ES2690165A1 - SYSTEM AND METHOD OF ACTIVE COOLING FOR POWER CONVERTERS (Machine-translation by Google Translate, not legally binding) - Google Patents

SYSTEM AND METHOD OF ACTIVE COOLING FOR POWER CONVERTERS (Machine-translation by Google Translate, not legally binding) Download PDF

Info

Publication number
ES2690165A1
ES2690165A1 ES201730708A ES201730708A ES2690165A1 ES 2690165 A1 ES2690165 A1 ES 2690165A1 ES 201730708 A ES201730708 A ES 201730708A ES 201730708 A ES201730708 A ES 201730708A ES 2690165 A1 ES2690165 A1 ES 2690165A1
Authority
ES
Spain
Prior art keywords
power converter
power
translation
machine
legally binding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
ES201730708A
Other languages
Spanish (es)
Inventor
David SALVO LILLO
Abelardo Salvo Lillo
Antonio Poveda Lerma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Electronics Espana SL
Original Assignee
Power Electronics Espana SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Electronics Espana SL filed Critical Power Electronics Espana SL
Priority to ES201730708A priority Critical patent/ES2690165A1/en
Priority to PCT/ES2018/070364 priority patent/WO2018211164A1/en
Publication of ES2690165A1 publication Critical patent/ES2690165A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D22/00Control of humidity
    • G05D22/02Control of humidity characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)

Abstract

System and active heating method for power converters. A system and a heating method for power converters is disclosed, based on forcing the unloaded operation of the power converter bridge semiconductors, so that the heat generated as a consequence of the switching losses of the same avoid condensation in the inside of the converter. The system has a power converter module (2a, 2n), a thermo-hygrometer (11) and a microprocessor (12) which is configured to activate switching elements (7a) of the power converter module by means of electric power slogans. The electric power slogans can be active and/or reactive conditioned to the power converter not spilling energy into the network. (Machine-translation by Google Translate, not legally binding)

Description

imagen1image 1

imagen2image2

imagen3image3

imagen4image4

imagen5image5

imagen6image6

imagen7image7

imagen8image8

imagen9image9

imagen10image10

imagen11image11

imagen12image12

7a. elemento de conmutación. 7b. condensador 7a. switching element 7b condenser

8. 8.
Filtro LCL 8a. Inductancia. 8b. Condensador. LCL filter 8a. Inductance. 8b Condenser.

9. 9.
Circuito de carga suave. 9a. fusibles de carga suave. 9b. resistencias de carga suave. 9c. contactores de carga suave. Soft charging circuit 9a. soft charge fuses. 9b soft load resistors. 9c. soft charge contactors.

10.10.
Contactor de salida del módulo convertidor de potencia.  Output contactor of the power converter module.

11.eleven.
Termo-higrómetro.  Thermo-hygrometer

12.12.
Microprocesador.  Microprocessor.

13.13.
Unidad de desconexión de la fuente DC.  DC source disconnection unit.

14.14.
Embarrados DC.  DC busbars.

15.fifteen.
Embarrados AC.  AC busbars.

En la Fig. 1 se muestra un ejemplo de realización del sistema de caldeo activo de la presente invención para un convertidor de potencia 1 con un único módulo convertidor de potencia 2. El sistema de caldeo activo está comprendido por el convertidor de potencia 1, el termo-higrómetro 11 y el microprocesador 12. El convertidor de potencia está conectado a una fuente DC 3 mediante la unidad de desconexión 13 y por otro lado a la red AC 4. Así, cuando el convertidor de potencia está en modo producción, toma energía de la fuente DC 3 y la vierte a la red AC 4. En cambio, cuando el sistema se encuentra en modo noproducción, el sistema de caldeo activo es alimentado por la red AC con potencia eléctrica (activa y/o reactiva). An exemplary embodiment of the active heating system of the present invention for a power converter 1 with a single power converter module 2 is shown in Fig. 1. The active heating system is comprised of the power converter 1, the thermo-hygrometer 11 and microprocessor 12. The power converter is connected to a DC source 3 via the disconnection unit 13 and on the other hand to the AC 4 network. Thus, when the power converter is in production mode, it takes power from the DC 3 source and pour it into the AC 4 network. On the other hand, when the system is in nonproduction mode, the active heating system is powered by the AC network with electrical power (active and / or reactive).

En la Fig. 2 se muestra un ejemplo de realización del sistema de caldeo activo de la presente invención para un convertidor de potencia. El sistema de caldeo activo está comprendido por el convertidor de potencia 1 teniendo varios módulos convertidores de potenica 2a-2n, el termo-higrómetro 11 y el microprocesador 12. An exemplary embodiment of the active heating system of the present invention for a power converter is shown in Fig. 2. The active heating system is comprised of the power converter 1 having several power converter modules 2a-2n, the thermo-hygrometer 11 and the microprocessor 12.

En el ejemplo de realización mostrado en la figura 2, el convertidor de potencia 1 está formado por “n” módulos convertidores de potencia 2a-2n de los cuales se detallan dos de ellos 2a y 2n. Los módulos convertidores de potencia 2a-2n están conectados eléctricamente entre sí por medio de los embarrados DC 14 y los embarrados AC 15 que también conectan con la fuente DC 3 (fuente de corriente continua) y con la red AC (red de corriente alterna), respectivamente. Los embarrados en un convertidor de potencia son la pletinería de entrada a los módulos convertidores de potencia. Básicamente la pletinería son In the exemplary embodiment shown in Figure 2, the power converter 1 is formed by "n" power converter modules 2a-2n of which two of them 2a and 2n are detailed. The power converter modules 2a-2n are electrically connected to each other by means of DC busbars 14 and AC busbars 15 that also connect to DC source 3 (direct current source) and to the AC network (alternating current network) respectively. Busbars in a power converter are the input pletinería to the power converter modules. Basically pletinería are

imagen13image13

8 8

imagen14image14

imagen15image15

imagen16image16

imagen17image17

imagen18image18

imagen19image19

imagen20image20

imagen21image21

forma, dependiendo de la consigna que cada módulo convertidor de potencia 2a-2n recibe del microprocesador 12, el comportamiento de cada módulo convertidor de potencia puede ser de inductivo o capacitivo. Si el número de módulos convertidores de potencia es par, el microprocesador 12 enviará a la mitad de los módulos convertidores de potencia una consigna inductiva y a la otra mitad una consigna de capacitiva, donde todas las consignas tienen la misma magnitud para que la suma total sea cero. En caso de que el número de módulos convertidores de potencia sea impar, el microprocesador 12 enviara un tipo de consigna (inductiva o capacitiva) a la mitad del total del número de módulos convertidores de potencia menos uno y la consigna opuesta (capacitiva o inductiva, respectivamente) al resto de módulos convertidores de potencia ajustando la magnitud de la consigna opuesta para que la suma total sea cero. Mediante fórmulas matemáticas, si el convertidor de potencia tiene “n” módulos convertidores de potencia, donde “n” es un número impar, el microprocesador 12 envía una consigna (inductiva o capacitiva) a (n-1)/2 módulos convertidores de potencia con una magnitud de consigna |A| y al resto de módulos convertidores de potencia, es decir, ((n-1)/2)+1, la consigna opuesta (capacitiva o inductiva, respectivamente) con una magnitud ((n-1)/(n+1)) |A|. Estas consignas son las preferidas porque optimizan el funcionamiento del sistema de caldeo, es decir, son las que hacen que el sistema de caldeo proporcione mayor cantidad de potencia (energía) calorífica. Cualesquiera otras consignas serían válidas mientras se cumpla la condición de que la suma de las consignas inductivas mas las consignas capacitivas sean cero. Expresado en forma de fórmula matemática: nI+|I|=nC+|C|, donde nI+nC = n; siendo “n” el número total de módulos convertidores de potencia (par o impar), “nI “ es el número de convertidores de potencia en comportamiento inductivo; “nC “ es el número de convertidores de potencia en comportamiento capacitivo; |I| es la amplitud de la consigna inductiva e |C| es la magnitud de la consigna capacitiva. Thus, depending on the setpoint that each power converter module 2a-2n receives from the microprocessor 12, the behavior of each power converter module can be inductive or capacitive. If the number of power converter modules is even, microprocessor 12 will send an inductive setpoint to half of the power converter modules and a capacitive setpoint to the other half, where all setpoints have the same magnitude so that the total sum is zero. If the number of power converter modules is odd, the microprocessor 12 will send a setpoint type (inductive or capacitive) to half of the total number of power converter modules minus one and the opposite setpoint (capacitive or inductive, respectively) to the rest of the power converter modules by adjusting the magnitude of the opposite setpoint so that the total sum is zero. By mathematical formulas, if the power converter has "n" power converter modules, where "n" is an odd number, microprocessor 12 sends a setpoint (inductive or capacitive) to (n-1) / 2 power converter modules with a setpoint magnitude | A | and the other power converter modules, that is, ((n-1) / 2) +1, the opposite setpoint (capacitive or inductive, respectively) with a magnitude ((n-1) / (n + 1)) | A |. These setpoints are preferred because they optimize the operation of the heating system, that is, they are what make the heating system provide the greatest amount of heat power (energy). Any other setpoints would be valid as long as the condition that the sum of the inductive setpoints plus the capacitive setpoints is zero is fulfilled. Expressed in the form of a mathematical formula: nI + | I | = nC + | C |, where nI + nC = n; where "n" is the total number of power converter modules (odd or even), "nI" is the number of power converters in inductive behavior; "NC" is the number of power converters in capacitive behavior; | I | is the amplitude of the inductive setpoint e | C | It is the magnitude of the capacitive setpoint.

Opcionalmente el sistema de caldeo activo puede incrementar adicionalmente la temperatura interior del convertidor de potencia 1 mediante la energización (paso de corriente) de los embarrados DC 14. El caldeo de los embarrados es ventajoso cuando el convertidor de potencia se sitúa en climas muy fríos o muy húmedos.  Optionally, the active heating system can additionally increase the internal temperature of the power converter 1 by energizing (current flow) of the DC busbars 14. The heating of the busbars is advantageous when the power converter is in very cold climates or very wet

La alimentación del sistema de caldeo del ejemplo de realización mostrado en la figura 2 se realiza mediante la Red AC 4. Esta forma de alimentación y por tanto, de energización de los módulos convertidores de potencia implica el proceso de carga suave anteriormente descrito para el circuito de carga suave 9. Esta forma de alimentación es ventajosa porque no necesita de fuentes de alimentación adicionales. Cuando se utiliza la  The heating system is fed into the example of embodiment shown in Figure 2 by means of the AC 4 network. This form of power supply and, therefore, of energizing the power converter modules implies the smooth charging process described above for the circuit Soft charging 9. This form of feeding is advantageous because it does not need additional power supplies. When you use the

11 eleven

imagen22image22

imagen23image23

imagen24image24

Claims (1)

imagen1image 1 imagen2image2 imagen3image3 imagen4image4 imagen5image5
ES201730708A 2017-05-19 2017-05-19 SYSTEM AND METHOD OF ACTIVE COOLING FOR POWER CONVERTERS (Machine-translation by Google Translate, not legally binding) Pending ES2690165A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES201730708A ES2690165A1 (en) 2017-05-19 2017-05-19 SYSTEM AND METHOD OF ACTIVE COOLING FOR POWER CONVERTERS (Machine-translation by Google Translate, not legally binding)
PCT/ES2018/070364 WO2018211164A1 (en) 2017-05-19 2018-05-18 Active firing system and method for power converters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201730708A ES2690165A1 (en) 2017-05-19 2017-05-19 SYSTEM AND METHOD OF ACTIVE COOLING FOR POWER CONVERTERS (Machine-translation by Google Translate, not legally binding)

Publications (1)

Publication Number Publication Date
ES2690165A1 true ES2690165A1 (en) 2018-11-19

Family

ID=64189889

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201730708A Pending ES2690165A1 (en) 2017-05-19 2017-05-19 SYSTEM AND METHOD OF ACTIVE COOLING FOR POWER CONVERTERS (Machine-translation by Google Translate, not legally binding)

Country Status (2)

Country Link
ES (1) ES2690165A1 (en)
WO (1) WO2018211164A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109358678B (en) * 2018-11-27 2021-04-13 Oppo广东移动通信有限公司 Electronic device, indoor environment control method and related product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104063536A (en) * 2014-04-30 2014-09-24 许继电气股份有限公司 Soft start simulation method for modular multi-level converter
EP3088984A1 (en) * 2015-04-29 2016-11-02 ABB Technology AG Electrical assembly comprising means for humidity prevention

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7439714B2 (en) * 2005-09-27 2008-10-21 Gamesa Innovation & Technology, S.L. Method for operation of a converter system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104063536A (en) * 2014-04-30 2014-09-24 许继电气股份有限公司 Soft start simulation method for modular multi-level converter
EP3088984A1 (en) * 2015-04-29 2016-11-02 ABB Technology AG Electrical assembly comprising means for humidity prevention

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHANG JIANWEN ET AL. Thermal control method based on reactive circulating current for anti-condensation of wind power converter under wind speed variations. 2014 International Power Electronics and Application Conference and Exposition, 20141105 IEEE. , 05/11/2014, Páginas 152 - 156 [en línea][recuperado el 03/05/2018]. (DOI: doi:10.1109/PEAC.2014.7037845) *
ZHANG JIANWEN ET AL. Thermal smooth control based on orthogonal circulating current for multi-MW parallel wind power converter. 2014 International Power Electronics and Application Conference and Exposition, 20141105 IEEE. , 05/11/2014, Páginas 146 - 151 (DOI: doi:10.1109/PEAC.2014.7037844) *

Also Published As

Publication number Publication date
WO2018211164A1 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
WO2020259104A1 (en) Switch control device and method, motor controller, and battery pack heating control system
US9385629B2 (en) Inverter device with upper and lower arm elements
CN104170235B (en) Power conversion device
JP2007058676A (en) Alternating voltage control device by leading current
JP6081214B2 (en) Non-contact power feeding device
CN107771412A (en) Power-supply device for sensing heating
JP2019068730A5 (en)
WO2014146852A3 (en) Power electronic converter
ES2690165A1 (en) SYSTEM AND METHOD OF ACTIVE COOLING FOR POWER CONVERTERS (Machine-translation by Google Translate, not legally binding)
JP2013121211A5 (en)
CN104022635B (en) The drive circuit of electrical load
JP5899930B2 (en) Semiconductor power converter
US9007794B2 (en) Control system for a power supply having a first half-bridge leg and a second half-bridge leg
JP6736286B2 (en) Power converter
CN105429481B (en) Parallel connection device of power module, converter and inverter
CN106230413A (en) A kind of mixed type high voltage DC breaker and power cell thereof
CN203151386U (en) Excitation rectifier cabinet blocking type resistance capacitance protection structure
CN202617014U (en) Inverter for silicon-controlled rectifier intermediate-frequency power supply
JP5471970B2 (en) Motor control device
CN105762124B (en) Radiator for heat-producing device and the electric car with it
TWI803926B (en) Circuit with metal-oxide semiconductor field-effect transistor and diode module and implementation method thereof
JP2019103307A (en) Control unit
JP2014096968A (en) Inverter device
CN110892788B (en) Universal power converter
TWI580343B (en) Power conversion device

Legal Events

Date Code Title Description
BA2A Patent application published

Ref document number: 2690165

Country of ref document: ES

Kind code of ref document: A1

Effective date: 20181119

FC2A Grant refused

Effective date: 20191028