ES2378865A1 - Electrical energy converter of active foundation of four or more levels and control method. (Machine-translation by Google Translate, not legally binding) - Google Patents

Electrical energy converter of active foundation of four or more levels and control method. (Machine-translation by Google Translate, not legally binding) Download PDF

Info

Publication number
ES2378865A1
ES2378865A1 ES200902246A ES200902246A ES2378865A1 ES 2378865 A1 ES2378865 A1 ES 2378865A1 ES 200902246 A ES200902246 A ES 200902246A ES 200902246 A ES200902246 A ES 200902246A ES 2378865 A1 ES2378865 A1 ES 2378865A1
Authority
ES
Spain
Prior art keywords
levels
switches
elementary
power converter
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES200902246A
Other languages
Spanish (es)
Other versions
ES2378865B1 (en
Inventor
Sergio Busquets Monge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universitat Politecnica de Catalunya UPC
Original Assignee
Universitat Politecnica de Catalunya UPC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politecnica de Catalunya UPC filed Critical Universitat Politecnica de Catalunya UPC
Priority to ES200902246A priority Critical patent/ES2378865B1/en
Publication of ES2378865A1 publication Critical patent/ES2378865A1/en
Application granted granted Critical
Publication of ES2378865B1 publication Critical patent/ES2378865B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Active electrical power converter with four or more levels and control method. A static electric power converter topology of four or more levels is presented. The topology is formed by a pyramidal structure of elementary cells. Each elementary cell is formed by two elementary devices. Each elementary device is formed by a controlled electronic switch and an antiparallel diode. The switching states of the inverter that allow its control are defined, as well as a transition strategy between switching states. The converter and control proposed are applicable in drives of electric motors of alternating current, systems of use of renewable energies, electric traction equipment, power systems, etc. (Machine-translation by Google Translate, not legally binding)

Description

Convertidor de energía eléctrica de enclavamiento activo de cuatro o más niveles y método de control.Electric power converter active interlocking of four or more levels and method of control.

Sector de la técnicaTechnical sector

Hardware electrónico para sistemas eléctricos y electrónicos de potencia.Electronic hardware for electrical systems and power electronics

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Estado de la técnicaState of the art

Las técnicas de conversión multinivel han abierto una puerta a avances en la tecnología de conversión de energía eléctrica. Para una tecnología concreta de semiconductores, estas técnicas permiten una mayor capacidad de potencia por convertidor, mayor eficiencia y menor distorsión armónica. Se han propuesto diferentes topologías multinivel:Multilevel conversion techniques have opened a door to advances in conversion technology electric power. For a specific semiconductor technology, these techniques allow a greater capacity of power by converter, greater efficiency and less harmonic distortion. They have proposed different multilevel topologies:

--
Convertidores multinivel puente completo en cascada ("cascaded H-bridge").Multilevel converters full bridge cascaded ("cascaded H-bridge").

--
Convertidores multinivel de enclavamiento por diodos ("diode clamped").Multilevel converters diode interlock ("clamped diode").

--
Convertidores multinivel de enclavamiento por condensadores o de condensadores flotantes ("capacitor clamped" o "flying capacitors").Multilevel converters interlocking by capacitors or floating capacitors ("clamped capacitor" or "flying capacitors").

--
Combinaciones híbridas de los anteriores.Hybrid combinations of previous.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    

En particular, se ha propuesto una topología general en:In particular, a topology has been proposed general in:

F. Z. Peng, "A generalized multilevel inverter topology with self voltage balancing", IEEE Transactions on Industry Applications, vol. 37, pp. 611-618, 2001.FZ Peng, "A generalized multilevel inverter topology with self voltage balancing", IEEE Transactions on Industry Applications , vol. 37, pp. 611-618, 2001.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    

Esta topología incluye condensadores flotantes, interruptores electrónicos controlados y diodos en antiparalelo.This topology includes floating capacitors, controlled electronic switches and diodes in antiparallel.

La topología contemplada en la presente invención incorpora únicamente interruptores electrónicos controlados y diodos en antiparalelo. No se incorporan condensadores flotantes, hecho que modifica sustancialmente el control y las características de funcionamiento del convertidor.The topology contemplated herein invention incorporates only electronic switches controlled and diodes in antiparallel. No capacitors are incorporated floating, a fact that substantially modifies the control and operating characteristics of the converter.

En la literatura aparece el caso particular de tres niveles de la topología objeto de la presente invención, pero no se ha presentado su extensión a más niveles, y el control del convertidor propuesto en la literatura difiere del descrito aquí.In the literature appears the particular case of three levels of the topology object of the present invention, but its extension has not been presented at more levels, and the control of converter proposed in the literature differs from the one described here.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Descripción de la invenciónDescription of the invention

Se definen la topología de un convertidor de energía eléctrica multinivel de enclavamiento activo, los estados de conmutación necesarios para su control y una estrategia de transición entre estos estados de conmutación.The topology of a converter is defined multilevel electric power interlocking active, the states of switching required for its control and a strategy of transition between these switching states.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Topología Topology

La Figura 1 presenta la topología de un convertidor de m niveles. El circuito presenta m terminales de entrada (i_{k}, k \in {1, 2, ..., m}) y un terminal de salida (o). El número de niveles del convertidor se corresponde con el número de terminales de entrada. Entre dos terminales de entrada consecutivos (i_{k} e i_{k+1}) típicamente se conecta un elemento capacitivo (condensador) o una fuente de tensión (fuente de alimentación, batería, etc.), de forma que la tensión del terminal i_{k} es inferior o igual a la tensión del terminal i_{k+1}.Figure 1 presents the topology of a m- level converter. The circuit has m input terminals (i_ {k}, k \ in {1, 2, ..., m }) and an output terminal (o). The number of converter levels corresponds to the number of input terminals. Between two consecutive input terminals (i_ {k} and i_ {k + 1}) typically a capacitive element (capacitor) or a voltage source (power supply, battery, etc.) is connected, so that the voltage of the terminal i_ {k} is less than or equal to the voltage of terminal i_ {k + 1}.

El circuito está formado por una conexión piramidal de m\cdot(m-1)/2 celdas elementales. Cada celda elemental está formada por dos dispositivos elementales, tal como se muestra en la Figura 1. Cada dispositivo elemental está formado por un interruptor electrónico controlado (designados S_{pxy} y S_{nxy}; x, y \in {1, 2, ..., m-1}) y un interruptor electrónico no controlado (diodo), conectados tal como se muestra en la Figura 1 (conexión antiparalelo).The circuit is formed by a pyramidal connection of m \ cdot ( m -1) / 2 elementary cells. Each elementary cell is formed by two elementary devices, as shown in Figure 1. Each elementary device consists of a controlled electronic switch (designated S_ {pxy} and S_ {nxy}; x , y \ in {1, 2 , ..., m -1}) and an uncontrolled electronic switch (diode), connected as shown in Figure 1 (anti-parallel connection).

El interruptor electrónico controlado puede ser unidireccional (i_{S} sólo puede ser mayor o igual que cero) o bidireccional (i_{S} puede ser mayor, igual o menor que cero) en corriente. El interruptor controlado puede ser unidireccional (v_{S} sólo puede ser mayor o igual que cero) o bidireccional (v_{S} puede ser mayor, igual o menor que cero) en tensión. El caso típico es que el interruptor controlado sea bidireccional en corriente y unidireccional en tensión.The controlled electronic switch can be unidirectional ( i S can only be greater than or equal to zero) or bidirectional ( i S can be greater than, equal to or less than zero) in current. The controlled switch can be unidirectional ( v S can only be greater than or equal to zero) or bidirectional ( v S can be greater than, equal to or less than zero) in voltage. The typical case is that the controlled switch be bidirectional in current and unidirectional in voltage.

       \newpage\ newpage
    

El interruptor electrónico controlado del dispositivo elemental presenta dos estados, de acuerdo con los dos posibles estados de su señal de control:The electronic controlled switch of the Elementary device presents two states, according to the two Possible states of your control signal:

a) Encendido: La tensión v_{S} en bornes del interruptor es aproximadamente cero.a) On: The voltage v S at the terminals of the switch is approximately zero.

b) Apagado: La corriente i_{S} que circula por el interruptor es aproximadamente cero.b) Off: The current i S flowing through the switch is approximately zero.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    

El dispositivo elemental, definido por el conjunto de interruptor controlado e interruptor no controlado, se puede realizar con un único transistor o se puede realizar con cualquier combinación de transistores y diodos (serie, paralelo, etc.) que efectivamente tenga la misma funcionalidad.The elementary device, defined by the set of controlled switch and uncontrolled switch, it can be done with a single transistor or can be done with any combination of transistors and diodes (series, parallel, etc.) that effectively has the same functionality.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Estados de conmutaciónSwitching states

El terminal de salida (o) se puede conectar galvánicamente con una baja impedancia a cada uno de los terminales de entrada (i_{k}, k \in {1, 2, ..., m}) controlando adecuadamente el estado de todos los interruptores electrónicos controlados. Se definen m-1 variables de control (c_{j}, j \in {1, 2, ..., m-1}) para representar el estado de las señales de control de los interruptores electrónicos controlados. Cada interruptor controlado tiene asignada una variable de control (c_{j}) o su valor complementario (\overline{\mathit{c}}_{j}), tal como se indica en la Figura 2. Estas variables de control tienen dos valores posibles:The output terminal (o) can be galvanically connected with a low impedance to each of the input terminals (i_ {k}, k \ in {1, 2, ..., m }) properly controlling the status of all Electronic controlled switches. -1 m are defined control variables (c _ {j}, j \ {1, 2, ..., m -1}) to represent the state of the control signals of the electronic switches controlled. Each controlled switch is assigned a control variable ( c j) or its complementary value (\ overline {\ mathit {c}} _ j), as indicated in Figure 2. These control variables have Two possible values:

a) c_{j} = 0, en cuyo caso todos los interruptores controlados con esta variable de control asociada están apagados y aquellos con el valor complementario asociado \overline{\mathit{c}}_{j} = 1 están encendidos.a) c j = 0, in which case all switches controlled with this associated control variable are off and those with the associated complementary value \ overline {\ mathit {c}} _ {j} = 1 are on.

b) c_{j} = 1, en cuyo caso todos los interruptores controlados con esta variable de control asociada están encendidos y aquellos con el valor complementario asociado \overline{\mathit{c}}_{j} = 0 están apagados.b) c j = 1, in which case all switches controlled with this associated control variable are on and those with the associated complementary value \ overline {\ mathit {c}} _ {j} = 0 are off.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    

Para conectar el terminal de salida (o) al terminal de entrada i_{k}, se asignan los siguientes valores a las señales de control:To connect the output terminal (or) to the input terminal i_ {k}, the following values are assigned to the control signals:

1one

De esta forma quedan definidos los m estados de conmutación que permiten conectar el terminal de salida a los m terminales de entrada. La siguiente tabla presenta un resumen de estos estados de conmutación:In this way, the m switching states that allow the output terminal to be connected to the m input terminals are defined. The following table presents a summary of these switching states:

22

En el estado de conmutación k, se encienden todos aquellos interruptores controlados que permiten conectar galvánicamente con una baja impedancia el terminal de entrada i_{k} con el terminal de salida (o) a través de m-1 dispositivos elementales. Adicionalmente, se encienden otros interruptores controlados que permiten garantizar una tensión v_{s} de bloqueo en los interruptores controlados apagados igual a la diferencia de tensión entre terminales de entrada consecutivos.In the switching state k , all those controlled switches that allow galvanically connecting the input terminal i_ {k} with the output terminal (o) via m -1 elementary devices are switched on with a low impedance. Additionally, other controlled switches are switched on which allow to guarantee a blocking voltage v s in the controlled switches turned off equal to the voltage difference between consecutive input terminals.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Transición entre estados de conmutaciónTransition between switching states

Para realizar una transición entre dos estados de conmutación adyacentes (transición de un estado de conmutación k al inmediatamente superior (k+1) o inferior (k-1)), es necesario cambiar el estado de m interruptores controlados. Se procede a apagar primero los interruptores a apagar y posteriormente se encienden los interruptores a encender. Sea k_{i} el estado de conmutación inicial y k_{f} el estado de conmutación final de la transición entre estados adyacentes. Si (k_{f} - k_{i})\cdoti_{o}>0 (donde i_{o} es la corriente del terminal de salida (Figura 1)), las pérdidas de energía de la transición se concentran en el primer dispositivo que se enciende. Si (k_{f} - k_{i})\cdoti_{o}<0, las pérdidas de energía de la transición se concentran en el último dispositivo que se apaga. Por lo tanto, se define una estrategia de transición entre estados de conmutación adyacentes, en la que en transiciones sucesivas se alterna el primer interruptor que se enciende entre los interruptores a encender y se alterna el último interruptor que se apaga entre los interruptores a apagar. De esta forma, se distribuyen entre todos los interruptores las pérdidas de energía de las sucesivas transiciones.To make a transition between two adjacent switching states (transition from a switching state k to the immediately higher (k + 1) or lower ( k -1)), it is necessary to change the state of m controlled switches. The switches to be turned off are turned off first and then the switches to be turned on. Let k i be the initial switching state and k f the final switching state of the transition between adjacent states. If ( k f - k i) i i o> 0 (where i o is the output terminal current (Figure 1)), the energy losses of the transition They concentrate on the first device that turns on. If ( k f - k i) \ cdot i o <0, the energy losses of the transition are concentrated in the last device that shuts down. Therefore, a transition strategy is defined between adjacent switching states, in which in successive transitions the first switch that turns on between the switches to be switched on and the last switch that switches off between the switches to turn off is alternated. In this way, the energy losses of the successive transitions are distributed among all the switches.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Breve explicación de los dibujosBrief explanation of the drawings

Figura 1: Topología de un convertidor de enclavamiento activo de m niveles.Figure 1: Topology of an active interlock converter of m levels.

Figura 2: Topología de un convertidor de enclavamiento activo de m niveles, con indicación de la variable de control asignada a cada interruptor controlado.Figure 2: Topology of an m- level active interlock converter, with indication of the control variable assigned to each controlled switch.

Figura 3: Topología de un convertidor de enclavamiento activo de cinco niveles (una rama), en la que se emplean transistores tipo Metal Oxide Semiconductor Field Effect Transistor (MOSFET) de canal n y de enriquecimiento.Figure 3: Topology of a converter five-level active interlocking (one branch), in which employ Metal Oxide Semiconductor Field Effect type transistors Transistor (MOSFET) of channel n and enrichment.

Figura 4: Topología de un convertidor de enclavamiento activo de cinco niveles (una rama), en la que se emplean transistores tipo MOSFET de canal n y de enriquecimiento, con indicación de la variable de control asignada a cada transistor.Figure 4: Topology of a converter five-level active interlocking (one branch), in which they use MOSFET type n and enrichment transistors, with indication of the control variable assigned to each transistor.

Figura 5: Convertidor corriente continua-corriente continua (cc-cc) o corriente continua-corriente alterna (cc-ca) monofásico de cinco niveles, con cuatro fuentes de tensión y una rama.Figure 5: Current converter DC-DC (DC-DC) or direct current-alternating current (cc-ca) single-phase five-level, with four voltage sources and a branch.

Figura 6: Convertidor cc-cc de cinco niveles, con bus intermedio de cc formado por cuatro condensadores en serie y dos ramas.Figure 6: cc-cc converter Five levels, with intermediate DC bus consisting of four series capacitors and two branches.

Figura 7: Convertidor cc-cc o cc-ca monofásico de cinco niveles, con fuente de tensión conectada a cuatro condensadores en serie y dos ramas.Figure 7: cc-cc converter or single-phase five-level cc-ca, with source voltage connected to four capacitors in series and two branches.

Figura 8: Convertidor cc-ca trifásico de cinco niveles, con fuente de tensión conectada a cuatro condensadores en serie y tres ramas.Figure 8: cc-ca converter three-phase five-level, with voltage source connected to four series capacitors and three branches.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Modos de realización de la invenciónEmbodiments of the invention

La presente invención se ilustra adicionalmente mediante el siguiente ejemplo, el cual no pretende ser limitativo de su alcance.The present invention is further illustrated. by the following example, which is not intended to be limiting of its reach

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Ejemplo 1Example 1 Convertidor de enclavamiento activo de cinco niveles con MOSFETsFive-level active interlocking converter with MOSFETs

En la Figura 3 se muestra una rama de un convertidor de cinco niveles en la que se emplean transistores tipo Metal Oxide Semiconductor Field Effect Transistor (MOSFET) de canal n y de enriquecimiento. Los diodos que se muestran en la Figura 3 se pueden corresponder con el diodo parásito de este tipo de transistores o con diodos externos conectados en antiparalelo con los transistores MOSFET, tal como se indica en la Figura 3.Figure 3 shows a branch of a five-level converter in which type transistors are used Metal Oxide Semiconductor Field Effect Transistor (MOSFET) channel n and enrichment. The diodes shown in Figure 3 are may correspond to the parasite diode of this type of transistors or with external diodes connected in antiparallel with MOSFET transistors, as indicated in Figure 3.

En la Figura 4 se indica la asignación de variables de control a cada transistor. La rama presenta los siguientes cinco estados de conmutación para permitir conectar el terminal de salida con cada uno de los cinco terminales de entrada:The assignment of control variables to each transistor. The branch presents the following five switching states to allow connecting the output terminal with each of the five terminals of entry:

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    

33

       \newpage\ newpage
    

La transición entre estados de conmutación adyacentes se efectúa apagando primero los transistores a apagar y encendiendo posteriormente los transistores a encender. Adicionalmente, en transiciones sucesivas de un estado de conmutación a otro, se alterna el transistor a apagar en último lugar y el transistor a encender en primer lugar. Por ejemplo, en la transición del estado de conmutación 2 al estado de conmutación 3, los transistores S_{n21} y S_{n22} se tienen que apagar y los transistores S_{p21}, S_{p22} y S_{p23} se tienen que encender. Se procedería de la siguiente forma:The transition between switching states adjacent is done by first turning off the transistors to turn off and subsequently turning on the transistors to turn on. Additionally, in successive transitions of a state of switching to another, the transistor is switched to last off place and the transistor to turn on first. For example, in the transition from switching state 2 to switching state 3, transistors S_ {n21} and S_ {n22} must be turned off and the transistors S_ {p21}, S_ {p22} and S_ {p23} must be turn on. It would proceed as follows:

a) Secuencia de transistores a apagar en último lugar en sucesivas transiciones del estado de conmutación 2 al estado de conmutación 3:a) Sequence of transistors to turn off last place in successive transitions from switching state 2 to switching state 3:

a.1)a.1)
En la primera transición, el transistor que se apaga en último lugar es S_{n21}.In the first transition, the transistor goes out last is S_ {n21}.

a.2)a.2)
En la segunda transición, el transistor que se apaga en último lugar es S_{n22}.In the second transition, the transistor goes out last is S_ {n22}.

a.3)a.3)
En transiciones posteriores se repite el ciclo definido por a.1 y a.2.In subsequent transitions the cycle is repeated defined by a.1 and a.2.

b) Secuencia de transistores a encender en primer lugar en sucesivas transiciones del estado de conmutación 2 al estado de conmutación 3:b) Sequence of transistors to be switched on first in successive switching state transitions 2 to switching state 3:

b.1)b.1)
En la primera transición, el transistor que se enciende en primer lugar es S_{p21}.In the first transition, the transistor that turn on first is S_ {p21}.

b.2)b.2)
En la segunda transición, el transistor que se enciende en primer lugar es S_{p22}.In the second transition, the transistor that Turn on first is S_ {p22}.

b.3)b.3)
En la tercera transición, el transistor que se enciende en primer lugar es S_{p23}.In the third transition, the transistor that Turn on first is S_ {p23}.

b.4)b.4)
En transiciones posteriores se repite el ciclo definido por b.1, b.2, y b.3.In subsequent transitions the cycle is repeated defined by b.1, b.2, and b.3.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    

En la Figura 5, Figura 6, Figura 7 y Figura 8 se muestran ejemplos de convertidores que se pueden realizar mediante el uso de la rama presentada en la Figura 3.In Figure 5, Figure 6, Figure 7 and Figure 8, show examples of converters that can be performed using the use of the branch presented in Figure 3.

En la Figura 5 se presenta un convertidor corriente continua-corriente continua (cc-cc) o corriente continua-corriente alterna (cc-ca) monofásico, en el que se conectan fuentes de tensión entre cada pareja de terminales de entrada adyacentes de la rama. Estas fuentes de tensión representan sistemas que mantienen una tensión aproximadamente constante entre sus terminales como por ejemplo fuentes de alimentación, baterías o paneles fotovoltaicos con un condensador conectado entre su terminal positivo y negativo. En el terminal de salida se conecta un filtro y una carga representados por un conjunto inductancia (L_{F}), capacidad (C_{F}) y resistencia (R_{L}).Figure 5 shows a DC-DC converter (DC-DC) or single-phase DC-AC converter, in which voltage sources are connected between each pair of adjacent input terminals of the branch . These voltage sources represent systems that maintain an approximately constant voltage between their terminals such as power supplies, batteries or photovoltaic panels with a capacitor connected between their positive and negative terminals. In a filter output terminal is connected and a load represented by a set inductance (L F {}), capacity (C {F}) and resistance (R {L}).

En la Figura 6 se presenta un convertidor cc-cc con dos ramas, en el que se conectan elementos capacitivos entre cada pareja de terminales de entrada adyacentes de cada rama. La fuente de tensión de valor V_{cc} se conecta a través de una inductancia (L_{Fa}) al terminal de salida de la primera rama. El terminal de salida de la segunda rama se conecta a un filtro y una carga representados por un conjunto inductancia (L_{Fb}), capacidad (C_{F}) y resistencia (R_{L}).Figure 6 shows a cc-cc converter with two branches, in which capacitive elements are connected between each pair of adjacent input terminals of each branch. The voltage source of value V cc is connected through an inductance ( L Fa) to the output terminal of the first branch. The output terminal of the second branch is connected to a filter and a load represented by a set inductance ( L Fb), capacity ( C F) and resistance ( R L).

En la Figura 7 se presenta un convertidor cc-cc o cc-ca monofásico con dos ramas, en el que se conectan elementos capacitivos entre cada pareja de terminales de entrada adyacentes de cada rama. Una fuente de tensión de valor V_{cc} se conecta entre los terminales de entrada i_{1} e i_{5}. Los terminales de salida de las ramas se conectan a un filtro y una carga representados por un conjunto inductancia (L_{F}), capacidad (C_{F}) y resistencia (R_{L}).A single-phase cc-cc or cc-ca converter with two branches is shown in Figure 7, in which capacitive elements are connected between each pair of adjacent input terminals of each branch. A voltage source of value V cc is connected between the input terminals i_ {1} and i_ {5}. The output terminals of the branches are connected to a filter and a load represented by a set inductance (L F {}), capacity (C {F}) and resistance (R {L}).

En la Figura 8 se presenta un convertidor cc-ca trifásico con tres ramas, en el que se conectan elementos capacitivos entre cada pareja de terminales de entrada adyacentes de cada rama. Una fuente de tensión de valor V_{cc} se conecta entre los terminales de entrada i_{1} e i_{5}. Los terminales de salida de las ramas se conectan a un filtro y una carga trifásicas representados por un conjunto inductancia (L_{F}) y resistencia (R_{L}) en serie por fase.A three-phase dc-ac converter with three branches is shown in Figure 8, in which capacitive elements are connected between each pair of adjacent input terminals of each branch. A voltage source of value V cc is connected between the input terminals i_ {1} and i_ {5}. The output terminals of the branches are connected to a three - phase filter and a load represented by a set inductance (L F {}) and resistance (R {L}) in series per phase.

Claims (4)

1. Un convertidor de energía eléctrica de enclavamiento activo de cuatro o más niveles, caracterizado por estar constituido por una estructura piramidal de m\cdot(m-1)/2 celdas elementales, con un terminal de salida y m terminales de entrada, siendo m el número de niveles; cada celda elemental está constituida por dos dispositivos elementales; cada dispositivo elemental está constituido por medios para interrumpir la corriente de forma controlada y medios para interrumpir la corriente de forma no controlada.1. An active interlocking electric power converter of four or more levels, characterized by being constituted by a pyramidal structure of m \ cdot ( m -1) / 2 elementary cells, with an output terminal and m input terminals, being m the number of levels; each elementary cell is constituted by two elementary devices; each elementary device is constituted by means to interrupt the current in a controlled manner and means to interrupt the current in an uncontrolled manner. 2. Un método de control del convertidor de energía eléctrica de enclavamiento activo de cuatro o más niveles de la reivindicación 1, caracterizado por que se definen m-1 variables de control (c_{j}, j \in {1, 2, ..., m-1}) para representar el estado de las señales de control de los interruptores electrónicos controlados, con dos posibles valores, cero y uno, que indican que el interruptor correspondiente está apagado o encendido, respectivamente; la variable de control c_{j} se asigna a la diagonal de interruptores S_{njy}, y \in {1, 2, ..., j}, y su valor complementario (\overline{\mathit{c}}_{j}) a la diagonal de interruptores S_{pjy}, y \in {1, 2, ..., m-j}; para conectar eléctricamente el terminal de salida (o) al terminal de entrada
i_{k} (k \in {1, 2, ..., m}) se establece c_{j} = 0 para todo j<k y se establece c_{j} = 1 para todo j\geqk.
2. A method of controlling the power converter of active interlock four or more levels of claim 1, wherein m -1 defined control variables (c _ {j}, j \ {1, 2, ..., m -1}) to represent the status of the control signals of the controlled electronic switches, with two possible values, zero and one, indicating that the corresponding switch is off or on, respectively; the control variable c j is assigned to the diagonal of switches S_ {njy}, and \ in {1, 2, ..., j }, and its complementary value (\ overline {\ mathit {c}} j) to the diagonal of switches S_ {pjy}, and \ in {1, 2, ..., m -j}; to electrically connect the output terminal (or) to the input terminal
i_ {k} ( k \ in {1, 2, ..., m }) is set c j = 0 for all j <k and set c j = 1 for all j \ geqk.
3. Un método de control de un convertidor de energía eléctrica de enclavamiento activo de cuatro o más niveles según reivindicación 2, caracterizado por que las sucesivas transiciones entre dos estados de conmutación adyacentes se efectúan alternando el último interruptor a apagar entre los interruptores a apagar.3. A control method of an active interlocking electric power converter of four or more levels according to claim 2, characterized in that the successive transitions between two adjacent switching states are made by alternating the last switch to be switched off between the switches to be turned off. 4. Un método de control de un convertidor de energía eléctrica de enclavamiento activo de cuatro o más niveles según reivindicación 2, caracterizado por que las sucesivas transiciones entre dos estados de conmutación adyacentes se efectúan alternando el primer interruptor a encender entre los interruptores a encender.4. A control method of an active interlocking electric power converter of four or more levels according to claim 2, characterized in that the successive transitions between two adjacent switching states are performed by alternating the first switch to be switched on between the switches to be switched on.
ES200902246A 2009-11-23 2009-11-23 CONVERTER OF ELECTRICAL ENERGY OF INTERLOCKING FOUR OR MORE LEVELS AND CONTROL METHOD. Active ES2378865B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES200902246A ES2378865B1 (en) 2009-11-23 2009-11-23 CONVERTER OF ELECTRICAL ENERGY OF INTERLOCKING FOUR OR MORE LEVELS AND CONTROL METHOD.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200902246A ES2378865B1 (en) 2009-11-23 2009-11-23 CONVERTER OF ELECTRICAL ENERGY OF INTERLOCKING FOUR OR MORE LEVELS AND CONTROL METHOD.

Publications (2)

Publication Number Publication Date
ES2378865A1 true ES2378865A1 (en) 2012-04-18
ES2378865B1 ES2378865B1 (en) 2013-03-01

Family

ID=45891605

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200902246A Active ES2378865B1 (en) 2009-11-23 2009-11-23 CONVERTER OF ELECTRICAL ENERGY OF INTERLOCKING FOUR OR MORE LEVELS AND CONTROL METHOD.

Country Status (1)

Country Link
ES (1) ES2378865B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812990B1 (en) 2016-09-26 2017-11-07 Rockwell Automation Technologies, Inc. Spare on demand power cells for modular multilevel power converter
US10158299B1 (en) 2018-04-18 2018-12-18 Rockwell Automation Technologies, Inc. Common voltage reduction for active front end drives
US10305368B2 (en) 2012-08-13 2019-05-28 Rockwell Automation Technologies, Inc. Method and apparatus for bypassing Cascaded H-Bridge (CHB) power cells and power sub cell for multilevel inverter
US11211879B2 (en) 2019-09-23 2021-12-28 Rockwell Automation Technologies, Inc. Capacitor size reduction and lifetime extension for cascaded H-bridge drives
US11342878B1 (en) 2021-04-09 2022-05-24 Rockwell Automation Technologies, Inc. Regenerative medium voltage drive (Cascaded H Bridge) with reduced number of sensors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1443648A1 (en) * 2003-01-31 2004-08-04 Abb Research Ltd. Inverter circuit for switching three voltage levels

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1443648A1 (en) * 2003-01-31 2004-08-04 Abb Research Ltd. Inverter circuit for switching three voltage levels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F.Z.PENG A generalized multilevel inverter topology with self voltage balancing. Industry Applications Conference, 2000. Conference Record of the 2000 IEEE 8-12 October 2000, Vol. 3, páginas 2024-2031, ISBN 978-0-7803-6401-1, todo el documento. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305368B2 (en) 2012-08-13 2019-05-28 Rockwell Automation Technologies, Inc. Method and apparatus for bypassing Cascaded H-Bridge (CHB) power cells and power sub cell for multilevel inverter
US9812990B1 (en) 2016-09-26 2017-11-07 Rockwell Automation Technologies, Inc. Spare on demand power cells for modular multilevel power converter
US10158299B1 (en) 2018-04-18 2018-12-18 Rockwell Automation Technologies, Inc. Common voltage reduction for active front end drives
US11211879B2 (en) 2019-09-23 2021-12-28 Rockwell Automation Technologies, Inc. Capacitor size reduction and lifetime extension for cascaded H-bridge drives
US11342878B1 (en) 2021-04-09 2022-05-24 Rockwell Automation Technologies, Inc. Regenerative medium voltage drive (Cascaded H Bridge) with reduced number of sensors

Also Published As

Publication number Publication date
ES2378865B1 (en) 2013-03-01

Similar Documents

Publication Publication Date Title
US10447173B2 (en) Single-phase five-level active clamping converter unit and converter
US9502960B2 (en) Multi-level converter topology with the possibility of dynamically connecting individual modules in series and in parallel
EP2706653B1 (en) Five-level power converter, controlling method and controlling device thereof
US8462524B2 (en) 3-level pulse width modulation inverter with snubber circuit
JP5457449B2 (en) Power converter
JP5977282B2 (en) Multi-level inverter
EP2611023A1 (en) Inverter device and solar grid-connected photovoltaic system using same
US9344010B2 (en) Power electronic converter
US11205919B2 (en) Uninterruptible power supply system
Nallamekala et al. A fault-tolerant dual three-level inverter configuration for multipole induction motor drive with reduced torque ripple
EP3633843B1 (en) Current converter and driving method therefor
JP2012182974A (en) Five-level power conversion apparatus
CN106208894B (en) A kind of polyphase machine drive system
US20140104906A1 (en) Energy storage device, and system having an energy storage device
US8248828B2 (en) Medium voltage inverter system
JP2013215043A5 (en)
US9774187B2 (en) Coupling-in and coupling-out of power in a branch of a DC voltage network node comprising a longitudinal voltage source
CN105052029B (en) Energy storage device and the system with energy storage device
US8493760B2 (en) Electric circuit for converting direct current into alternating current
ES2378865A1 (en) Electrical energy converter of active foundation of four or more levels and control method. (Machine-translation by Google Translate, not legally binding)
JP5362657B2 (en) Power converter
CN104081645A (en) Power conversion device
Alishah et al. Design of new single-phase multilevel voltage source inverter
JP2016226223A (en) Seven-level power converter
CN108604797B (en) Multilevel power converter and method for controlling multilevel power converter

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2378865

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20130301