EP3786987B1 - Device for suppressing a direct current component during the operation of an electrical appliance connected to a high-voltage network - Google Patents

Device for suppressing a direct current component during the operation of an electrical appliance connected to a high-voltage network Download PDF

Info

Publication number
EP3786987B1
EP3786987B1 EP19194634.2A EP19194634A EP3786987B1 EP 3786987 B1 EP3786987 B1 EP 3786987B1 EP 19194634 A EP19194634 A EP 19194634A EP 3786987 B1 EP3786987 B1 EP 3786987B1
Authority
EP
European Patent Office
Prior art keywords
switching unit
circuit
current
core
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19194634.2A
Other languages
German (de)
French (fr)
Other versions
EP3786987A1 (en
Inventor
Peter Hamberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Priority to EP19194634.2A priority Critical patent/EP3786987B1/en
Priority to PL19194634.2T priority patent/PL3786987T3/en
Publication of EP3786987A1 publication Critical patent/EP3786987A1/en
Application granted granted Critical
Publication of EP3786987B1 publication Critical patent/EP3786987B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • H01F2029/143Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias with control winding for generating magnetic bias

Definitions

  • the invention relates to a device and a method for suppressing a direct current component when operating an electrical device connected to a high-voltage network.
  • the invention also relates to an electrical device with such a device.
  • GIC Garnier Induced Currents
  • a DC component results in a magnetic DC component in the core of the transformer, which is superimposed on the AC flux.
  • An asymmetrical modulation of the magnetic material in the core occurs, which has a number of disadvantages. Even a direct current of a few amperes leads to saturation of the core with magnetic flux. This is associated with a significant increase in losses in the core (eg: 20-30%). Heating problems can occur, especially with large GICs. There is also increased noise emission during operation, which is felt to be particularly annoying when the transformer is operated in the vicinity of a living area.
  • Various active and passive devices are known for DC compensation or reduction of operating noise of a transformer as an electrical device.
  • the device disclosed there has a compensation winding which is part of an electric circuit.
  • a switching branch is provided in series with the compensation winding, with a choke and a thyristor being connected in series in the switching branch.
  • a phase angle control is implemented with the aid of a control unit.
  • the current flowing in the circuit via the switching branch is regulated by varying the phase shift between the triggering point of the thyristor and the voltage in the compensation circuit.
  • the controllable current range can be increased by a second switching branch, which is connected in parallel to the first switching branch.
  • the achievable throughput in the core can be increased by the second switching branch, so that larger DC components can be compensated.
  • the voltage-synchronous firing of the thyristor or thyristors requires complex electronics that are expensive and susceptible to maintenance.
  • the object of the invention is therefore to create a device, an electrical device and a method of the type mentioned at the outset that are inexpensive, reliable and low-maintenance.
  • the invention solves this problem in that the device with a compensation winding for generating a magnetic flux in the core, the effect of which is opposed to the direct flux component, a circuit in which the compensation winding is arranged, at least one in the circuit and converter unit arranged in series with the compensation winding, which enables a current flow via this in only one direction, a coarse stage branch arranged in the circuit and in series with the compensation winding with at least two main choke sections connected in series, with a low-impedance bridging path being connected in parallel with at least one main choke section, in which a switching unit is arranged, which can be converted from a blocking position, in which a current flow via the switching unit is enabled, into an interrupting position, in which a current flow via the switching unit is prevented, or vice versa, a sensor for detecting the direct current component and one with each switching unit and the control unit connected to the sensor, which is set up to actuate each switching unit so that a current flow can be set over so many main throttle sections that the
  • the invention also achieves this object with an electrical device having a core and at least one winding which is set up to generate a magnetic flux in the core, the electrical device having a device according to the invention which is inductively coupled to the core.
  • the invention achieves the object through a method for suppressing a direct current component when operating an electrical device connected to a high-voltage network, which has a core, at least one winding for generating a magnetic flux in the core and one arranged in a circuit and inductively coupled to the core Compensation winding, wherein the circuit has at least one power converter unit arranged in series with the compensation winding, which allows current to flow via it in only one direction, and a coarse stage branch with at least two series-connected main choke sections, with at least one Main throttle section connected in parallel with a low-impedance bypass path is arranged, in which a switching unit is arranged, which can be transferred from a blocking position to an open position or vice versa, and has a control unit, which is connected to a sensor for detecting the direct current
  • a direct current flowing through a compensation winding is set by connecting and disconnecting main choke sections. All the main choke sections are arranged in series with the compensation winding in a circuit in which a power converter unit rectifies the current flowing in the circuit.
  • the compensating direct current in the compensating winding becomes greater the more main choke sections are bypassed.
  • a complex phase control has become superfluous within the scope of the invention.
  • a simple digital control is sufficient.
  • the circuit of the device according to the invention is expediently grounded at a potential point. This potential point is connected downstream of the main choke sections in the direction of the current in the circuit permitted by the converter unit.
  • the main part of the generation of the direct current in the compensation winding at the core of the electrical device is taken over by the main choke, which has main choke sections with the step inductance L.
  • the converter unit is used to rectify the current in the circuit.
  • the effective in the circuit The inductance of the main choke can be realized by connecting and disconnecting partial turns as main choke sections of a tapped main choke or by connecting and disconnecting partial chokes connected in series as main choke sections.
  • the partial throttles are, for example, designed as independent throttles and are arranged in series in the coarse stage branch. Each partial inductor can be bypassed by a bypass branch when the switching unit arranged in the bypass path is switched on.
  • the direct current I DC generated according to the invention is inversely proportional to the inductance effective in the circuit according to I DC ⁇ 1/L.
  • the main choke sections all have the same inductance L.
  • the adjustment range (0 . . . I dc,max ) can be divided into N equal sections.
  • the main choke sections can also be designed differently within the scope of the invention, that is to say have an inductance L that differs from one another.
  • a fine-stage branch which is connected in parallel to the coarse-stage branch and has at least two secondary choke sections connected in series, with at least one secondary choke section being connected in parallel with a low-impedance bridging path, in which a switching unit is arranged which switches from a blocking position to an open position or can be reversed.
  • Each switching unit is preferably an electronic switching unit or, in other words, an electronic switch.
  • Electronic switches have a faster switching time compared to mechanical switches.
  • the term switching time is understood to mean the period of time from the triggering time to the time at which the disconnected position is reached.
  • the switches in the fine-stage branch have to carry less current than the switches in the main-stage branch and can therefore be designed to be more compact than these.
  • the secondary throttle sections are preferably designed as independent partial throttles or in the form of taps on a large partial throttle.
  • the sub-throttle sections divide a control range of the main-stage branch into sub-sections, so that more precise fine control is enabled. If the control range is (0 . . . I dc,max ) and the coarse stage branch divides this control range into N equal coarse sections I dc,max /N, then the fine stage branch with its M partial inductances divides the coarse sections into M fine stage sections.
  • the direct current I DC can be set with an accuracy of 1/(2*N) of the maximum direct current I dc,max
  • a further advantage of the invention can be seen in the fact that the current pulses generated by a choke and converter unit only have an AC component of the fundamental harmonics and a DC mean value at the level of the amplitude of the AC current. Therefore, there are no high harmonic current components, so that eddy current losses in the windings are reduced.
  • control unit increases or decreases the current flowing in the circuit in steps until the direct current component detected by the sensor is minimized.
  • the inductance acting in the circuit is changed in stages.
  • the compensation winding in the circuit acts as an ideal voltage source.
  • a voltage is induced in the compensation winding, which is inductively coupled to the winding or windings of the electrical device.
  • This voltage drives a current in the circuit that is rectified by the converter unit, the size of which depends on the inductance set in the circuit.
  • the circuit in which the compensation winding and the main and, if necessary, secondary choke sections are arranged is a closed circuit that is grounded at one point.
  • a direct current I DC thus flows, which is superimposed by an alternating current, with the amplitude of the alternating current roughly corresponding to the value of the direct current.
  • corresponds to the angular frequency of the alternating current.
  • L stands for the inductance of the circuit.
  • Ueff is the effective value of the AC voltage that is induced in the compensation winding.
  • the electrical device When the electrical device is in operation, it is connected to a high-voltage network within the scope of the invention.
  • the electrical device is therefore designed for high voltages and example a transformer, in particular a power transformer or a choke.
  • a transformer or such a choke preferably has a tank filled with an insulating fluid.
  • An active part is arranged in the tank, which has a magnetizable core and at least one winding. At least one winding is connected to the high-voltage network carrying AC voltage during operation.
  • an ester liquid or a mineral oil can be considered as the insulating fluid.
  • it is also used to cool the heat-generating components.
  • any sensor that detects direct currents and provides an electrical signal on the output side as a function of the magnitude of the direct current can be considered as a sensor.
  • the electrical signal can be an analog electrical signal, for example an electrical current or a voltage, the strength or intensity of which corresponds to the magnitude of the detected direct current.
  • the output signal of the sensor can also be a digital signal, such as a sequence of digital values, which have been generated, for example, by sampling an analog signal to obtain sample values and digitizing the sample values.
  • the electrical device is designed for operation in the voltage or high-voltage network, i.e. for an operating voltage between 1 kV and 1200 kV, in particular 50 kV and 800 kV.
  • the high-voltage network is preferably an AC voltage network.
  • a combination of AC and DC voltage networks is also possible within the scope of the invention.
  • an electrical device for example a transformer, in particular a power transformer, a choke or the like.
  • each switching unit is an electronic switching unit.
  • An electronic switching unit or, in other words, an electronic switch is, for example, a controllable power semiconductor that is switched by a control or ignition signal from a blocked position, in which a current flow through the power semiconductor is interrupted, into a through position, in which a current flow through the power semiconductor switch is enabled.
  • a controllable power semiconductor is, for example, a thyristor, GTO, IGBT, IGCT or the like.
  • each electronic switching unit is a thyristor.
  • Thyristors are particularly robust power semiconductors and are available on the market at low cost. Thyristors can only be actively switched from a blocking position to the open position. In other words, they can only be switched on or switched on. In order to move from the through position to the blocking position, the current flowing through the thyristor must fall below a holding current. However, this is guaranteed within the scope of the invention, since the compensation winding generates an AC voltage in the circuit, which ensures a current in the circuit in the event of a polarization change that falls below the holding current of the thyristor. If a circuit is to be switched on, the thyristor is continuously fired.
  • each switching unit has at least two thyristors connected in parallel in opposite directions to one another.
  • the thyristors serve not only as switches, but also as a power converter unit.
  • a thyristor When a thyristor is in its open position, current can only flow through it in one direction. In other words, the thyristor directs the current at the same time.
  • figure 1 shows an exemplary embodiment of the device 1 according to the invention, which comprises a circuit 2 in which a compensation winding 3 is arranged.
  • the compensation winding 3 is inductively coupled to a high-voltage winding of a power transformer (not shown in the figure), the power transformer being connected to a high-voltage network carrying AC voltage with a nominal voltage of 325 kV.
  • a power converter unit 4 in circuit 2, in series with compensation winding 3, a power converter unit 4 can be seen, which is designed as a diode 4 in the example shown.
  • the diode 4 is a non-driven power semiconductor.
  • the power converter unit or in other words the diode 4, enables current to flow in the circuit 2 in only one direction, which is indicated by the apex of the triangle, i.e. in figure 1 is indicated from left to right.
  • the grounded circuit 2 also has a coarse branch 5 and a fine branch 6.
  • main throttle sections 7 1 , 7 2 , 7 3 . . . 7 n are connected in series. Except for the first main throttle section 7 1 , all other main throttle sections 7 2 , 7 3 . . . 7 n can be bridged by a bridging path 8 2 , 8 3 . . . 8 n .
  • Each switching unit 9 is designed as a thyristor, which is connected to a control unit 10 via a signal line shown in dashed lines.
  • the thyristor In order to switch a main choke section or a secondary choke section into circuit 2, the thyristor must be in its interrupting position. In other words, the thyristor, which can only be actively transferred from its blocking position to its open position, must not be fired. In order to turn off the thyristor again, i.e. to transfer it from its open position to its blocking position, the current flowing through the thyristor must fall below a holding current. The holding current is in the range of a zero current. Due to the AC voltage coming from the compensation winding, the holding current is periodically undershot. The thyristor is continuously fired for bridging.
  • the control unit 10 is connected on the input side to a sensor 11 which is set up to detect a direct current component in an electrical device such as a transformer.
  • N auxiliary throttle sections 12 1 , 12 2 , 12 3 . . . 12 n are connected in series in fine-stage branch 6 .
  • the fine stage sections 12 2 , 12 3 . . . 12 n following the first fine stage section can again be bridged by bridging branches 13 2 , 13 3 .
  • the switching units 9 of the fine-stage branch 6 are also connected to the control unit 10 via signal lines shown in dashed lines.
  • the main throttle sections 7 1 , 7 2 , 7 3 have the same inductance L.
  • the inductance of the precision choke sections 12 1 , 12 2 , 12 3 is greater. In the exemplary embodiment shown, it is N ⁇ L.
  • the precision choke sections carry a lower current, they can be designed to be comparatively more compact.
  • figure 2 shows the control range of the main throttle sections 7 1 , 7 2 , 7 3 . . . 7 n and the control range of the fine throttle sections 12 1 , 12 2 , 12 3 ... 12 n . In figure 2 only two main control areas 14 1 , 14 2 are shown.
  • the main control range 14 2 is in turn divided into fine control ranges 15 1 to 15 n .
  • the control unit 10 can now bridge as many main throttle sections 7 1 , 7 2 , 7 3 ... 7 n and secondary throttle sections 12 1 , 12 2 , 12 3 ... 12 n by opening the thyristors 9 that there is a current in circuit 2 sets, which minimizes the DC component in the transformer in which the device 1 is installed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Unterdrücken einen Gleichstromanteils beim Betrieb eines an eine Hochspannungsnetz angeschlossenen elektrischen Geräts.The invention relates to a device and a method for suppressing a direct current component when operating an electrical device connected to a high-voltage network.

Die Erfindung betrifft ferner ein elektrisches Gerät mit einer solchen Vorrichtung.The invention also relates to an electrical device with such a device.

Bei elektrischen Transformatoren, wie sie in EnergieÜbertragungs- und Verteilungsnetzen eingesetzt werden, kann es zu einer unerwünschten Einspeisung eines Gleichstroms in die Wicklungen kommen. Auch leistungselektronische Baukomponenten im Netz, beispielsweise die Ansteuerung elektrischer Antriebe, Umrichter für flexible AC Transmission Systeme, Streuströme von mit Gleichstrom betriebenen Bahnsystemen oder die Hochspannungsgleichstromübertragung können für Gleichströme im elektrischen Gerät sorgen. Eine andere Ursache für Gleichströme können so genannte "Geomagnetically Induced Currents" (im Folgenden auch kurz als GIC bezeichnet) sein.In the case of electrical transformers, such as those used in energy transmission and distribution networks, an undesired direct current can be fed into the windings. Power electronic components in the network, for example the control of electrical drives, converters for flexible AC transmission systems, stray currents from railway systems operated with direct current or high-voltage direct current transmission can cause direct currents in electrical devices. Another cause of direct currents can be what are known as “Geomagnetically Induced Currents” (hereinafter also referred to as GIC for short).

Ein Gleichstromanteil hat im Kern des Transformators einen magnetischen Gleichfluss-Anteil zur Folge, der sich dem Wechselfluss überlagert. Es kommt zu einer unsymmetrischen Aussteuerung des magnetischen Werkstoffs im Kern, was eine Reihe von Nachteilen mit sich bringt. Bereits ein Gleichstrom von wenigen Ampere führt zu einer Sättigung des Kerns mit magnetischem Fluss. Damit verbunden ist eine signifikante Erhöhung der Verluste im Kern (z.B.: 20-30%). Erwärmungsprobleme können, insbesondere bei großem GIC auftreten. Es kommt ferner bei Betrieb zu einer erhöhten Geräuschemission, die insbesondere dann als besonders störend empfunden wird, wenn der Transformator in der Nähe eines Wohnbereichs betrieben wird. Zur Gleichstrom-Kompensation bzw. Verringerung von Betriebsgeräuschen eines Transformators als elektrisches Gerät sind verschiedene aktiv und passiv wirkende Einrichtungen bekannt.A DC component results in a magnetic DC component in the core of the transformer, which is superimposed on the AC flux. An asymmetrical modulation of the magnetic material in the core occurs, which has a number of disadvantages. Even a direct current of a few amperes leads to saturation of the core with magnetic flux. This is associated with a significant increase in losses in the core (eg: 20-30%). Heating problems can occur, especially with large GICs. There is also increased noise emission during operation, which is felt to be particularly annoying when the transformer is operated in the vicinity of a living area. Various active and passive devices are known for DC compensation or reduction of operating noise of a transformer as an electrical device.

So sind die eingangs genannte Vorrichtung und das eingangs genannte Verfahren in der EP 3 080 821 B1 beschrieben. Die dort offenbarte Vorrichtung verfügt über eine Kompensationswicklung, die Teil eines Stromkreises ist. In dem besagten Stromkreis ist ein Schaltzweig in Reihe zur Kompensationswicklung vorgesehen, wobei in dem Schaltzweig eine Drossel und ein Thyristor in Reihe geschaltet sind. Mit Hilfe einer Regeleinheit wird eine Phasenanschnittssteuerung realisiert. Mit anderen Worten wird der über den Schaltzweig im Stromkreis fließende Strom geregelt, indem die Phasenverschiebung zwischen dem Zündzeitpunkt des Thyristors und der Spannung im Kompensationsstromkreis variiert wird. Der regelbare Strombereich kann durch einen zweiten Schaltzweig, der dem ersten Schaltzweit parallel geschaltet ist, erhöht werden. Durch den zweiten Schaltzweig kann die erzielbare Durchflutung im Kern erhöht werden, so dass größere Gleichstromanteile kompensiert werden können. Das spannungssynchrone Zünden des oder der Thyristoren macht jedoch eine aufwändige Elektronik erforderlich, die kostenintensiv und wartungsanfällig ist.So the device mentioned and the method mentioned in the EP 3 080 821 B1 described. The device disclosed there has a compensation winding which is part of an electric circuit. In said circuit, a switching branch is provided in series with the compensation winding, with a choke and a thyristor being connected in series in the switching branch. A phase angle control is implemented with the aid of a control unit. In other words, the current flowing in the circuit via the switching branch is regulated by varying the phase shift between the triggering point of the thyristor and the voltage in the compensation circuit. The controllable current range can be increased by a second switching branch, which is connected in parallel to the first switching branch. The achievable throughput in the core can be increased by the second switching branch, so that larger DC components can be compensated. However, the voltage-synchronous firing of the thyristor or thyristors requires complex electronics that are expensive and susceptible to maintenance.

Weiterer Stand der Technik ist in der DE 27 23 767 A1 beschrieben.Further prior art is in DE 27 23 767 A1 described.

Aufgabe der Erfindung ist es daher, eine Vorrichtung, ein elektrisches Gerät und ein Verfahren der eingangs genannten Art zu schaffen, die kostengünstig, zuverlässig und wartungsarm sind.The object of the invention is therefore to create a device, an electrical device and a method of the type mentioned at the outset that are inexpensive, reliable and low-maintenance.

Ausgehend von der eingangs genannten Vorrichtung löst die Erfindung diese Aufgabe dadurch, dass die Vorrichtung mit einer Kompensationswicklung zum Erzeugen eines magnetischen Flusses in dem Kern, dessen Wirkung dem Gleichflussanteil entgegengerichtet ist, einem Stromkreis, in dem die Kompensationswicklung angeordnet ist, wenigstens einer in dem Stromkreis und in Reihe zur Kompensationswicklung angeordneten Stromrichtereinheit, die einen Stromfluss über diese in nur einer Richtung ermöglicht, einem in dem Stromkreis und in Reihe zur Kompensationswicklung angeordneten Grobstufenzweig mit wenigstens zwei in Reihe geschalteten Hauptdrosselabschnitten, wobei wenigstens einem Hauptdrosselabschnitt ein niederohmiger Überbrückungspfad parallel geschaltet ist, in dem eine Schalteinheit angeordnet ist, die von einer Sperrstellung, in der ein Stromfluss über die Schalteinheit ermöglicht ist, in eine Unterbrecherstellung, in der ein Stromfluss über die Schalteinheit verhindert ist, oder umgekehrt überführbar ist, einem Sensor zum Erfassen des Gleichstomanteils und einer mit jeder Schalteinheit und dem Sensor verbundenen Steuerungseinheit, die zum Betätigen jeder Schalteinheit eingerichtet ist, so dass einen Stromfluss über so viele Hauptdrosselabschnitte einstellbar ist, dass der von dem Sensor erfasste Gleichstromanteil minimiert ist.Based on the device mentioned above, the invention solves this problem in that the device with a compensation winding for generating a magnetic flux in the core, the effect of which is opposed to the direct flux component, a circuit in which the compensation winding is arranged, at least one in the circuit and converter unit arranged in series with the compensation winding, which enables a current flow via this in only one direction, a coarse stage branch arranged in the circuit and in series with the compensation winding with at least two main choke sections connected in series, with a low-impedance bridging path being connected in parallel with at least one main choke section, in which a switching unit is arranged, which can be converted from a blocking position, in which a current flow via the switching unit is enabled, into an interrupting position, in which a current flow via the switching unit is prevented, or vice versa, a sensor for detecting the direct current component and one with each switching unit and the control unit connected to the sensor, which is set up to actuate each switching unit so that a current flow can be set over so many main throttle sections that the direct current component detected by the sensor is minimized.

Die Erfindung löst diese Aufgabe ferner durch ein elektrisches Gerät mit einem Kern und wenigstens einer Wicklung, die zum Erzeugen eines magnetischen Flusses in dem Kern eingerichtet ist, wobei das elektrische Gerät eine induktiv mit dem Kern gekoppelte erfindungsgemäße Vorrichtung aufweist. Schließlich löst die Erfindung die Aufgabe durch ein Verfahren zum Unterdrücken eines Gleichstromanteils beim Betrieb eines an ein Hochspannungsnetz angeschlossenen elektrischen Geräts, das einen Kern, wenigstens eine Wicklung zum Erzeugen eines magnetischen Flusses in dem Kern und eine in einem Stromkreis angeordnete und induktiv mit dem Kern gekoppelte Kompensationswicklung aufweist, wobei der Stromkreis wenigstens eine in Reihe zur Kompensationswicklung angeordnete Stromrichtereinheit, die einen Stromfluss über diese in nur einer Richtung ermöglicht, und einen in dem Stromkreis und in Reihe zur Kompensationswicklung angeordneten Grobstufenzweig mit wenigstens zwei in Reihe geschalteten Hauptdrosselabschnitten aufweist, wobei wenigstens einem Hauptdrosselabschnitt ein niederohmiger Überbrückungspfad parallel geschaltet ist, in dem eine Schalteinheit angeordnet ist, die von einer Sperrstellung, in eine Durchlassstellung oder umgekehrt überführbar ist, und eine Steuerungseinheit aufweist, die mit einem Sensor zum Erfassen des Gleichstromanteils und jeder Schalteinheit verbunden ist, wobei das Verfahren folgende Schritte aufweist: Erfassen des Gleichstromanteils durch den Sensor unter Bereitstellung eines Ausgangssignals, Überführen des Ausgangssignals an die Steuerungseinheit, Ansteuern der Schaltungseinheiten durch die Steuerungseinheit, so dass ein Strompfad über so viele Hauptdrosselabschnitte ermöglicht ist, dass sich im Stromkreis ein Stromfluss einstellt, der den Gleichflussanteil minimiert.The invention also achieves this object with an electrical device having a core and at least one winding which is set up to generate a magnetic flux in the core, the electrical device having a device according to the invention which is inductively coupled to the core. Finally, the invention achieves the object through a method for suppressing a direct current component when operating an electrical device connected to a high-voltage network, which has a core, at least one winding for generating a magnetic flux in the core and one arranged in a circuit and inductively coupled to the core Compensation winding, wherein the circuit has at least one power converter unit arranged in series with the compensation winding, which allows current to flow via it in only one direction, and a coarse stage branch with at least two series-connected main choke sections, with at least one Main throttle section connected in parallel with a low-impedance bypass path is arranged, in which a switching unit is arranged, which can be transferred from a blocking position to an open position or vice versa, and has a control unit, which is connected to a sensor for detecting the direct current component and each switching unit, the method having the following steps: detecting the Direct current component through the sensor while providing an output signal, transferring the output signal to the control unit, driving the circuit units by the control unit, so that a current path over so many main throttle sections is made possible that a current flow is established in the circuit, which minimizes the DC component.

Erfindungsgemäß wird ein durch eine Kompensationswicklung fließender Gleichstrom durch Zu- und Abschalten von Hauptdrosselabschnitten eingestellt. Dabei sind alle Hauptdrosselabschnitte in Reihe zur Kompensationswicklung in einem Stromkreis angeordnet, in dem eine Stromrichtereinheit für die Gleichrichtung des im Stromkreis fließenden Stromes sorgt. Im Rahmen der Erfindung wird der kompensierende Gleichstrom in der Kompensationswicklung umso größer je mehr Hauptdrosselabschnitte überbrückt sind. Eine aufwändige Phasenanschnittsregelung ist im Rahmen der Erfindung überflüssig geworden. Eine einfache digitale Steuerung ist ausreichend. Diese überbrückt im Rahmen der Erfindung so viele Hauptdrosselabschnitte, dass der von dem Sensor in einem elektrischen Gerät gemessene Gleichstromanteil minimiert ist. Der Stromkreis der erfindungsgemäßen Vorrichtung ist zweckmäßigerweise an einem Potentialpunt geerdet. Dieser Potentialpunkt ist in Richtung des von der Stromrichtereinheit zugelassenen Stromes im Stromkreis den Hauptdrosselabschnitten nachgeschaltet.According to the invention, a direct current flowing through a compensation winding is set by connecting and disconnecting main choke sections. All the main choke sections are arranged in series with the compensation winding in a circuit in which a power converter unit rectifies the current flowing in the circuit. Within the scope of the invention, the compensating direct current in the compensating winding becomes greater the more main choke sections are bypassed. A complex phase control has become superfluous within the scope of the invention. A simple digital control is sufficient. Within the scope of the invention, this bridges so many main throttle sections that the direct current component measured by the sensor in an electrical device is minimized. The circuit of the device according to the invention is expediently grounded at a potential point. This potential point is connected downstream of the main choke sections in the direction of the current in the circuit permitted by the converter unit.

Der Hauptanteil der Erzeugung des Gleichstroms in der Kompensationswicklung am Kern des elektrischen Geräts übernimmt die Hauptdrossel, die Hauptdrosselabschnitte mit der Stufeninduktivität L aufweist. Die Stromrichtereinheit dient zur Gleichrichtung des Stromes im Stromkreis. Die im Stromkreis wirksame Induktivität der Hauptdrossel kann durch Rein- und Rausschalten von Teilwindungen als Hauptdrosselabschnitte einer angezapften Hauptdrossel oder durch Zu- und Wegschalten von in Reihe geschalteten Teildrosseln als Hauptdrosselabschnitten realisiert werden. Die Teildrosseln sind beispielsweise also eigenständige Drosseln ausgebildet und die im Grobstufenzweig in Reihe angeordnet. Jede Teildrossel ist durch einen Überbrückungszweig überbrückbar, wenn die im Überbrückungspfad angeordnete Schalteinheit eingeschaltet ist.The main part of the generation of the direct current in the compensation winding at the core of the electrical device is taken over by the main choke, which has main choke sections with the step inductance L. The converter unit is used to rectify the current in the circuit. The effective in the circuit The inductance of the main choke can be realized by connecting and disconnecting partial turns as main choke sections of a tapped main choke or by connecting and disconnecting partial chokes connected in series as main choke sections. The partial throttles are, for example, designed as independent throttles and are arranged in series in the coarse stage branch. Each partial inductor can be bypassed by a bypass branch when the switching unit arranged in the bypass path is switched on.

Der gemäß der Erfindung erzeugte Gleichstrom IDC ist umgekehrt proportional zur im Stromkreis wirksamen Induktivität gemäß IDC ∝ 1/L.The direct current I DC generated according to the invention is inversely proportional to the inductance effective in the circuit according to I DC ∝1/L.

Die Hauptdrosselabschnitte weisen gemäß einer vorteilhaften Weiterentwicklung der Erfindung alle die gleiche Induktivität L auf. Mit anderen Worten kann man durch überbrücken von Hauptdrosselabschnitten den Stellbereich (0 ... Idc,max) in N gleiche Abschnitte unterteilen. Die Hauptdrosselabschnitte können jedoch hiervon abweichend im Rahmen der Erfindung auch unterschiedlich ausgestaltet sein, also eine voneinander abweichende Induktivität L aufweisen.According to an advantageous further development of the invention, the main choke sections all have the same inductance L. In other words, by bridging main throttle sections, the adjustment range (0 . . . I dc,max ) can be divided into N equal sections. Deviating from this, however, the main choke sections can also be designed differently within the scope of the invention, that is to say have an inductance L that differs from one another.

Gemäß einer bevorzugten Weiterentwicklung der Erfindung ist ein dem Grobstufenzweig parallel geschalteter Feinstufenzweig vorgesehen, der wenigstens zwei in Reihe geschaltete Nebendrosselabschnitten aufweist, wobei wenigstens einem Nebendrosselabschnitt ein niederohmiger Überbrückungspfad parallel geschaltet ist, in dem eine Schalteinheit angeordnet ist, die von einer Sperrstellung in eine Durchgangsstellung oder umgekehrt überführbar ist.According to a preferred further development of the invention, a fine-stage branch is provided which is connected in parallel to the coarse-stage branch and has at least two secondary choke sections connected in series, with at least one secondary choke section being connected in parallel with a low-impedance bridging path, in which a switching unit is arranged which switches from a blocking position to an open position or can be reversed.

Vorzugsweise ist jede Schalteinheit eine elektronische Schalteinheit oder mit anderen Worten ein elektronischer Schalter. Elektronische Schalter weisen im Vergleich mit mechanischen Schaltern eine schnellere Schaltzeit auf. Unter dem Begriff Schaltzeit wird die Zeitdauer vom Auslösezeitpunt bis zum Zeitpunkt des Erreichens der Trennstellung verstanden. Die Schalter des Feinstufenzweiges müssen verglichen mit den Schaltern des Hauptstufenzweiges weniger Strom tragen und können daher kompakter als diese ausgestaltet sein. Bevorzugt sind die Nebendrosselanschnitte wieder als eigenständige Teildrosseln oder in Gestalt von Anzapfungen einer großen Teildrossel ausgebildet. Die Nebendrosselabschnitte unterteilen einen Stellbereich des Hauptstufenzweigs in Unterabschnitt, so dass eine genauere Feinregelung ermöglicht ist. Ist der Stellbereich insgesamt (0 ... Idc,max) und unterteilt der Grobstufenzweig diesen Stellbereich in N gleich Grobabschnitte Idc,max/N dann unterteilt der Feinstufenzweig mit seinen M Teilinduktivitäten die Grobabschnitte in M Feinstufenabschnitte.Each switching unit is preferably an electronic switching unit or, in other words, an electronic switch. Electronic switches have a faster switching time compared to mechanical switches. The term switching time is understood to mean the period of time from the triggering time to the time at which the disconnected position is reached. The switches in the fine-stage branch have to carry less current than the switches in the main-stage branch and can therefore be designed to be more compact than these. The secondary throttle sections are preferably designed as independent partial throttles or in the form of taps on a large partial throttle. The sub-throttle sections divide a control range of the main-stage branch into sub-sections, so that more precise fine control is enabled. If the control range is (0 . . . I dc,max ) and the coarse stage branch divides this control range into N equal coarse sections I dc,max /N, then the fine stage branch with its M partial inductances divides the coarse sections into M fine stage sections.

Unterteilt man die Feindrosselabschnitte auch in N gleiche Teilinduktivitäten und kommt jeder Teilinduktivität der Wert N*L zu, kann der Gleichstrom IDC mit einer Genauigkeit von 1/(2*N) des maximalen Gleichstroms Idc,max eingestellt werdenIf the precision choke sections are also divided into N equal partial inductances and each partial inductance has the value N*L, the direct current I DC can be set with an accuracy of 1/(2*N) of the maximum direct current I dc,max

Ein weiterer Vorteil der Erfindung ist darin zu sehen, dass die durch eine Drosseln und Stromrichtereinheit erzeugten Strompulse nur einen Wechselstromanteil der Grundharmonischen und einen DC-Mittelwert in der Höhe der Amplitude des Wechselstroms aufweisen. Daher hat man keine hohen harmonischen Stromanteile, so dass Wirbelstromverluste in den Wicklungen herab gesetzt sind.A further advantage of the invention can be seen in the fact that the current pulses generated by a choke and converter unit only have an AC component of the fundamental harmonics and a DC mean value at the level of the amplitude of the AC current. Therefore, there are no high harmonic current components, so that eddy current losses in the windings are reduced.

Im Rahmen der Erfindung ist kein Umrichter notwendig, stattdessen benötigt man nur relativ einfache Schaltelemente. Auch ist im Rahmen der Erfindung eine komplexe und fehleranfällige Phasenanschnittssteuerung vermieden. Erfindungsgemäß erhöht oder verringert die Steuerungseinheit den im Stromkreis fließenden Strom stufenweise, bis der von dem Sensor erfasste Gleichstromanteil minimiert ist.Within the framework of the invention, no converter is necessary, instead only relatively simple switching elements are required. A complex and error-prone phase control is also avoided within the scope of the invention. According to the invention, the control unit increases or decreases the current flowing in the circuit in steps until the direct current component detected by the sensor is minimized.

Dies geschieht durch eine einfache digitale Ansteuerung der Schalter. Probleme mit einer so genannten Schwingungsneigung eines PI-Reglers sind im Rahmen der Erfindung vermieden. Auch müssen keine langwierigen Reglereinstellungen (Pl) vorgenommen werden. Erfindungsgemäß ist eine einfache Nullpunktregelung (minimales Sensorsignal) durch Zu- und Wegschalten der jeweiligen Drosselabschnitte ausreichend. Ferner entfällt die aufwändige Kalibrierung des Sensors.This is done with a simple digital control of the switches. Problems with what is known as a tendency of a PI controller to oscillate are avoided within the scope of the invention. Also no tedious controller settings (Pl) have to be made. According to the invention, a simple zero-point control (minimum sensor signal) by switching the respective throttle sections on and off is sufficient. Furthermore, the time-consuming calibration of the sensor is no longer necessary.

Im Rahmen der Erfindung wird die im Stromkreis wirkende Induktivität stufig verändert. Dabei wirkt die Kompensationswicklung im Stromkreis als ideale Spannungsquelle. Beim Betrieb eines elektrischen Geräts, das eine erfindungsgemäße Vorrichtung aufweist, wird in der Kompensationswicklung, die induktiv mit der oder den Wicklungen des elektrischen Geräts gekoppelt ist, eine Spannung induziert. Diese Spannung treibt einen durch die Stromrichtereinheit gleichgerichteten Strom im Stromkreis, dessen Größe von der im Stromkreis eingestellten Induktivität abhängig ist. Der Stromkreis, in dem die Kompensationswicklung und die Haupt- und ggf. Nebendrosselabschnitte angeordnet sind, ist erfindungsgemäß ein geschlossener und an einer Stelle geerdeter Stromkreis.Within the scope of the invention, the inductance acting in the circuit is changed in stages. The compensation winding in the circuit acts as an ideal voltage source. During the operation of an electrical device that has a device according to the invention, a voltage is induced in the compensation winding, which is inductively coupled to the winding or windings of the electrical device. This voltage drives a current in the circuit that is rectified by the converter unit, the size of which depends on the inductance set in the circuit. According to the invention, the circuit in which the compensation winding and the main and, if necessary, secondary choke sections are arranged is a closed circuit that is grounded at one point.

Schaltet man in einem geschlossenen Stromkreis, der eine ideale Spannungsquelle aufweist, eine Stromrichtereinheit, beispielsweise eine Diode, und Haupt- und ggf. Nebendrosselabschnitte in Reihe, so fließt folgender Strom im Stromkreis: i t = I DC 1 cos ωt mit I DC = U eff 2 ωL

Figure imgb0001
If you connect a power converter unit, for example a diode, and main and, if necessary, secondary choke sections in series in a closed circuit that has an ideal voltage source, the following current flows in the circuit: i t = I DC 1 cos ωt With I DC = u eff 2 ωL
Figure imgb0001

Es fließt somit ein Gleichstrom IDC, der von einem Wechselstrom überlagert wird, wobei die Amplitude des Wechselstromes dem Wert des Gleichstroms in etwa entspricht. ω entspricht der Kreisfrequenz des Wechselstromes. L steht für die Induktivität des Stromkreises. Ueff ist der Effektivwert der Wechselspannung, die in der Kompensationswicklung induziert wird.A direct current I DC thus flows, which is superimposed by an alternating current, with the amplitude of the alternating current roughly corresponding to the value of the direct current. ω corresponds to the angular frequency of the alternating current. L stands for the inductance of the circuit. Ueff is the effective value of the AC voltage that is induced in the compensation winding.

Beim Betrieb des elektrischen Geräts ist dieses im Rahmen der Erfindung an ein Hochspannungsnetz angeschlossen. Das elektrische Gerät ist daher für Hochspannungen ausgelegt und beispielweise ein Transformator, insbesondere Leistungstransformator oder eine Drossel. Ein solcher Transformator oder eine solche Drossel verfügt bevorzugt über einen mit einem Isolierfluid befüllten Tank. In dem Tank ist ein Aktivteil angeordnet, das einen magnetisierbaren Kern und wenigstens eine Wicklung aufweist. Wenigstens eine Wicklung ist beim Betrieb mit dem Wechselspannung führenden Hochspannungsnetz verbunden. Als Isolierfluid kommt beispielsweise eine Esterflüssigkeit oder ein mineralisches Öl in Betracht. Es dient neben der elektrischen Isolation des Aktivteils gegenüber dem auf Erdpotential liegenden Tank auch zur Kühlung der Wärme entwickelnden Bauteile.When the electrical device is in operation, it is connected to a high-voltage network within the scope of the invention. The electrical device is therefore designed for high voltages and example a transformer, in particular a power transformer or a choke. Such a transformer or such a choke preferably has a tank filled with an insulating fluid. An active part is arranged in the tank, which has a magnetizable core and at least one winding. At least one winding is connected to the high-voltage network carrying AC voltage during operation. For example, an ester liquid or a mineral oil can be considered as the insulating fluid. In addition to the electrical insulation of the active part from the tank, which is at ground potential, it is also used to cool the heat-generating components.

Als Sensor kommt im Rahmen der Erfindung jeder Sensor in Betracht, der Gleichströme erfassen und in Abhängigkeit der Größe des Gleichstroms ausgangsseitig ein elektrisches Signal bereitstellt. Das elektrische Signal kann ein analoges elektrisches Signal, beispielsweise ein elektrischer Strom oder eine Spannung sein, dessen Stärke oder Intensität der Größe des erfassten Gleichstromes entspricht. Das Ausgangssignal des Sensors kann jedoch im Rahmen der Erfindung auch ein digitales Signal, wie beispielsweise eine Folge digitaler Werte, sein, die z.B. durch Abtasten eines analogen Signals unter Gewinnung von Abtastwerten und digitalisieren der Abtastwerte erzeugt wurden.Within the scope of the invention, any sensor that detects direct currents and provides an electrical signal on the output side as a function of the magnitude of the direct current can be considered as a sensor. The electrical signal can be an analog electrical signal, for example an electrical current or a voltage, the strength or intensity of which corresponds to the magnitude of the detected direct current. However, within the scope of the invention, the output signal of the sensor can also be a digital signal, such as a sequence of digital values, which have been generated, for example, by sampling an analog signal to obtain sample values and digitizing the sample values.

Das elektrische Gerät ist im Rahmen der Erfindung für einen Betrieb im Spannungs- bzw. Hochspannungsnetz ausgelegt, d.h. für eine Betriebsspannung zwischen 1 kV und 1200 kV, insbesondere 50 kV und 800 kV. Das Hochspannungsnetz ist bevorzugt ein Wechselspannungsnetz. Aber auch eine Kombination aus Wechsel- und Gleichspannungsnetz ist im Rahmen der Erfindung möglich.Within the scope of the invention, the electrical device is designed for operation in the voltage or high-voltage network, i.e. for an operating voltage between 1 kV and 1200 kV, in particular 50 kV and 800 kV. The high-voltage network is preferably an AC voltage network. However, a combination of AC and DC voltage networks is also possible within the scope of the invention.

Erfindungsgemäß ist ein elektrisches Gerät, beispielsweise ein Transformator, insbesondere Leistungstransformator, eine Drossel oder dergleichen.According to the invention, an electrical device, for example a transformer, in particular a power transformer, a choke or the like.

Gemäß einer weiteren Variante der Erfindung ist jede Schalteinheit eine elektronische Schalteinheit. Eine elektronische Schalteinheit oder mit anderen Worten ein elektronischer Schalter ist beispielsweise ein ansteuerbarer Leistungshalbleiter, der durch ein Steuer- oder Zündsignal von einer Sperrstellung, in der ein Stromfluss über den Leistungshalbleiter unterbrochen ist, in eine Durchgangsstellung überführt wird, in der ein Stromfluss über den Leistungshalbleiterschalter ermöglicht ist. Ein ansteuerbarer Leistungshalbleiter ist beispielsweise ein Thyristor, GTO, IGBT, IGCT oder dergleichen.According to a further variant of the invention, each switching unit is an electronic switching unit. An electronic switching unit or, in other words, an electronic switch is, for example, a controllable power semiconductor that is switched by a control or ignition signal from a blocked position, in which a current flow through the power semiconductor is interrupted, into a through position, in which a current flow through the power semiconductor switch is enabled. A controllable power semiconductor is, for example, a thyristor, GTO, IGBT, IGCT or the like.

Gemäß einer diesbezüglich zweckmäßigen Ausgestaltung der Erfindnung ist jede elektronische Schalteinheit ein Thyristor. Thyristoren sind besonders robuste Leistungshalbleiter und kostengünstig am Markt erhältlich. Thyristoren können aktiv nur von einer Sperrstellung in die Durchgangstellung überführt werden. Sie können also mit anderen Worten nur einoder zugeschaltet werden. Um von der Durchgansstellung in die Sperrstellung zu gelangen, muss der über den Thyristor fließende Strom einen Haltestrom unterschreiten. Dies ist jedoch im Rahmen der Erfindung gewährleistet, da die Kompensationswicklung eine Wechselspannung im Stromkreis erzeugt, die bei einem Polaristionswechsel für einen Strom im Stromkreis sorgt, der den Haltestrom des Tyristors unterschreitet. Soll ein Schaltkreis zugeschaltet werden, wird der Tyristor dauergezündet.According to an embodiment of the invention that is expedient in this respect, each electronic switching unit is a thyristor. Thyristors are particularly robust power semiconductors and are available on the market at low cost. Thyristors can only be actively switched from a blocking position to the open position. In other words, they can only be switched on or switched on. In order to move from the through position to the blocking position, the current flowing through the thyristor must fall below a holding current. However, this is guaranteed within the scope of the invention, since the compensation winding generates an AC voltage in the circuit, which ensures a current in the circuit in the event of a polarization change that falls below the holding current of the thyristor. If a circuit is to be switched on, the thyristor is continuously fired.

Gemäß einer Variante der Erfindung weist jede Schalteinheit wenigstens zwei gegensinnig zueinander parallel geschaltete Thyristoren auf.According to one variant of the invention, each switching unit has at least two thyristors connected in parallel in opposite directions to one another.

Bei einer bevorzugten Ausgestaltung der Erfindung dienen die Thyristoren nicht nur als Schalter, sondern auch als Stromrichtereinheit. Befindet sich ein Thyristor in seiner Durchgangsstellung ist der Stromfluss über ihn in nur einer Richtung möglich. Mit anderen Worten richtet der Thyristor den Strom zugleich.In a preferred embodiment of the invention, the thyristors serve not only as switches, but also as a power converter unit. When a thyristor is in its open position, current can only flow through it in one direction. In other words, the thyristor directs the current at the same time.

Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung unter Bezug auf die Figur der Zeichnung, wobei gleiche Bezugszeichen auf gleichwirkende Bauteile verweisen und wobei

Figur 1
ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung, und
Figur 2
die Stellbereiche der Vorrichtung gemäß Figur 1 schematisch verdeutlicht.
Further expedient refinements and advantages of the invention are the subject of the following description of exemplary embodiments of the invention with reference to the figure of the drawing, in which the same reference symbols refer to components which have the same effect and in which
figure 1
an embodiment of the device according to the invention, and
figure 2
the adjustment ranges of the device according to figure 1 schematically illustrated.

Figur 1 zeigt ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung 1, die einen Stromkreis 2 umfasst, in dem eine Kompensationswicklung 3 angeordnet ist. Die in Kompensationswicklung 3 ist beim Betrieb der Vorrichtung 1 induktiv mit einer Oberspannungswicklung eines figürlich nicht dargestellten Leistungstransformators gekoppelt, wobei der Leistungstransformator an ein Wechselspannung führendes Hochspannungsnetz mit einer Nennspannung von 325 kV angeschlossen ist. figure 1 shows an exemplary embodiment of the device 1 according to the invention, which comprises a circuit 2 in which a compensation winding 3 is arranged. During operation of the device 1, the compensation winding 3 is inductively coupled to a high-voltage winding of a power transformer (not shown in the figure), the power transformer being connected to a high-voltage network carrying AC voltage with a nominal voltage of 325 kV.

Im Stromkreis 2 ist in Reihe zur Kompensationswicklung 3 eine Stromrichtereinheit 4 erkennbar, die in dem dargestellten Beispiel als Diode 4 ausgeführt ist. Die Diode 4 ist ein nicht ansteuerbarer Leistungshalbleiter.In circuit 2, in series with compensation winding 3, a power converter unit 4 can be seen, which is designed as a diode 4 in the example shown. The diode 4 is a non-driven power semiconductor.

Die Stromrichtereinheit oder mit anderen Worten die Diode 4 ermöglicht einen Stromfluss im Stromkreis 2 in nur einer Richtung, die durch die Spitze des Dreiecks also in Figur 1 von links nach rechts angedeutet ist.The power converter unit, or in other words the diode 4, enables current to flow in the circuit 2 in only one direction, which is indicated by the apex of the triangle, i.e. in figure 1 is indicated from left to right.

Der geerdete Stromkreis 2 verfügt ferner über einen Grobstufenzweig 5, sowie über einen Feinstufenzweig 6. In dem Grobstufenzweig 5 sind Hauptdrosselabschnitte 71, 72, 73 ... 7n in Reihe geschaltet. Bis auf den ersten Hauptdrosselabschnitt 71 sind alle weiteren Hauptdrosselabschnitte 72, 73... 7n durch einen Überbrückungspfad 82, 83 ... 8n überbrückbar. In jedem der aufgezählten Überbrückungspfade 82, 83 ... 8n ist eine Schalteinheit 9 angeordnet. Jede Schalteinheiten 9 ist als Tyristor ausgeführt, der über eine gestrichelt dargestellte Signalleitung mit einer Steuerungseinheit 10 verbunden ist. Um einen Hauptdrosselabschnitt oder einen Nebendrosselabschnitt in den Stromreis 2 zu schalten, muss sich der Thristor in seiner Unterbrecherstelltung befinden. Mit anderen Worten darf der Tyristor, der aktiv nur von seiner Sperrstellung in seine Durchgangsstellung überführt werden kann, nicht gezündet werden. Um den Thyristor wieder auszuschlaten, um ihn also von seiner Durchgangsstellnung in seine Sperstellung zu überführen, muss der über den Thyristor fließende Strom eine Haltestrom unterschreiten. Der Haltestrom ist liegt im Bereich eines Nullstroms. Auf Grund der von der Kompensationswicklung her rührenden Wechselspannung wird der Haltestrom periodisch unterschritten. Zum Überbrücken wird der Thyristor dauergezündet.The grounded circuit 2 also has a coarse branch 5 and a fine branch 6. In the coarse branch 5, main throttle sections 7 1 , 7 2 , 7 3 . . . 7 n are connected in series. Except for the first main throttle section 7 1 , all other main throttle sections 7 2 , 7 3 . . . 7 n can be bridged by a bridging path 8 2 , 8 3 . . . 8 n . There is a switching unit in each of the listed bridging paths 8 2 , 8 3 . . . 8 n 9 arranged. Each switching unit 9 is designed as a thyristor, which is connected to a control unit 10 via a signal line shown in dashed lines. In order to switch a main choke section or a secondary choke section into circuit 2, the thyristor must be in its interrupting position. In other words, the thyristor, which can only be actively transferred from its blocking position to its open position, must not be fired. In order to turn off the thyristor again, i.e. to transfer it from its open position to its blocking position, the current flowing through the thyristor must fall below a holding current. The holding current is in the range of a zero current. Due to the AC voltage coming from the compensation winding, the holding current is periodically undershot. The thyristor is continuously fired for bridging.

Die Steuerungseinheit 10 ist eingansseitig mit einem Sensor 11 verbunden, der zum Erfassen eines Gleichstromanteils in einem elektrischen Gerät, wie einem Transformator eingerichtet ist. In dem Feinstufenzweig 6 sind N Nebendrosselabschnitte 121, 122, 123 ... 12n in Reihe geschaltet. Die dem ersten Feinstufenabschnitt folgenden Feinstufenabschnitte 122, 123 ... 12n sind wieder durch Überbrückungszweige 132, 133 ... 13n, in denen jeweils eine Schalteinheit 9 angeordnet ist, überbrückbar.The control unit 10 is connected on the input side to a sensor 11 which is set up to detect a direct current component in an electrical device such as a transformer. N auxiliary throttle sections 12 1 , 12 2 , 12 3 . . . 12 n are connected in series in fine-stage branch 6 . The fine stage sections 12 2 , 12 3 . . . 12 n following the first fine stage section can again be bridged by bridging branches 13 2 , 13 3 .

Auch die Schalteinheiten 9 des Feinstufenzweiges 6 sind über gestrichelt dargestellte Signalleitungen mit der Steuerungseinheit 10 verbunden. Die Hauptdrosselabschnitte 71, 72, 73 weisen die gleich Induktivität L auf. Die Induktivität der Feindrosselabschnitte 121, 122, 123 ist größer. Sie beträgt im gezeigten Ausführungsbeispiel N x L. Da die Feindrosselabschnitte jedoch einen geringeren Strom tragen, können diese vergleichsweise kompakter ausgestaltet werden. Figur 2 zeigt den Regelbereich der Hauptdrosselabschnitte 71, 72, 73... 7n sowie die Regelbereich der Feindrosselabschnitte 121, 122, 123 ... 12n. In Figur 2 sind lediglich zwei Hauptregelbereiche 141, 142 dargestellt. Der Hauptregelbereich 142 ist wiederum in Feinregelbereiche 151 bis 15n unterteilt.The switching units 9 of the fine-stage branch 6 are also connected to the control unit 10 via signal lines shown in dashed lines. The main throttle sections 7 1 , 7 2 , 7 3 have the same inductance L. The inductance of the precision choke sections 12 1 , 12 2 , 12 3 is greater. In the exemplary embodiment shown, it is N×L. However, since the precision choke sections carry a lower current, they can be designed to be comparatively more compact. figure 2 shows the control range of the main throttle sections 7 1 , 7 2 , 7 3 . . . 7 n and the control range of the fine throttle sections 12 1 , 12 2 , 12 3 ... 12 n . In figure 2 only two main control areas 14 1 , 14 2 are shown. The main control range 14 2 is in turn divided into fine control ranges 15 1 to 15 n .

Die Steuerungseinheit 10 kann nun durch Öffnen der Tyristoren 9 so viele Hauptdrosselabschnitte 71, 72, 73 ... 7n und Nebendrosselabschnitte 121, 122, 123 ... 12n überbrücken, dass sich im Stromkreis 2 ein Strom einstellt, der den Gleichstromanteil in dem Transformator, in dem die Vorrichtung 1 verbaut ist, minimiert.The control unit 10 can now bridge as many main throttle sections 7 1 , 7 2 , 7 3 ... 7 n and secondary throttle sections 12 1 , 12 2 , 12 3 ... 12 n by opening the thyristors 9 that there is a current in circuit 2 sets, which minimizes the DC component in the transformer in which the device 1 is installed.

Claims (10)

  1. Apparatus (1) for suppressing a magnetic DC component in the magnetizable core of an electrical device, comprising
    - a compensation winding (3) for generating a magnetic flux in the core, the effect of which is counter to the DC flux component,
    - a circuit (2) in which the compensation winding (3) is arranged,
    - at least one power converter unit (4) that is arranged in the circuit (2) and in series with the compensation winding (3), and enables a flow of current therethrough in just one direction,
    - a coarse stage branch (5) that is arranged in the circuit (2) and in series with the compensation winding (3) and comprises at least two main inductor sections (71, 72, ... 7n) that are connected in series, wherein a low-resistance bypass path (82, ... 8n) is connected in parallel with at least one main inductor section (72, ... 7n), in which bypass path a switching unit (9) is arranged that can be changed over from an on-state position, in which a flow of current through the switching unit (9) is enabled, into an interrupter position, in which a flow of current through the switching unit (9) is prevented, or vice versa,
    - a sensor (11) for detecting the DC component, and
    - a control unit (10) that is connected to each switching unit (9) and the sensor (11) and is configured to actuate each switching unit (9) so that a flow of current can be set through so many main inductor sections (71, 72, ... 7n) that the DC component detected by the sensor (11) is minimized.
  2. Apparatus (1) according to Claim 1,
    characterized by
    a fine stage branch (6) that is connected in parallel with the coarse stage branch and comprises at least two auxiliary inductor sections (121, 122, ... 12n) that are connected in series, wherein a low-resistance bypass path (132, ... 13n) is connected in parallel with at least one auxiliary inductor section (121, 122, ... 12n), in which bypass path a switching unit (9) is arranged that can be changed over from an off-state position into an on-state position, or vice versa.
  3. Apparatus (1) according to Claim 1 or 2,
    characterized in that
    each switching unit is an electronic switching unit (9).
  4. Apparatus (1) according to Claim 3,
    characterized in that
    each electronic switching unit is a thyristor (9).
  5. Apparatus (1) according to Claim 3 or 4,
    characterized in that
    each switching unit has at least two thyristors (9) that are connected in parallel with one another in opposite directions.
  6. Apparatus (1) according to one of the preceding claims, characterized in that
    at least some of the switching units (9) are used as the power converter unit (4).
  7. Apparatus (1) according to one of the preceding claims, characterized in that
    main inductor sections (71, 72, ... 7n) are of identical or different design.
  8. Apparatus (1) according to one of Claims 2 to 7, characterized in that
    auxiliary inductor sections i (121, 122, ... 12n) are of identical or different design.
  9. Electrical device having a core and at least one winding that is configured to generate a magnetic flux in the core, and an apparatus (1) according to one of Claims 1 to 8 that is inductively coupled to the core.
  10. Method for suppressing a DC component during operation of an electrical device that is connected to a high-voltage network and has a core, at least one winding for generating a magnetic flux in the core and a compensation winding (3) that is arranged in a circuit (2) and is inductively coupled to the core, wherein the circuit (2) has at least one power converter unit (4) that is arranged in series with the compensation winding (3) and enables a flow of current therethrough in just one direction, and a coarse stage branch (5) that is arranged in the circuit and in series with the compensation winding (3) and comprises at least two main inductor sections (71, 72, ... 7n) that are connected in series, wherein a low-resistance bypass path (82, ... 8n) is connected in parallel with at least one main inductor section (72, ... 7n), in which bypass path a switching unit (9) is arranged that can be changed over from an off-state position into an on-state position, or vice versa, and a control unit (10) that is connected to a sensor (11) for detecting the DC component and each switching unit (9), wherein the method includes the following steps:
    - detecting the DC component by way of the sensor (9), with provision of an output signal,
    - transferring the output signal to the control unit (10),
    - activating the switching units (9) by way of the control unit (10) so that a flow of current is enabled through so many main inductor sections (71, 72, ... 7n) that a flow of current is established in the circuit (2) that minimizes the DC flux component.
EP19194634.2A 2019-08-30 2019-08-30 Device for suppressing a direct current component during the operation of an electrical appliance connected to a high-voltage network Active EP3786987B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19194634.2A EP3786987B1 (en) 2019-08-30 2019-08-30 Device for suppressing a direct current component during the operation of an electrical appliance connected to a high-voltage network
PL19194634.2T PL3786987T3 (en) 2019-08-30 2019-08-30 Device for suppressing a direct current component during the operation of an electrical appliance connected to a high-voltage network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19194634.2A EP3786987B1 (en) 2019-08-30 2019-08-30 Device for suppressing a direct current component during the operation of an electrical appliance connected to a high-voltage network

Publications (2)

Publication Number Publication Date
EP3786987A1 EP3786987A1 (en) 2021-03-03
EP3786987B1 true EP3786987B1 (en) 2022-07-20

Family

ID=67810485

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19194634.2A Active EP3786987B1 (en) 2019-08-30 2019-08-30 Device for suppressing a direct current component during the operation of an electrical appliance connected to a high-voltage network

Country Status (2)

Country Link
EP (1) EP3786987B1 (en)
PL (1) PL3786987T3 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3786986A1 (en) * 2019-08-28 2021-03-03 Siemens Energy Global GmbH & Co. KG Circuit assembly for the reduction of a unidirectional flux fraction in the slightly magnetic core of a transformer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2723767A1 (en) * 1977-05-26 1978-11-30 Messer Griesheim Gmbh AC welding current source - with on off thyristors for coarse and current slicing thyristors for fine control
WO2015086048A1 (en) 2013-12-10 2015-06-18 Siemens Aktiengesellschaft Device and method for reducing a magnetic unidirectional flux component in the core of a transformer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3786986A1 (en) * 2019-08-28 2021-03-03 Siemens Energy Global GmbH & Co. KG Circuit assembly for the reduction of a unidirectional flux fraction in the slightly magnetic core of a transformer

Also Published As

Publication number Publication date
EP3786987A1 (en) 2021-03-03
PL3786987T3 (en) 2022-11-28

Similar Documents

Publication Publication Date Title
EP3132515B1 (en) Converter for outputting reactive power, and method for controlling said converter
WO2010010022A1 (en) Circuit for simulating an electrical load
EP3080821B1 (en) Device and method for reducing a magnetic unidirectional flux component in the core of a transformer
EP2367272B1 (en) Inverter
WO2016202673A1 (en) Switch apparatus, test apparatus and method for operating a switch apparatus for a measuring device for a transformer
EP3786987B1 (en) Device for suppressing a direct current component during the operation of an electrical appliance connected to a high-voltage network
DE102011005905A1 (en) Switch for a transmission line for high voltage direct current
EP3783630B1 (en) Device for suppressing a direct current component during the operation of an electrical appliance connected to a high-voltage network
EP3652848B1 (en) Resonant direct current adjuster
DE4344709C2 (en) Process for converting DC or AC voltages of different sizes into an arbitrarily specified voltage
EP3786986B1 (en) Circuit assembly for the reduction of a unidirectional flux component in the soft magnetic core of a transformer
DE102014106322A1 (en) Plant and method for providing reactive power
WO2018113926A1 (en) Power converter
EP3138176B1 (en) Converter for symmetrical reactive power compensation, and a method for controlling same
DE4040164C2 (en)
EP3101796A1 (en) Transformer circuit for modifying a voltage in an electrical power supply system relative to a nominal voltage
DE102018208626A1 (en) Magnetically adjustable reactor for reactive power compensation with capacitively connected auxiliary windings
EP3179617A1 (en) Circuit assembly for the compensation of a dc component in a transformer
EP3180844A1 (en) Power converter arrangement with short-circuit unit and method for separating an ac voltage line
EP3850720B1 (en) Magnetically controllable inductor coil in a series circuit
DE202012012810U1 (en) Ground fault system
DE102004020792B4 (en) Electrical switching converter with high input voltage
EP3610545A1 (en) Transmission device for energy transmission between multiple electrical energy networks
EP0958642B1 (en) Circuitry for operating an electronic tripping device in a circuit breaker
DE102021118233A1 (en) Device for generating a compensation current

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210831

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004999

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1506073

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221020

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221120

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221021

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004999

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220830

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

26N No opposition filed

Effective date: 20230421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220830

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230825

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230822

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230823

Year of fee payment: 5

Ref country code: PL

Payment date: 20230804

Year of fee payment: 5

Ref country code: DE

Payment date: 20230828

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720