09 2000-09-19 Hitachi Ltd Non-aqueous solvent type binder composition, electrode formed therewith, and non-aqueous solvent type secondary battery
JP2000277110A (en) * 1999-03-24 2000-10-06 Sanyo Electric Co Ltd Nonaqueous secondary battery
JP2010514140A (en) * 2006-12-21 2010-04-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Electrode binder composition and electrode for lithium ion battery and electric double layer capacitor
WO2011002057A1 (en) * 2009-07-01 2011-01-06 日本ゼオン株式会社 Positive electrode for secondary batteries, and secondary battery
US8455385B2 (en) 2008-12-26 2013-06-04 Tdk Corporation Method of manufacturing lithium-ion secondary battery positive electrode, method of manufacturing lithium-ion secondary battery, lithium-ion secondary battery positive electrode, and lithium-ion secondary battery
WO2015037558A1 (en) * 2013-09-13 2015-03-19 日立マクセル株式会社 Electrode mix coating material, electrode for nonaqueous electrolyte secondary cell, method for producing electrode for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
WO2015115201A1 (en) * 2014-01-29 2015-08-06 日本ゼオン株式会社 Electrode for electrochemical elements, and electrochemical element
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9287563B2 (en) 2011-01-20 2016-03-15 Samsung Sdi Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery including the same
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
JP2017526104A (en) * 2014-07-11 2017-09-07 エルジー・ケム・リミテッド Positive electrode and manufacturing method thereof
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
WO2019054350A1 (en) * 2017-09-12 2019-03-21 住友精化株式会社 Electrode mixture for non-aqueous electrolyte secondary battery
CN110268563A (en) * 2017-02-24 2019-09-20 日本瑞翁株式会社 Non-aqueous secondary battery adhesive composition, non-aqueous secondary battery functional layer paste compound, non-aqueous secondary battery functional layer and non-aqueous secondary battery
JP2019527919A (en) * 2017-03-22 2019-10-03 エルジー・ケム・リミテッド Electrode for all-solid battery and method for producing the same
KR20200133171A (en) * 2019-05-17 2020-11-26 한국기계연구원 Additive for secondary battery, electrode slurry for secondary battery containg the same, and secondary battery
CN112567568A (en) * 2018-08-24 2021-03-26 日本瑞翁株式会社 Slurry composition for functional layer of nonaqueous secondary battery, functional layer for nonaqueous secondary battery, separator for nonaqueous secondary battery, and nonaqueous secondary battery

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256616A (en) * 1999-03-09 2000-09-19 Hitachi Ltd Non-aqueous solvent type binder composition, electrode formed therewith, and non-aqueous solvent type secondary battery
JP2000277110A (en) * 1999-03-24 2000-10-06 Sanyo Electric Co Ltd Nonaqueous secondary battery
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
JP2010514140A (en) * 2006-12-21 2010-04-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Electrode binder composition and electrode for lithium ion battery and electric double layer capacitor
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US8455385B2 (en) 2008-12-26 2013-06-04 Tdk Corporation Method of manufacturing lithium-ion secondary battery positive electrode, method of manufacturing lithium-ion secondary battery, lithium-ion secondary battery positive electrode, and lithium-ion secondary battery
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
WO2011002057A1 (en) * 2009-07-01 2011-01-06 日本ゼオン株式会社 Positive electrode for secondary batteries, and secondary battery
JP5534245B2 (en) * 2009-07-01 2014-06-25 日本ゼオン株式会社 Positive electrode for secondary battery and secondary battery
JPWO2011002057A1 (en) * 2009-07-01 2012-12-13 日本ゼオン株式会社 Positive electrode for secondary battery and secondary battery
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
US9287563B2 (en) 2011-01-20 2016-03-15 Samsung Sdi Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery including the same
WO2015037558A1 (en) * 2013-09-13 2015-03-19 日立マクセル株式会社 Electrode mix coating material, electrode for nonaqueous electrolyte secondary cell, method for producing electrode for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
WO2015115201A1 (en) * 2014-01-29 2015-08-06 日本ゼオン株式会社 Electrode for electrochemical elements, and electrochemical element
JP2020126856A (en) * 2014-07-11 2020-08-20 エルジー・ケム・リミテッド Positive electrode and manufacturing method thereof
US11976218B2 (en) 2014-07-11 2024-05-07 Lg Energy Solution, Ltd. Cathode and method of manufacturing the same
JP7062204B2 (en) 2014-07-11 2022-05-06 エルジー エナジー ソリューション リミテッド Positive electrode and its manufacturing method
JP2017526104A (en) * 2014-07-11 2017-09-07 エルジー・ケム・リミテッド Positive electrode and manufacturing method thereof
CN110268563A (en) * 2017-02-24 2019-09-20 日本瑞翁株式会社 Non-aqueous secondary battery adhesive composition, non-aqueous secondary battery functional layer paste compound, non-aqueous secondary battery functional layer and non-aqueous secondary battery
JP2019527919A (en) * 2017-03-22 2019-10-03 エルジー・ケム・リミテッド Electrode for all-solid battery and method for producing the same
CN110800141A (en) * 2017-09-12 2020-02-14 住友精化株式会社 Electrode mixture for nonaqueous electrolyte secondary battery
CN110832679A (en) * 2017-09-12 2020-02-21 住友精化株式会社 Electrode mixture for nonaqueous electrolyte secondary battery
WO2019054348A1 (en) * 2017-09-12 2019-03-21 住友精化株式会社 Electrode mixture for non-aqueous electrolyte secondary battery
CN110800141B (en) * 2017-09-12 2024-01-02 住友精化株式会社 Electrode mixture for nonaqueous electrolyte secondary battery
WO2019054350A1 (en) * 2017-09-12 2019-03-21 住友精化株式会社 Electrode mixture for non-aqueous electrolyte secondary battery
CN112567568A (en) * 2018-08-24 2021-03-26 日本瑞翁株式会社 Slurry composition for functional layer of nonaqueous secondary battery, functional layer for nonaqueous secondary battery, separator for nonaqueous secondary battery, and nonaqueous secondary battery
KR20200133171A (en) * 2019-05-17 2020-11-26 한국기계연구원 Additive for secondary battery, electrode slurry for secondary battery containg the same, and secondary battery
KR102269316B1 (en) 2019-05-17 2021-06-29 한국재료연구원 Additive for secondary battery, electrode slurry for secondary battery containg the same, and secondary battery

Similar Documents

Publication Publication Date Title
JP2000021408A (en) Nonaqueous electrolyte secondary battery
JP3959929B2 (en) Positive electrode and non-aqueous electrolyte battery
JP4116784B2 (en) Negative electrode coating composition, negative electrode plate, method for producing the same, and nonaqueous electrolyte secondary battery
JP2010080407A (en) Positive electrode active material, positive electrode, and non-aqueous electrolyte secondary battery
EP2056379A1 (en) Negative electrode for lithium rechargeable battery and lithium rechargeable battery adopting the same
JP2004281055A (en) Binder resin composition for battery, mix slurry, electrode and battery using resin containing carboxyl group
JP2006066243A (en) Method of manufacturing electrode plate for non-aqueous electrolytic liquid secondary battery, and non-aqueous electrolytic liquid secondary battery using electrode plate
JP2007103066A (en) Non-aqueous electrolyte secondary battery and electrode plate therefor
JP2002025617A (en) Nonaqueous electrolyte secondary battery
JP4016464B2 (en) Gel electrolyte secondary battery
KR101142533B1 (en) Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof
JP2004006188A (en) Non-aqueous electrolyte battery
JP2004281234A (en) Slurry for electrode mixture layer, and electrode plate, and nonaqueous electrolyte solution battery
JP2000006439A (en) Cathode plate and anode plate for non-aqueous electrolyte secondary cell
JP2007059206A (en) Anode and battery
JPH09237625A (en) Electrode plate for nonaqueous electrolyte secondary battery and manufacture thereof
JP3383454B2 (en) Lithium secondary battery
JP3303319B2 (en) Non-aqueous electrolyte secondary battery
JP2002033132A (en) Nonaqueous secondary battery
JP3303320B2 (en) Non-aqueous electrolyte secondary battery
JPH07201315A (en) Nonaqueous electrolyte secondary battery
JP2003173780A (en) Coating composition for anode, anode plate, and nonaqueous electrolyte solution secondary battery
JP4929573B2 (en) Coating composition for active material layer, electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2004022239A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery