EP3270397B1 - Switching assembly and method for fault clearing - Google Patents

Switching assembly and method for fault clearing Download PDF

Info

Publication number
EP3270397B1
EP3270397B1 EP17176306.3A EP17176306A EP3270397B1 EP 3270397 B1 EP3270397 B1 EP 3270397B1 EP 17176306 A EP17176306 A EP 17176306A EP 3270397 B1 EP3270397 B1 EP 3270397B1
Authority
EP
European Patent Office
Prior art keywords
switching
voltage
switching element
voltage line
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17176306.3A
Other languages
German (de)
French (fr)
Other versions
EP3270397A1 (en
Inventor
David DÖRING
Klaus WÜRFLINGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59070524&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3270397(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP3270397A1 publication Critical patent/EP3270397A1/en
Application granted granted Critical
Publication of EP3270397B1 publication Critical patent/EP3270397B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/543Contacts shunted by static switch means third parallel branch comprising an energy absorber, e.g. MOV, PTC, Zener
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/546Contacts shunted by static switch means the static switching means being triggered by the voltage over the mechanical switch contacts

Definitions

  • the invention relates to a switching arrangement for connecting two DC voltage networks.
  • High-voltage direct current (HVDC) transmission is a well-known technology that is suitable for transmitting electrical energy over long distances.
  • the current flow takes place via DC voltage lines, which can be in the form of cable lines or overhead lines.
  • DC voltage lines for example in the form of point-to-point connections, can be combined to form a DC voltage network.
  • Such direct voltage networks can be in the form of so-called multi-terminal, radial or meshed direct voltage networks.
  • the DC voltage networks are essentially formed from DC voltage lines that extend between converter stations, nodes or a node and a converter station.
  • the DC voltage lines can be implemented as bipolar or monopole connections (symmetrical and asymmetrical) known to those skilled in the art.
  • a symmetrical monopole connection is characterized by a two-pole design of the DC voltage line, for example with a positive and a negative pole, which does not have a rigid connection to earth potential.
  • DC voltage switches are usually used to decouple the two DC voltage networks.
  • a similar problem can also occur when two power converters are connected on the DC voltage side.
  • Such a DC voltage switch is, for example, from WO 2015/078525 A1 .
  • the known DC voltage switch is bidirectional, which means that it can switch the current independently of the current direction in the DC voltage line.
  • the DC voltage switch is also arranged in one of the two poles of the DC voltage line, which is sufficient for disconnecting a grounded DC voltage line.
  • WO 2014/117807 A1 a device with a bi-directional DC voltage switch is disclosed.
  • the one from the WO 2014/117807 A1 known DC voltage switch comprises two series-connected mechanical isolating switches, each of which has a discharge diode connected in parallel.
  • Another bidirectional circuit breaker is from the WO 2014/053554 A1 known.
  • the object of the present invention is to provide a switching arrangement of the above type which is simple and reliable.
  • a switching arrangement for connecting two DC voltage networks comprising a DC voltage line that connects a first DC voltage network to a second DC voltage network, a first unidirectional switching element in a first pole of the DC voltage line, a second unidirectional switching element in the first pole of the DC voltage line, which is arranged at a distance from the first switching element and whose switching direction is opposite to a switching direction of the first switching element, a third unidirectional switching element in a second pole of the DC voltage line, and a fourth unidirectional switching element in the second pole of the DC voltage line, which is connected by the third switching element is arranged spaced and its switching direction of a switching direction of the third switching element is directed in the opposite direction, the switching elements each having a dielectric strength which is below a nominal voltage (nominal transmission voltage) of the DC voltage line (but it is usually above the terminal voltage).
  • the switching arrangement according to the invention is suitable for connecting two DC voltage networks, with the DC voltage line of the switching arrangement extending between network nodes, converters and/or similar elements of the DC voltage networks to be connected. In any case, it is also particularly suitable for a converter to a DC voltage network or its node or to connect two converters to each other on the DC voltage side.
  • An advantage of the switching arrangement according to the invention is the possibility of clarifying asymmetrical ground faults at only one pole in DC voltage lines without a rigid ground connection by using unidirectional switching elements.
  • the dielectric strength of the switching elements can be selected to be lower than in the case of a DC voltage switch, which is only arranged in one pole of the DC voltage line and must therefore be designed for the full nominal voltage. This can make the switching device simpler and possibly also cheaper.
  • the nominal voltage in the DC voltage line can be more than 100 kV, in many cases more than 600 kV.
  • the DC voltage line can be connected to a DC voltage node at least at one end, for example.
  • Several DC voltage lines of the corresponding DC voltage network come together in a DC voltage node.
  • the DC voltage line can also be connected at least at one end to a converter of the corresponding DC voltage network.
  • the poles of the DC voltage line are present, for example, as cable or overhead lines.
  • the switching direction of the switching element is that current direction in which the switching element can block the current. In this context, it can also be referred to as the tripping current direction.
  • the switching elements of the switching arrangement according to the invention are unidirectional. This means that the switching elements generally have an excellent switching direction. If the current flows against the switching direction of a Switching element, this switching element can not block the current.
  • the DC voltage line is in the form of a monopole connection, expediently a symmetrical monopole connection.
  • a first, positive pole of the DC voltage line is in this case at a positive electrical potential.
  • a second, negative pole is at a negative electrical potential. Due to the lack of a fixed connection to the ground potential, a ground fault in one of the two poles may lead to a potential shift in the DC voltage line. For example, the earth fault can lead to a charge reversal of the positive pole, so that the positive pole is brought to zero potential.
  • the nominal voltage i.e. the pole-to-pole voltage, i.e.
  • the potential difference between the positive and the negative pole may be retained, so that the negative pole is lowered to twice the potential in this case.
  • This is the case, for example, when the DC voltage line is connected to an inverter that maintains a constant voltage at one end of the DC voltage line.
  • the switching arrangement according to the invention can be used to prevent such a potential shift from affecting both DC voltage networks.
  • the two DC voltage networks can be decoupled from one another by means of the switching arrangement according to the invention. In this way, at least one of the DC voltage networks is not affected by the fault or ground fault. If the fault location is between the switching elements, both DC voltage networks can even be kept harmless. Furthermore, in the event of a switch-internal error, network coupling and error localization can be implemented.
  • the dielectric strength of the switching elements preferably corresponds to a maximum voltage value of one of the poles of the DC voltage line. In the case of a symmetrical monopole connection, the switching elements are designed for approximately half the nominal voltage. The design can include an additional tolerance range of the dielectric strength of about 10% to 70%. Advantageously, the switching elements therefore do not have to be designed for the full rated voltage.
  • the first and the third switching element are arranged close to the first DC voltage network and the second and the fourth switching element are arranged close to the second DC voltage network.
  • the switching direction of the third switching element is preferably directed in the opposite direction to the switching direction of the first switching element.
  • the term local refers to a distance of less than 10 km.
  • the switching directions of the first and third switching elements preferably point towards one another. It is also advantageous if the switching directions of the second and fourth switching elements are also directed in opposite directions.
  • a preferred configuration is given when the switching direction of the first switching element, which is arranged close to the first DC voltage network, points in the direction of the second switching element, the switching direction of the second switching element, which is arranged close to the second DC voltage network, points in the direction of the first switching element, which The switching direction of the third switching element, which is located close to the first DC voltage network, points towards the first DC voltage network and the switching direction of the fourth switching element, which is located close to the second DC voltage network, points towards the second DC voltage network.
  • the first direct voltage network is referred to as network1
  • the second direct voltage network as network2
  • the ith (first to fourth) switching element as SEi accordingly.
  • the normal operating status is referred to as OK and the error status as Fail.
  • the suffix p or n indicates whether the fault occurs in the positive (p) or negative (n) pole.
  • the DC voltage line is marked as GL between the switching elements. error location Opening switching elements state net2 Network1 status net2p SE2, SE3 failure OK net2n SE1, SE4 failure OK net1p SE1, SE4 OK failure net1n SE2, SE3 OK failure GLp SE1, SE2 OK OK GLn SE3, SE4 OK OK SE1 SE2, SE3 failure OK SE3 SE1, SE4 failure OK SE2 SE1, SE4 OK failure SE4 SE2, SE3 OK failure
  • the switching elements each comprise at least one controllable switching device, wherein the controllable switching devices of Switching elements can be controlled independently of one another.
  • the switching device can include, for example, a controllable power semiconductor switch or a series connection of such.
  • the configuration of the switching device is fundamentally arbitrary and can be implemented using one of the known concepts of DC voltage switches.
  • the switching element can suitably comprise a choke for current limitation.
  • the choke can be arranged in a parallel connection or series connection to the switching device.
  • a surge arrester is preferably arranged in parallel with each switching device.
  • the voltage across the switching element can be limited by means of the surge arrester.
  • a parallel circuit comprising a plurality of surge arresters connected in parallel is arranged in parallel with at least one of the switching devices. Due to the parallel connection, a response voltage of the surge arresters can be controlled or set to a value suitable for the respective application.
  • a measuring device for detecting a potential shift in the DC voltage line.
  • the measuring device accordingly detects a possible shift in at least one of the potentials in the first or second pole of the DC voltage line during operation of the switching arrangement. It is also conceivable to record a sum of the two potentials or their shift.
  • a potential shift can be interpreted as an indication of a ground fault. If the displacement exceeds a predetermined value, for example, then the measuring device preferably generates a corresponding trigger signal, which is sent, for example, to a monitoring device or to a control unit. The control unit can correspondingly activate the switching elements to open them.
  • a potential shift also allows the switching elements to be opened for fault clearance when a fault current in the event of a fault does not significantly exceed a rated current during normal operation. It can also be advantageous if the switching arrangement comprises at least one current measuring device for measuring the current in the DC voltage line and at least one voltage measuring device for measuring the voltage in the poles of the DC voltage line. A detection of an overcurrent and/or a current increase is also conceivable.
  • the invention also relates to a method for fault clearance using the switching arrangement.
  • a short circuit can be a ground fault, for example, i.e. an electrical contact between one pole of the DC voltage line and ground.
  • the object of the invention is to propose such a method that is as simple and reliable as possible.
  • the object is achieved by a method of this type in which two unidirectional switching elements are opened in the event of a short circuit in a DC voltage line or in a DC voltage network connected to the DC voltage line, with a first unidirectional switching element being arranged in a first pole of the DC voltage line, a second unidirectional switching element in the first pole of the DC voltage line is arranged at a distance from the first switching element, the switching direction of which is opposite to a switching direction of the first switching element, a third unidirectional switching element is arranged in a second pole of the DC voltage line, and a fourth unidirectional switching element is arranged in the second pole of the DC voltage line, spaced apart from the third switching element, the switching direction of which is in the opposite direction to a switching direction of the third switching element, the switching elements each having a dielectric strength that is below a nominal voltage of the DC voltage line.
  • Which of the switching elements are opened depends in particular on the location of the error to be clarified and its type. An example of a possible procedure is shown in the table above.
  • the switching elements can be opened simultaneously or with a suitable time delay.
  • a switch is said to be open if it blocks the flow of current in the given current direction.
  • figure 1 shows a first embodiment of the switching arrangement according to the invention in a schematic representation
  • figure 2 shows a second embodiment of the switching arrangement according to the invention in a schematic representation
  • figure 3 shows a potential curve over distance in the switching arrangement according to the embodiment of FIG figure 2 .
  • the switching arrangement 1 includes a DC voltage line 2 with a first pole 3 and a second pole 4.
  • the DC voltage line 2 is a balanced monopole connection in which the first pole 3 is a positive pole and the second pole 4 is a negative pole. Both poles 3 and 4 are implemented as cable connections.
  • the DC voltage line 2 extends between a first DC voltage network 5 of any configuration and a second DC voltage network 6 of any configuration figure 1 it is indicated that the first DC voltage network is connected to two converter stations 7 and 8, respectively.
  • the second DC voltage network is connected to two further converter stations 9 and 10, respectively.
  • the converter stations 7-10 can in turn be connected to in figure 1 be connected to AC voltage networks that are not explicitly shown.
  • a nominal voltage between the two poles 3, 4 is 2*320 kV in the exemplary embodiment shown.
  • the switching arrangement 1 also includes a first switching element SE1, which is arranged close to the first DC voltage network 5 in the first pole 3 of the DC voltage line 2.
  • the first switching element SE1 has a parallel circuit made up of a controllable switching device 12, a diode 13 and a surge arrester 14.
  • the switching device 12 is a turn-off power semiconductor switch. Instead of the diode 13, a series connection of several diodes can be provided. Instead of the switching device 12, a series connection of a plurality of switching devices or a plurality of power semiconductor switches can also be provided.
  • each switching unit having a power semiconductor switch (such as, for example, an IGBT) and a freewheeling diode antiparallel thereto.
  • the first switching element SE1 has a switching direction pointing towards the second DC voltage network 6 .
  • a second switching element SE2 is arranged locally on the second DC voltage network 6 in the first pole 3 .
  • the structure of the second switching element SE2 corresponds to that of the first switching element SE1 with the difference that a switching direction of the second switching element SE2 is opposite to that of the first switching element SE1.
  • a third switching element SE3 is arranged locally on the first DC voltage network 5 in the second pole 4 .
  • the structure of the third switching element SE3 corresponds to that of the first switching element SE1.
  • a switching direction of the third switching element SE3 points in the direction of the first DC voltage network 5.
  • a fourth switching element SE4 is arranged locally on the second DC voltage network 6 in the second pole 4 .
  • the structure of the fourth switching element SE4 also corresponds to that of the first switching element SE1.
  • a switching direction of the fourth switching element SE4 is opposite to that of the third switching element SE3.
  • the switching arrangement 1 includes a control unit 15, which is suitable for driving the power semiconductors of the switching elements SE1-SE4, so that they block, for example.
  • a first measuring device 16 and a second measuring device 17 detect current, voltage and/or potential shifts in the poles 3, 4 of the DC voltage line 2.
  • the measuring devices 16, 17 are connected to the control unit 15 on the output side.
  • a short circuit is detected in the DC voltage line 2
  • a corresponding signal is sent to the control unit 15, so that the switching elements can be actuated in a way that is suitable for explaining the error.
  • the third and fourth switching elements SE3 and SE4 are driven to block.
  • the ground fault can be localized so that it has no effect on the two DC networks 5 and 6 respectively.
  • the second and the third switching element SE2 and SE3 are controlled to block. In this way, the error has no effect on the second DC voltage network 6.
  • figure 2 shows a second embodiment of the switching arrangement 1.
  • FIG. 1 shows a second embodiment of the switching arrangement 1.
  • FIG. 1 shows a second embodiment of the switching arrangement 1.
  • figure 2 shows the direct voltage line 2 of the switching arrangement 1, which extends between a network node 18, 19 of the first direct voltage network 5 and a converter 20, which belongs to the second direct voltage network 6. Otherwise corresponds to the structure of the switching arrangement 1 of figure 2 the one who figure 1 .
  • FIG 2 an example of a ground fault in the second DC voltage network 6 between the positive pole 3 and ground 22 is shown.
  • the ground fault is indicated figuratively in the form of a lightning bolt 21 .
  • the ground fault causes a ground fault current or a potential shift with a compensating current, which is shown as arrow 23 and flows between the positive pole 3 and ground 22 .
  • the ground fault causes a current to flow in the DC voltage line, which is indicated by the arrows 24 and 25 in the two poles 3, 4.
  • the potential in the positive pole 3 drops to zero due to the ground fault. Since the converter 20 maintains its DC-side voltage difference, the potential in the second pole 4 shifts by an amount dependent on the configuration of the converter 20 .
  • control unit 15 controls the first switching element SE1 and the fourth switching element SE4 to open. This causes the circuit to break. The potential shift therefore does not affect the network nodes 18, 19.
  • diagram axis labeled Z represents the location along the DC voltage line 2.
  • the electrical potentials at the given location are shown on the diagram axis labeled U.
  • the location of the two switching elements SE1 and SE3 is provided with the reference number 31.
  • the location of the switching elements SE2 and SE4 is provided with the reference number 32 .
  • the potential curves shown represent the situation after the first and fourth switching elements SE1 and SE4 have been blocked, ie after the error has been cleared.
  • the course of the potential in the negative pole 4 is provided with the reference number 34 .
  • the location of the ground fault is marked with reference number 35 .

Description

Die Erfindung betrifft eine Schaltanordnung zum Verbinden zweier Gleichspannungsnetze.The invention relates to a switching arrangement for connecting two DC voltage networks.

Mit der Hochspannungsgleichstromübertragung (HGÜ) ist eine bekannte Technologie bereitgestellt, die dazu geeignet ist, elektrische Energie über lange Distanzen zu übertragen. Der Stromfluss erfolgt dabei über Gleichspannungsleitungen, die als Kabelleitungen oder Freileitungen vorliegen können. Mehrere Gleichspannungsleitungen beispielsweise in Form von Punkt-zu-Punkt-Verbindungen können dabei zu einem Gleichspannungsnetz zusammengefügt werden. Solche Gleichspannungsnetze können als sogenannte Multiterminal-, radiale oder vermaschte Gleichspannungsnetze vorliegen. Die Gleichspannungsnetze sind im Wesentlichen aus Gleichspannungsleitungen gebildet, die sich zwischen Umrichterstationen, Knotenpunten oder einem Knotenpunkt und einer Umrichterstation erstrecken.High-voltage direct current (HVDC) transmission is a well-known technology that is suitable for transmitting electrical energy over long distances. The current flow takes place via DC voltage lines, which can be in the form of cable lines or overhead lines. Several DC voltage lines, for example in the form of point-to-point connections, can be combined to form a DC voltage network. Such direct voltage networks can be in the form of so-called multi-terminal, radial or meshed direct voltage networks. The DC voltage networks are essentially formed from DC voltage lines that extend between converter stations, nodes or a node and a converter station.

Die Gleichspannungsleitungen können als dem Fachmann bekannte Bipol- oder Monopol-Verbindungen (symmetrische und asymmetrische) realisiert sein. Eine symmetrische Monopol-Verbindung zeichnet sich durch eine zweipolige Ausführung der Gleichspannungsleitung aus, beispielsweise mit einem positiven und einem negativen Pol, die über keine starre Anbindung zum Erdpotenzial verfügt.The DC voltage lines can be implemented as bipolar or monopole connections (symmetrical and asymmetrical) known to those skilled in the art. A symmetrical monopole connection is characterized by a two-pole design of the DC voltage line, for example with a positive and a negative pole, which does not have a rigid connection to earth potential.

Wenn zwei Gleichspannungsnetze miteinander verbunden werden sollen, ist es in der Regel notwendig, die Auswirkungen eines Erdfehlers oder eines Pol-zu-Pol-Fehlers in einem der beiden Gleichspannungsnetze auf das andere Gleichspannungsnetz zu minimieren. Zum Entkoppeln der beiden Gleichspannungsnetze werden üblicherweise Gleichspannungsschalter verwendet. Ein gleichartiges Problem kann auch bei einer gleichspannungsseitigen Verbindung zweier Stromrichter auftreten.When two DC systems are to be interconnected, it is usually necessary to minimize the effects of an earth fault or a pole-to-pole fault in one of the two DC systems on the other DC system. DC voltage switches are usually used to decouple the two DC voltage networks. A similar problem can also occur when two power converters are connected on the DC voltage side.

Ein solcher Gleichspannungsschalter ist beispielsweise aus der WO 2015/078525 A1 . Der bekannte Gleichspannungsschalter ist bidirektional, das heißt, dass er unabhängig von der Stromrichtung in der Gleichspannungsleitung den Strom schalten kann. Der Gleichspannungsschalter ist ferner in einem der beiden Pole der Gleichspannungsleitung angeordnet, was für eine Trennung einer geerdeten Gleichspannungsleitung ausreichend ist.Such a DC voltage switch is, for example, from WO 2015/078525 A1 . The known DC voltage switch is bidirectional, which means that it can switch the current independently of the current direction in the DC voltage line. The DC voltage switch is also arranged in one of the two poles of the DC voltage line, which is sufficient for disconnecting a grounded DC voltage line.

In der WO 2014/117807 A1 ist eine Vorrichtung mit einem bidirektionalen Gleichspannungsschalter offenbart. Der aus der WO 2014/117807 A1 bekannte Gleichspannungsschalter umfasst zwei in Reihe geschaltete mechanische Trennschalter, denen jeweils eine Entlastungsdiode parallel geschaltet ist.In the WO 2014/117807 A1 a device with a bi-directional DC voltage switch is disclosed. The one from the WO 2014/117807 A1 known DC voltage switch comprises two series-connected mechanical isolating switches, each of which has a discharge diode connected in parallel.

Ein weiterer bidirektionaler Leistungsschalter ist aus der WO 2014/053554 A1 bekannt.Another bidirectional circuit breaker is from the WO 2014/053554 A1 known.

Die DE 10 2013 114259 A1 offenbart eine Schaltanordnung zum Verbinden zweier Gleichspannungsnetze umfassend

  • eine Gleichspannungsleitung, die ein erstes Gleichspannungsnetz mit einem zweiten Gleichspannungsnetz verbindet,
  • ein erstes unidirektionales Schaltelement in einem ersten Pol der Gleichspannungsleitung,
  • ein zweites unidirektionales Schaltelement im ersten Pol der Gleichspannungsleitung, dessen Schaltrichtung einer Schaltrichtung des ersten Schaltelements entgegen gerichtet ist,
  • ein drittes unidirektionales Schaltelement in einem zweiten Pol der Gleichspannungsleitung,
  • ein viertes unidirektionales Schaltelement im zweiten Pol der Gleichspannungsleitung, dessen Schaltrichtung einer Schaltrichtung des dritten Schaltelements entgegen gerichtet ist.
the DE 10 2013 114259 A1 discloses a switching arrangement for connecting two DC voltage networks
  • a DC voltage line that connects a first DC voltage network to a second DC voltage network,
  • a first unidirectional switching element in a first pole of the DC voltage line,
  • a second unidirectional switching element in the first pole of the DC voltage line, the switching direction of which is opposite to a switching direction of the first switching element,
  • a third unidirectional switching element in a second pole of the DC voltage line,
  • a fourth unidirectional switching element in the second pole of the DC voltage line, whose switching direction is opposite to a switching direction of the third switching element.

Die Aufgabe der vorliegenden Erfindung besteht darin, eine Schaltanordnung der obigen Art anzugeben, die einfach und zuverlässig ist.The object of the present invention is to provide a switching arrangement of the above type which is simple and reliable.

Die Aufgabe wird durch eine Schaltanordnung zum Verbinden zweier Gleichspannungsnetze gelöst, umfassend eine Gleichspannungsleitung, die ein erstes Gleichspannungsnetz mit einem zweiten Gleichspannungsnetz verbindet, ein erstes unidirektionales Schaltelement in einem ersten Pol der Gleichspannungsleitung, ein zweites unidirektionales Schaltelement im ersten Pol der Gleichspannungsleitung, das vom ersten Schaltelement beabstandet angeordnet ist und dessen Schaltrichtung einer Schaltrichtung des ersten Schaltelements entgegen gerichtet ist, ein drittes unidirektionales Schaltelement in einem zweiten Pol der Gleichspannungsleitung, sowie ein viertes unidirektionales Schaltelement im zweiten Pol der Gleichspannungsleitung, das vom dritten Schaltelement beabstandet angeordnet ist und dessen Schaltrichtung einer Schaltrichtung des dritten Schaltelements entgegen gerichtet ist, wobei die Schaltelemente jeweils eine Spannungsfestigkeit aufweisen, die unterhalb einer Nennspannung (Nennübertragungsspannung) der Gleichspannungsleitung liegt (sie liegt jedoch meinst oberhalb der Polspannung). Die erfindungsgemäße Schaltanordnung eignet sich zum Verbinden zweier Gleichspannungsnetze, wobei die Gleichspannungsleitung der Schaltanordnung sich zwischen Netzknoten, Stromrichtern und/oder dergleichen Elementen der zu verbindenden Gleichspannungsnetze erstreckt. Sie eignet sich jedenfalls insbesondere auch dazu, einen Umrichter an ein Gleichspannungsnetz beziehungsweise dessen Knotenpunkt oder zwei Umrichter gleichspannungsseitig miteinander zu verbinden.The object is achieved by a switching arrangement for connecting two DC voltage networks, comprising a DC voltage line that connects a first DC voltage network to a second DC voltage network, a first unidirectional switching element in a first pole of the DC voltage line, a second unidirectional switching element in the first pole of the DC voltage line, which is arranged at a distance from the first switching element and whose switching direction is opposite to a switching direction of the first switching element, a third unidirectional switching element in a second pole of the DC voltage line, and a fourth unidirectional switching element in the second pole of the DC voltage line, which is connected by the third switching element is arranged spaced and its switching direction of a switching direction of the third switching element is directed in the opposite direction, the switching elements each having a dielectric strength which is below a nominal voltage (nominal transmission voltage) of the DC voltage line (but it is usually above the terminal voltage). The switching arrangement according to the invention is suitable for connecting two DC voltage networks, with the DC voltage line of the switching arrangement extending between network nodes, converters and/or similar elements of the DC voltage networks to be connected. In any case, it is also particularly suitable for a converter to a DC voltage network or its node or to connect two converters to each other on the DC voltage side.

Ein Vorteil der erfindungsgemäßen Schaltanordnung ist die Möglichkeit der Klärung von unsymmetrischen Erdschlüssen an nur einem Pol in Gleichspannungsleitungen ohne starre Erdanbindung durch die Verwendung unindirektionaler Schaltelemente.An advantage of the switching arrangement according to the invention is the possibility of clarifying asymmetrical ground faults at only one pole in DC voltage lines without a rigid ground connection by using unidirectional switching elements.

Zudem können die Spannungsfestigkeiten der Schaltelemente niedriger gewählt werden als bei einem Gleichspannungsschalter, der nur in einem Pol der Gleichspannungsleitung angeordnet ist, und daher auf die volle Nennspannung ausgelegt werden muss. Dies kann die Schaltvorrichtung einfacher und unter Umständen auch günstiger machen. Die Nennspannung in der Gleichspannungsleitung kann mehr als 100 kV, in vielen Fällen mehr als 600 kV betragen.In addition, the dielectric strength of the switching elements can be selected to be lower than in the case of a DC voltage switch, which is only arranged in one pole of the DC voltage line and must therefore be designed for the full nominal voltage. This can make the switching device simpler and possibly also cheaper. The nominal voltage in the DC voltage line can be more than 100 kV, in many cases more than 600 kV.

Die Gleichspannungsleitung kann beispielsweise an wenigstens einem Ende mit einem Gleichspannungsknoten verbunden sein. In einem Gleichspannungsknoten laufen mehrere Gleichspannungsleitungen des entsprechenden Gleichspannungsnetzes zusammen. Ferner kann die Gleichspannungsleitung auch an wenigstens einem Ende mit einem Umrichter des entsprechenden Gleichspannungsnetzes verbunden sein.The DC voltage line can be connected to a DC voltage node at least at one end, for example. Several DC voltage lines of the corresponding DC voltage network come together in a DC voltage node. Furthermore, the DC voltage line can also be connected at least at one end to a converter of the corresponding DC voltage network.

Die Pole der Gleichspannungsleitung liegen beispielsweise als Kabel- oder Freileitungen vor.The poles of the DC voltage line are present, for example, as cable or overhead lines.

Die Schaltrichtung des Schaltelements ist diejenige Stromrichtung, in der das Schaltelement den Strom sperren kann. Sie kann in diesem Zusammenhang auch als Auslösestromrichtung bezeichnet werden. Die Schaltelemente der erfindungsgemäßen Schaltanordnung sind unidirektional. Das bedeutet, dass die Schaltelemente im Allgemeinen eine ausgezeichnete Schaltrichtung haben. Fließt der Strom entgegen der Schaltrichtung eines Schaltelementes, so kann dieses Schaltelement den Strom nicht sperren.The switching direction of the switching element is that current direction in which the switching element can block the current. In this context, it can also be referred to as the tripping current direction. The switching elements of the switching arrangement according to the invention are unidirectional. This means that the switching elements generally have an excellent switching direction. If the current flows against the switching direction of a Switching element, this switching element can not block the current.

Als besonders vorteilhaft wird angesehen, wenn die Gleichspannungsleitung als eine Monopol-Verbindung, zweckmäßigerweise eine symmetrische Monopol-Verbindung, ausgebildet ist. Ein erster, positiver Pol der Gleichspannungsleitung liegt hierbei auf einem positiven elektrischen Potenzial. Entsprechend liegt ein zweiter, negativer Pol auf einem negativen elektrischen Potenzial. Aufgrund der fehlenden festen Anbindung an das Erdpotenzial führt ein Erdschluss in einem der beiden Pole unter Umständen zu einer Potenzialverschiebung in der Gleichspannungsleitung. Beispielsweise kann der Erdschluss zu einem Umladen des positiven Pols führen, so dass der positive Pol auf das Potenzial null gebracht wird. Zugleich bleibt unter Umständen die Nennspannung, dass heißt die Pol-zu-Pol-Spannung, also die Potenzialdifferenz zwischen dem positiven und dem negativen Pol erhalten, so dass der negative Pol in diesem Fall auf das zweifache Potenzial abgesenkt wird. Dies ist beispielsweise dann der Fall, wenn die Gleichspannungsleitung mit einem Umrichter verbunden ist, der eine konstante Spannung an einem Ende der Gleichspannungsleitung aufrechterhält. Mittels der erfindungsgemäßen Schaltanordnung kann verhindert werden, dass eine solche Potenzialverschiebung beide Gleichspannungsnetze betrifft.It is considered particularly advantageous if the DC voltage line is in the form of a monopole connection, expediently a symmetrical monopole connection. A first, positive pole of the DC voltage line is in this case at a positive electrical potential. Accordingly, a second, negative pole is at a negative electrical potential. Due to the lack of a fixed connection to the ground potential, a ground fault in one of the two poles may lead to a potential shift in the DC voltage line. For example, the earth fault can lead to a charge reversal of the positive pole, so that the positive pole is brought to zero potential. At the same time, the nominal voltage, i.e. the pole-to-pole voltage, i.e. the potential difference between the positive and the negative pole, may be retained, so that the negative pole is lowered to twice the potential in this case. This is the case, for example, when the DC voltage line is connected to an inverter that maintains a constant voltage at one end of the DC voltage line. The switching arrangement according to the invention can be used to prevent such a potential shift from affecting both DC voltage networks.

Tritt der Erdschluss an einem Ort der Gleichspannungsleitung zwischen einem der Schaltelemente und dem nächstliegenden Gleichspannungsnetz ein, so können mittels der erfindungsgemäßen Schaltanordnung die beiden Gleichspannungsnetze voneinander entkoppelt werden. Auf diese Weise ist zumindest eines der Gleichspannungsnetze vom Fehler bzw. Erdschluss nicht betroffen. Liegt der Fehlerort zwischen den Schaltelementen, so können sogar beide Gleichspannungsnetze schadlos gehalten werden. Weiterhin kann bei einem schalterinternen Fehler eine Netzkopplung und Fehlereingrenzung realisiert werden. Bevorzugt entspricht die Spannungsfestigkeit der Schaltelemente einem maximalen Spannungswert eines der Pole der Gleichspannungsleitung. Im Falle einer symmetrischen Monopol-Verbindung sind die Schaltelemente somit etwa auf die halbe Nennspannung ausgelegt. Die Auslegung kann dabei einen zusätzlichen Toleranzbereich der Spannungsfestigkeit von ca. 10% bis 70% umfassen. Vorteilhaft müssen die Schaltelemente damit nicht auf die volle Nennspannung ausgelegt werden.If the ground fault occurs at a location on the DC voltage line between one of the switching elements and the nearest DC voltage network, the two DC voltage networks can be decoupled from one another by means of the switching arrangement according to the invention. In this way, at least one of the DC voltage networks is not affected by the fault or ground fault. If the fault location is between the switching elements, both DC voltage networks can even be kept harmless. Furthermore, in the event of a switch-internal error, network coupling and error localization can be implemented. The dielectric strength of the switching elements preferably corresponds to a maximum voltage value of one of the poles of the DC voltage line. In the case of a symmetrical monopole connection, the switching elements are designed for approximately half the nominal voltage. The design can include an additional tolerance range of the dielectric strength of about 10% to 70%. Advantageously, the switching elements therefore do not have to be designed for the full rated voltage.

Gemäß einer Ausführungsform der Erfindung sind das erste und das dritte Schaltelement ortsnah am ersten Gleichspannungsnetz und das zweite und das vierte Schaltelement ortsnah am zweiten Gleichspannungsnetz angeordnet. Die Schaltrichtung des dritten Schaltelements ist bevorzugt der Schaltrichtung des ersten Schaltelementes entgegen gerichtet. Der Begriff ortsnah bezeichnet dabei eine Entfernung von weniger als 10 km.According to one embodiment of the invention, the first and the third switching element are arranged close to the first DC voltage network and the second and the fourth switching element are arranged close to the second DC voltage network. The switching direction of the third switching element is preferably directed in the opposite direction to the switching direction of the first switching element. The term local refers to a distance of less than 10 km.

Bevorzugt weisen die Schaltrichtungen des ersten und dritten Schaltelementes zueinander. Vorteilhaft ist es ferner, wenn die Schaltrichtungen des zweiten und vierten Schaltelementes ebenfalls entgegen gerichtet sind.The switching directions of the first and third switching elements preferably point towards one another. It is also advantageous if the switching directions of the second and fourth switching elements are also directed in opposite directions.

Eine bevorzugte Konfiguration ist gegeben, wenn die Schaltrichtung des ersten Schaltelementes, das ortsnah am ersten Gleichspannungsnetz angeordnet ist, in Richtung des zweiten Schaltelementes weist, die Schaltrichtung des zweiten Schaltelementes, das ortsnah am zweiten Gleichspannungsnetz angeordnet ist, in Richtung des ersten Schaltelementes weist, die Schaltrichtung des dritten Schaltelementes, das ortsnah am ersten Gleichspannungsnetz angeordnet ist, in Richtung zum ersten Gleichspannungsnetz weist und die Schaltrichtung des vierten Schaltelementes, das ortsnah am zweiten Gleichspannungsnetz angeordnet ist, in Richtung zum zweiten Gleichspannungsnetz weist. Eine schematische Übersicht der möglichen Fehlerorte und der zugehörigen Fehlerklärung für diese Konfiguration ist in der folgenden Tabelle dargestellt. Dabei werden die folgenden Bezeichnungen verwendet: das erste Gleichspannungsnetz wird als Netz1, das zweiten Gleichspannungsnetz als Netz2, das i-te (erste bis vierte) Schaltelement entsprechend als SEi bezeichnet. Ferner werden der normale Betriebszustand als OK und der Fehlerzustand als Fail bezeichnet. Zudem wird mittels des Suffixes p bzw. n gekennzeichnet, ob der Fehler in dem positiven (p) oder negativen (n) Pol auftritt. Die Gleichspannungsleitung wird zwischen den Schaltelementen als GL gekennzeichnet. Fehlerort Öffnende Schaltelemente Zustand Netz2 Zustand Netz1 Netz2p SE2, SE3 Fail OK Netz2n SE1, SE4 Fail OK Netz1p SE1, SE4 OK Fail Netz1n SE2, SE3 OK Fail GLp SE1, SE2 OK OK GLn SE3, SE4 OK OK SE1 SE2, SE3 Fail OK SE3 SE1, SE4 Fail OK SE2 SE1, SE4 OK Fail SE4 SE2, SE3 OK Fail A preferred configuration is given when the switching direction of the first switching element, which is arranged close to the first DC voltage network, points in the direction of the second switching element, the switching direction of the second switching element, which is arranged close to the second DC voltage network, points in the direction of the first switching element, which The switching direction of the third switching element, which is located close to the first DC voltage network, points towards the first DC voltage network and the switching direction of the fourth switching element, which is located close to the second DC voltage network, points towards the second DC voltage network. A schematic overview of the possible error locations and the associated error explanation for this configuration is shown in the following table. be there the following designations are used: the first direct voltage network is referred to as network1, the second direct voltage network as network2, the ith (first to fourth) switching element as SEi accordingly. Furthermore, the normal operating status is referred to as OK and the error status as Fail. In addition, the suffix p or n indicates whether the fault occurs in the positive (p) or negative (n) pole. The DC voltage line is marked as GL between the switching elements. error location Opening switching elements state net2 Network1 status net2p SE2, SE3 failure OK net2n SE1, SE4 failure OK net1p SE1, SE4 OK failure net1n SE2, SE3 OK failure GLp SE1, SE2 OK OK GLn SE3, SE4 OK OK SE1 SE2, SE3 failure OK SE3 SE1, SE4 failure OK SE2 SE1, SE4 OK failure SE4 SE2, SE3 OK failure

Anhand der obigen Tabelle ist erkennbar, dass unabhängig vom Fehlerort zumindest eines der beiden Gleichspannungsnetze trotz Fehler weiter betrieben werden kann.The table above shows that regardless of the location of the fault, at least one of the two DC voltage networks can continue to be operated despite the fault.

Eine vorteilhafte Anwendung der Schaltanordnung ist gegeben, wenn das erste und das zweite Schaltelement in mehr als 1 km Abstand voneinander angeordnet sind. In einem solchen Fall ist eine Möglichkeit der Fehlerklärung bei Erdschlüssen besonders wichtig, weil bei langen Übertragungsleitungen die Wahrscheinlichkeit eines Erdschlusses besonders hoch ist.An advantageous application of the switching arrangement is given when the first and the second switching element are arranged at a distance of more than 1 km from one another. In such a case, a ground fault clearance capability is particularly important because the probability of a ground fault is particularly high on long transmission lines.

Gemäß einer Ausführungsform der Erfindung umfassen die Schaltelemente jeweils wenigstens eine steuerbare Schaltvorrichtung, wobei die steuerbaren Schaltvorrichtungen der Schaltelemente voneinander unabhängig ansteuerbar sind. Die Schaltvorrichtung kann beispielsweise einen steuerbaren Leistungshalbleiterschalter oder eine Reihenschaltung solcher umfassen. Die Ausgestaltung der Schaltvorrichtung ist grundsätzlich beliebig und kann durch eine der bekannten Konzepte der Gleichspannungsschalter realisiert sein. Geeigneterweise kann das Schaltelement eine Drossel zur Strombegrenzung umfassen. Die Drossel kann in einer Parallelschaltung oder Reihenschaltung zur Schaltvorrichtung angeordnet sein.According to one embodiment of the invention, the switching elements each comprise at least one controllable switching device, wherein the controllable switching devices of Switching elements can be controlled independently of one another. The switching device can include, for example, a controllable power semiconductor switch or a series connection of such. The configuration of the switching device is fundamentally arbitrary and can be implemented using one of the known concepts of DC voltage switches. The switching element can suitably comprise a choke for current limitation. The choke can be arranged in a parallel connection or series connection to the switching device.

Bevorzugt ist parallel zu jeder Schaltvorrichtung ein Überspannungsableiter angeordnet. Mittels des Überspannungsableiters kann die Spannung über dem Schaltelement begrenzt werden.A surge arrester is preferably arranged in parallel with each switching device. The voltage across the switching element can be limited by means of the surge arrester.

Besonders bevorzugt ist parallel zu wenigstens einer der Schaltvorrichtungen eine Parallelschaltung aus mehreren parallel geschalteten Überspannungsableitern angeordnet. Durch die Parallelschaltung kann eine Ansprechspannung der Überspannungsableiter gesteuert bzw. auf einen für die jeweilige Anwendung geeigneten Wert eingestellt werden.Particularly preferably, a parallel circuit comprising a plurality of surge arresters connected in parallel is arranged in parallel with at least one of the switching devices. Due to the parallel connection, a response voltage of the surge arresters can be controlled or set to a value suitable for the respective application.

Gemäß einer Ausführungsform der Erfindung ist eine Messvorrichtung zur Erfassung einer Potenzialverschiebung in der Gleichspannungsleitung vorgesehen. Die Messvorrichtung erfasst demnach während des Betriebes der Schaltanordnung eine mögliche Verschiebung wenigstens eines der Potenziale im ersten bzw. zweiten Pol der Gleichspannungsleitung. Denkbar ist auch eine Erfassung einer Summe der beiden Potenziale beziehungsweise deren Verschiebung. Eine Potenzialverschiebung kann als ein Hinweis auf einen Erdschluss interpretiert werden. Wenn die Verschiebung beispielsweise einen vorbestimmten Wert überschreitet, dann generiert die Messvorrichtung bevorzugt ein entsprechendes Auslösesignal, das beispielsweise an eine Überwachungseinrichtung beziehungsweise an eine Steuereinheit gesendet wird. Die Steuereinheit kann die Schaltelemente entsprechend ansteuern, zu öffnen. Die Erfassung der Potenzialverschiebung erlaubt vorteilhaft auch dann eine Öffnung der Schaltelemente zur Fehlerklärung, wenn ein Fehlerstrom im Fehlerfall einen Nennstrom bei Normalbetrieb nicht wesentlich überschreitet. Es kann zudem von Vorteil sein, wenn die Schaltanordnung wenigstens eine Strommessvorrichtung zum Messen des Stromes in der Gleichspannungsleitung und wenigstens eine Spannungsmessvorrichtung zum Messen der Spannung in den Polen der Gleichspannungsleitung umfasst. Denkbar ist ebenfalls eine Erkennung eines Überstroms und/oder eines Stromanstiegs.According to one embodiment of the invention, a measuring device is provided for detecting a potential shift in the DC voltage line. The measuring device accordingly detects a possible shift in at least one of the potentials in the first or second pole of the DC voltage line during operation of the switching arrangement. It is also conceivable to record a sum of the two potentials or their shift. A potential shift can be interpreted as an indication of a ground fault. If the displacement exceeds a predetermined value, for example, then the measuring device preferably generates a corresponding trigger signal, which is sent, for example, to a monitoring device or to a control unit. The control unit can correspondingly activate the switching elements to open them. The capture of Advantageously, a potential shift also allows the switching elements to be opened for fault clearance when a fault current in the event of a fault does not significantly exceed a rated current during normal operation. It can also be advantageous if the switching arrangement comprises at least one current measuring device for measuring the current in the DC voltage line and at least one voltage measuring device for measuring the voltage in the poles of the DC voltage line. A detection of an overcurrent and/or a current increase is also conceivable.

Die Erfindung betrifft ferner ein Verfahren zur Fehlerklärung mittels der Schaltanordnung.The invention also relates to a method for fault clearance using the switching arrangement.

Eine Fehlerklärung ist insbesondere bei Kurzschlüssen notwendig, die in einer Gleichspannungsleitung auftreten können. Eine Fehlerklärung hat dabei zum Ziel, die Auswirkungen eines Kurzschlusses lokal zu begrenzen. Ein Kurzschluss kann beispielsweise ein Erdschluss sein, also ein elektrischer Kontakt zwischen einem Pol der Gleichspannungsleitung und Erde.An error declaration is particularly necessary for short circuits that can occur in a DC voltage line. The aim of a fault clearance is to locally limit the effects of a short circuit. A short circuit can be a ground fault, for example, i.e. an electrical contact between one pole of the DC voltage line and ground.

Die Aufgabe der Erfindung ist besteht darin, ein solches Verfahren vorzuschlagen, dass möglichst einfach und zuverlässig ist.The object of the invention is to propose such a method that is as simple and reliable as possible.

Die Aufgabe wird durch ein artgemäßes Verfahren gelöst, bei dem bei einem Kurzschluss in einer Gleichspannungsleitung oder in einem mit der Gleichspannungsleitung verbundenen Gleichspannungsnetz zwei unidirektionale Schaltelemente geöffnet werden, wobei ein erstes unidirektionales Schaltelement in einem ersten Pol der Gleichspannungsleitung angeordnet ist, ein zweites unidirektionales Schaltelement im ersten Pol der Gleichspannungsleitung, vom ersten Schaltelement beabstandet angeordnet ist, wobei dessen Schaltrichtung einer Schaltrichtung des ersten Schaltelements entgegen gerichtet ist, ein drittes unidirektionales Schaltelement in einem zweiten Pol der Gleichspannungsleitung angeordnet ist, und ein viertes unidirektionales Schaltelement im zweiten Pol der Gleichspannungsleitung, vom dritten Schaltelement beabstandet angeordnet ist, wobei dessen Schaltrichtung einer Schaltrichtung des dritten Schaltelements entgegen gerichtet ist, wobei die Schaltelemente jeweils eine Spannungsfestigkeit aufweisen, die unterhalb einer Nennspannung der Gleichspannungsleitung liegt.The object is achieved by a method of this type in which two unidirectional switching elements are opened in the event of a short circuit in a DC voltage line or in a DC voltage network connected to the DC voltage line, with a first unidirectional switching element being arranged in a first pole of the DC voltage line, a second unidirectional switching element in the first pole of the DC voltage line is arranged at a distance from the first switching element, the switching direction of which is opposite to a switching direction of the first switching element, a third unidirectional switching element is arranged in a second pole of the DC voltage line, and a fourth unidirectional switching element is arranged in the second pole of the DC voltage line, spaced apart from the third switching element, the switching direction of which is in the opposite direction to a switching direction of the third switching element, the switching elements each having a dielectric strength that is below a nominal voltage of the DC voltage line.

Die Vorteile des erfindungsgemäßen Verfahrens ergeben sich aus den entsprechenden Vorteilen der erfindungsgemäßen Schaltanordnung.The advantages of the method according to the invention result from the corresponding advantages of the switching arrangement according to the invention.

Welche der Schaltelemente geöffnet werden, hängt insbesondere vom Ort des zu klärenden Fehlers als auch dessen Art ab. Ein Beispiel einer möglichen Vorgehensweise ist in der zuvor angeführten Tabelle dargestellt. Die Schaltelemente können dabei gleichzeitig oder mit einer geeigneten Zeitverzögerung geöffnet werden. Ein Schalter wird in diesem Zusammenhang als geöffnet bezeichnet, wenn er einen Stromfluss in der gegebenen Stromrichtung sperrt.Which of the switching elements are opened depends in particular on the location of the error to be clarified and its type. An example of a possible procedure is shown in the table above. The switching elements can be opened simultaneously or with a suitable time delay. In this context, a switch is said to be open if it blocks the flow of current in the given current direction.

Im Übrigen können alle zuvor beschriebenen Varianten und Ausführungsformen der erfindungsgemäßen Schaltanordnung ihre Entsprechung im Zusammenhang mit dem erfindungsgemäßen Verfahren finden.Otherwise, all the previously described variants and embodiments of the switching arrangement according to the invention can be matched in connection with the method according to the invention.

Die Erfindung wird im Folgenden anhand der Figuren 1 bis 3 näher erläutert.The invention is based on the Figures 1 to 3 explained in more detail.

Figur 1 zeigt ein erstes Ausführungsbeispiel der erfindungsgemäßen Schaltanordnung in einer schematischen Darstellung; figure 1 shows a first embodiment of the switching arrangement according to the invention in a schematic representation;

Figur 2 zeigt ein zweites Ausführungsbeispiel der erfindungsgemäßen Schaltanordnung in einer schematischen Darstellung; figure 2 shows a second embodiment of the switching arrangement according to the invention in a schematic representation;

Figur 3 zeigt einen Potenzialverlauf über Distanz in der Schaltanordnung gemäß dem Ausführungsbeispiel der Figur 2. figure 3 shows a potential curve over distance in the switching arrangement according to the embodiment of FIG figure 2 .

Im Einzelnen zeigt Figur 1 eine Schaltanordnung 1. Die Schaltanordnung 1 umfasst eine Gleichspannungsleitung 2 mit einem ersten Pol 3 und einem zweiten Pol 4. Im dargestellten Ausführungsbeispiel ist die Gleichspannungsleitung 2 eine symmetrische Monopol-Verbindung, bei der der erste Pol 3 ein positiver Pol und der zweite Pol 4 ein negativer Pol sind. Beide Pole 3 bzw. 4 sind als Kabelverbindungen realisiert.In detail shows figure 1 a switching arrangement 1. The switching arrangement 1 includes a DC voltage line 2 with a first pole 3 and a second pole 4. In the illustrated embodiment, the DC voltage line 2 is a balanced monopole connection in which the first pole 3 is a positive pole and the second pole 4 is a negative pole. Both poles 3 and 4 are implemented as cable connections.

Die Gleichspannungsleitung 2 erstreckt sich zwischen einem beliebig ausgestalteten ersten Gleichspannungsnetz 5 und einem ebenfalls beliebig ausgestalteten zweiten Gleichspannungsnetz 6. In Figur 1 ist angedeutet, dass das erste Gleichspannungsnetz mit zwei Umrichterstationen 7 bzw. 8 verbunden ist. Entsprechend ist das zweite Gleichspannungsnetz mit zwei weiteren Umrichterstationen 9 bzw. 10 verbunden. Die Umrichterstationen 7-10 können ihrerseits wechselspannungsseitig mit in Figur 1 nicht explizit gezeigten Wechselspannungsnetzen verbunden sein. Eine Nennspannung zwischen den beiden Polen 3, 4 beträgt im dargestellten Ausführungsbeispiel 2 * 320 kV.The DC voltage line 2 extends between a first DC voltage network 5 of any configuration and a second DC voltage network 6 of any configuration figure 1 it is indicated that the first DC voltage network is connected to two converter stations 7 and 8, respectively. Correspondingly, the second DC voltage network is connected to two further converter stations 9 and 10, respectively. The converter stations 7-10 can in turn be connected to in figure 1 be connected to AC voltage networks that are not explicitly shown. A nominal voltage between the two poles 3, 4 is 2*320 kV in the exemplary embodiment shown.

Die Schaltanordnung 1 umfasst ferner ein erstes Schaltelement SE1, das ortsnah am ersten Gleichspannungsnetz 5 im ersten Pol 3 der Gleichspannungsleitung 2 angeordnet ist. Das erste Schaltelement SE1 weist eine Parallelschaltung aus einer steuerbarer Schaltvorrichtung 12, einer Diode 13 und einem Überspannungsableiter 14 auf. Die Schaltvorrichtung 12 ist im dargestellten Ausführungsbespiel ein abschaltbarer Leistungshalbleiterschalter. Anstelle der Diode 13 kann eine Reihenschaltung mehrerer Dioden vorgesehen sein. Auch kann anstelle der Schaltvorrichtung 12 eine Reihenschaltung mehrerer Schaltvorrichtungen bzw. mehrerer Leistungshalbleiterschalter vorgesehen sein. Denkbar ist zudem eine Reihenschaltung von Schalteinheiten, wobei jede Schalteinheit einen Leistungshalbleiterschalter (wie beispielsweise einen IGBT) und eine dazu antiparallele Freilaufdiode aufweist. Das erste Schaltelement SE1 hat eine Schaltrichtung, die zum zweiten Gleichspannungsnetz 6 weist.The switching arrangement 1 also includes a first switching element SE1, which is arranged close to the first DC voltage network 5 in the first pole 3 of the DC voltage line 2. The first switching element SE1 has a parallel circuit made up of a controllable switching device 12, a diode 13 and a surge arrester 14. In the exemplary embodiment shown, the switching device 12 is a turn-off power semiconductor switch. Instead of the diode 13, a series connection of several diodes can be provided. Instead of the switching device 12, a series connection of a plurality of switching devices or a plurality of power semiconductor switches can also be provided. A series connection of switching units is also conceivable, with each switching unit having a power semiconductor switch (such as, for example, an IGBT) and a freewheeling diode antiparallel thereto. The first switching element SE1 has a switching direction pointing towards the second DC voltage network 6 .

Ein zweites Schaltelement SE2 ist ortsnah am zweiten Gleichspannungsnetz 6 im ersten Pol 3 angeordnet. Der Aufbau des zweiten Schaltelementes SE2 entspricht demjenigen des ersten Schaltelementes SE1 mit dem Unterschied, dass eine Schaltrichtung des zweiten Schaltelementes SE2 derjenigen des ersten Schaltelementes SE1 entgegengesetzt ist.A second switching element SE2 is arranged locally on the second DC voltage network 6 in the first pole 3 . The structure of the second switching element SE2 corresponds to that of the first switching element SE1 with the difference that a switching direction of the second switching element SE2 is opposite to that of the first switching element SE1.

Ein drittes Schaltelement SE3 ist ortsnah am ersten Gleichspannungsnetz 5 im zweiten Pol 4 angeordnet. Der Aufbau des dritten Schaltelementes SE3 entspricht demjenigen des ersten Schaltelementes SE1. Eine Schaltrichtung des dritten Schaltelementes SE3 zeigt in Richtung des ersten Gleichspannungsnetzes 5.A third switching element SE3 is arranged locally on the first DC voltage network 5 in the second pole 4 . The structure of the third switching element SE3 corresponds to that of the first switching element SE1. A switching direction of the third switching element SE3 points in the direction of the first DC voltage network 5.

Ein viertes Schaltelement SE4 ist ortsnah am zweiten Gleichspannungsnetz 6 im zweiten Pol 4 angeordnet. Der Aufbau des vierten Schaltelementes SE4 entspricht ebenfalls demjenigen des ersten Schaltelementes SE1. Eine Schaltrichtung des vierten Schaltelementes SE4 ist derjenigen des dritten Schaltelementes SE3 entgegengesetzt.A fourth switching element SE4 is arranged locally on the second DC voltage network 6 in the second pole 4 . The structure of the fourth switching element SE4 also corresponds to that of the first switching element SE1. A switching direction of the fourth switching element SE4 is opposite to that of the third switching element SE3.

Darüber hinaus umfasst die Schaltanordnung 1 eine Steuereinheit 15, die dazu geeignet ist, die Leistungshalbleiter der Schaltelemente SE1-SE4 anzusteuern, so dass diese beispielsweise sperren. Eine erste Messvorrichtung 16 und eine zweite Messvorrichtung 17 erfassen Strom, Spannung und/oder Potenzialverschiebungen in den Polen 3, 4 der Gleichspannungsleitung 2. Die Messvorrichtungen 16, 17 sind ausgangsseitig mit der Steuereinheit 15 verbunden. Bei Erkennung eines Kurzschlusses in der Gleichspannungsleitung 2 wird ein entsprechendes Signal an die Steuereinheit 15 gegeben, so dass eine zur Fehlerklärung geeignete Ansteuerung der Schaltelemente vorgenommen werden kann. Beispielsweise werden bei einem Erdschluss im negativen Pol 4 an einem Ort zwischen den beiden Schaltelemente SE3 und SE4 das dritte und das vierte Schaltelement SE3 bzw. SE4 angesteuert, zu sperren. Auf diese Weise kann der Erdschluss lokal eingegrenzt werden, so dass er keine Auswirkungen auf die beiden Gleichspannungsnetze 5 bzw. 6 hat. Im Falle eines Kurzschlusses im positiven Pol 3 im ersten Gleichspannungsnetz 5 werden das zweite und das dritte Schaltelement SE2 und SE3 angesteuert, zu sperren. Auf diese Weise bleibt der Fehler ohne Wirkung auf das zweite Gleichspanungsnetz 6.In addition, the switching arrangement 1 includes a control unit 15, which is suitable for driving the power semiconductors of the switching elements SE1-SE4, so that they block, for example. A first measuring device 16 and a second measuring device 17 detect current, voltage and/or potential shifts in the poles 3, 4 of the DC voltage line 2. The measuring devices 16, 17 are connected to the control unit 15 on the output side. When a short circuit is detected in the DC voltage line 2, a corresponding signal is sent to the control unit 15, so that the switching elements can be actuated in a way that is suitable for explaining the error. For example, in the event of a ground fault in the negative pole 4 at a location between the two switching elements SE3 and SE4, the third and fourth switching elements SE3 and SE4 are driven to block. In this way, the ground fault can be localized so that it has no effect on the two DC networks 5 and 6 respectively. In the event of a short circuit in the positive pole 3 in the first DC voltage network 5, the second and the third switching element SE2 and SE3 are controlled to block. In this way, the error has no effect on the second DC voltage network 6.

Figur 2 zeigt ein zweites Ausführungsbeispiel der Schaltanordnung 1. Aus Übersichtlichkeitsgründen sind in den Figuren 1 und 2 gleiche und gleichartige Bauteile und Elemente mit gleichen Bezugszeichen versehen. figure 2 shows a second embodiment of the switching arrangement 1. For reasons of clarity are in the figures 1 and 2 Identical and similar components and elements are provided with the same reference symbols.

In Figur 2 ist die Gleichspannungsleitung 2 der Schaltanordnung 1 gezeigt, die sich zwischen einem Netzknoten 18, 19 des ersten Gleichspannungsnetzes 5 und einem Umrichter 20 erstreckt, die zum zweiten Gleichspannungsnetz 6 gehört. Ansonsten entspricht der Aufbau der Schaltanordnung 1 der Figur 2 demjenigen der Figur 1.In figure 2 shows the direct voltage line 2 of the switching arrangement 1, which extends between a network node 18, 19 of the first direct voltage network 5 and a converter 20, which belongs to the second direct voltage network 6. Otherwise corresponds to the structure of the switching arrangement 1 of figure 2 the one who figure 1 .

In Figur 2 ist ein Beispiel eines Erdschlusses im zweiten Gleichspannungsnetz 6 zwischen dem positiven Pol 3 und Erde 22 dargestellt. Der Erdschluss ist figürlich in Form eines Blitz-Zeichens 21 angedeutet. Der Erdschluss bewirkt einen Erdschlussstrom beziehungsweise eine Potenzialverschiebung mit Ausgleichsstrom, der als Pfeil 23 dargestellt ist und zwischen dem positiven Pol 3 und Erde 22 fließt. In der Gleichspannungsleitung bewirkt der Erdschluss einen Stromfluss, der in den beiden Polen 3, 4 mit den Pfeilen 24 und 25 kenntlich gemacht ist. Das Potenzial im positiven Pol 3 sinkt aufgrund des Erdschlusses auf null. Da der Umrichter 20 seine gleichspannungsseitige Spannungsdifferenz aufrechterhält, verschiebt sich das Potenzial im zweiten Pol 4 um einen von der jeweiligen Konfiguration des Umrichters 20 abhängigen Betrag.In figure 2 an example of a ground fault in the second DC voltage network 6 between the positive pole 3 and ground 22 is shown. The ground fault is indicated figuratively in the form of a lightning bolt 21 . The ground fault causes a ground fault current or a potential shift with a compensating current, which is shown as arrow 23 and flows between the positive pole 3 and ground 22 . The ground fault causes a current to flow in the DC voltage line, which is indicated by the arrows 24 and 25 in the two poles 3, 4. The potential in the positive pole 3 drops to zero due to the ground fault. Since the converter 20 maintains its DC-side voltage difference, the potential in the second pole 4 shifts by an amount dependent on the configuration of the converter 20 .

Sobald der Fehler erkannt worden ist, steuert die Steuereinheit 15 das erste Schaltelement SE1 und das vierte Schaltelement SE4, zu öffnen. Dies bewirkt eine Trennung des Stromkreises. Die Potenzialverschiebung wirkt sich damit nicht auf den Netzknoten 18, 19 aus.As soon as the error has been detected, the control unit 15 controls the first switching element SE1 and the fourth switching element SE4 to open. This causes the circuit to break. The potential shift therefore does not affect the network nodes 18, 19.

Die Potenzialverteilung entlang der Gleichspannungsleitung 2 der Schaltanordnung 1 der Figur 2 ist in Figur 3 dargestellt. Dabei wird von dem in Figur 2 gezeigten Beispiel des Erdschlusses in dem zweiten Gleichspannungsnetz 6 ausgegangen.The potential distribution along the DC voltage line 2 of the switching arrangement 1 of figure 2 is in figure 3 shown. From the in figure 2 shown example of the ground fault in the second DC voltage network 6 assumed.

In Figur 3 stellt die mit Z bezeichnete Diagrammachse den Ort entlang der Gleichspannungsleitung 2. Auf der mit U bezeichneten Diagrammachse sind die elektrischen Potenziale am gegebenen Ort dargestellt.In figure 3 the diagram axis labeled Z represents the location along the DC voltage line 2. The electrical potentials at the given location are shown on the diagram axis labeled U.

Der Ort der beiden Schaltelemente SE1 und SE3 ist mit dem Bezugszeichen 31 versehen. Entsprechend ist der Ort der Schaltelemente SE2 und SE4 mit dem Bezugszeichen 32 versehen.The location of the two switching elements SE1 and SE3 is provided with the reference number 31. Correspondingly, the location of the switching elements SE2 and SE4 is provided with the reference number 32 .

Die in Figur 3 dargestellten Potenzialverläufe stellen die Situation nach dem Sperren des ersten und vierten Schaltelementes SE1 bzw. SE4, also nach der Fehlerklärung, dar. Der Potenzialverlauf im positiven Pol 3 ist mit dem Bezugszeichen 33 versehen. Der Potenzialverlauf im negativen Pol 4 ist mit dem Bezugszeichen 34 versehen. Der Ort des Erdschlusses ist mit dem Bezugszeichen 35 gekennzeichnet.In the figure 3 The potential curves shown represent the situation after the first and fourth switching elements SE1 and SE4 have been blocked, ie after the error has been cleared. The course of the potential in the negative pole 4 is provided with the reference number 34 . The location of the ground fault is marked with reference number 35 .

Es ist erkennbar, dass die Spannung zwischen dem positiven Pol und Erde am Ort 35 des Erdschlusses auf null gesunken ist. Das Potenzial dort liegt bei null. Zugleich hat eine Potenzialverschiebung des ersten und zweiten Pols 3 bzw. 4 stattgefunden, so dass zwischen den beiden Polen 3, 4 eine Spannungsdifferenz Uk vorliegt, die im Allgemeinen ungleich der Nennspannung Un ist. Durch die Sperrung der Schaltelemente SE1 und SE4 kann jedoch erreicht werden, dass am Ort 36 des ersten Gleichspannungsnetzes die Potenziale der beiden Pole 3, 4 symmetrisch um null liegen. Die Pol-zu-Pol-Spannung am Ort 36 ist gleich der Nennspannung Un in einem Normalbetrieb. Es ist demnach erkennbar, dass der Erdschluss am Ort 35 den Betrieb im ersten Gleichspannungsnetz 5 nicht negativ beeinflusst.It can be seen that the voltage between the positive pole and ground has dropped to zero at the location 35 of the ground fault. The potential there is zero. At the same time, a potential shift of the first and second poles 3 and 4 has taken place, so that there is a voltage difference Uk between the two poles 3, 4, which is generally not equal to the nominal voltage Un. By blocking the switching elements SE1 and SE4, however, it can be achieved that the potentials of the two poles 3, 4 are symmetrical about zero at the location 36 of the first DC voltage network. The pole-to-pole voltage at location 36 is equal to the nominal voltage Un in normal operation. It can therefore be seen that the ground fault at location 35 does not adversely affect operation in the first DC voltage network 5 .

Claims (11)

  1. Switching arrangement (1) for connecting two DC voltage grids (5, 6) comprising
    - a DC voltage line (2), which connects a first DC voltage grid (5) to a second DC voltage grid (6),
    - a first unidirectional switching element (SE1) in a first pole (3) of the DC voltage line (2),
    - a second unidirectional switching element (SE2) in the first pole (3) of the DC voltage line (2), which second unidirectional switching element is arranged at a distance from the first switching element (SE1) and the switching direction of which is directed counter to a switching direction of the first switching element (SE1),
    - a third unidirectional switching element (SE3) in a second pole (4) of the DC voltage line (2),
    - a fourth unidirectional switching element (SE4) in the second pole (4) of the DC voltage line (2), which fourth unidirectional switching element is arranged at a distance from the third switching element (SE3) and the switching direction of which is directed counter to a switching direction of the third switching element (SE3), wherein the switching elements (SE1-4) each have a dielectric strength which lies below a rated voltage (Un) of the DC voltage line (2).
  2. Switching arrangement (1) according to Claim 1, wherein the DC voltage line (2) is designed as a symmetrical monopole connection.
  3. Switching arrangement (1) according to either of Claims 1 and 2, wherein the dielectric strength of the switching elements (SE1-4) corresponds to a maximum voltage value of one of the poles (3, 4) of the DC voltage line (2).
  4. Switching arrangement (1) according to one of the preceding claims, wherein the switching direction of the third switching element (SE3) is directed counter to the switching direction of the first switching element (SE1).
  5. Switching arrangement (1) according to Claim 4, wherein the switching directions of the two switching elements (SE1,2) in a positive pole (3) of the DC voltage line (2) point towards each another.
  6. Switching arrangement (1) according to one of the preceding claims, wherein the first and the second switching element (SE1,2) are arranged at a distance of more than 1 km from each another.
  7. Switching arrangement (1) according to one of the preceding claims, wherein the switching elements (SE1-4) each comprise at least one controllable switching device (12), wherein the controllable switching devices (12) of the switching elements (SE1,4) are controllable independently of each other.
  8. Switching arrangement (1) according to Claim 7, wherein a surge arrester (14) is arranged in parallel with each switching device (12).
  9. Switching arrangement (1) according to Claim 8, wherein a parallel circuit comprising a plurality of surge arresters (14) connected in parallel is arranged in parallel with each of the switching devices (12).
  10. Switching arrangement (1) according to one of the preceding claims, wherein a measuring device (16, 17) is provided for detecting a shift in potential in the DC voltage line (2).
  11. Method for fault clearing by means of a switching arrangement (1), in which,
    in the event of a short circuit in a DC voltage line (2) or in a DC voltage grid (5, 6) connected to the DC voltage line (2), two unidirectional switching elements (SE1-4) are opened, wherein
    - a first unidirectional switching element (SE1) is arranged in a first pole (3) of the DC voltage line (2),
    - a second unidirectional switching element (SE2) is arranged in the first pole (3) of the DC voltage line (2) at a distance from the first switching element (SE1), wherein the switching direction of said second unidirectional switching element is directed counter to a switching direction of the first switching element (SE1),
    - a third unidirectional switching element (SE3) is arranged in a second pole (4) of the DC voltage line (2), and
    - a fourth unidirectional switching element (SE4) is arranged in the second pole (4) of the DC voltage line (2) at a distance from the third switching element (SE3), wherein the switching direction of said fourth unidirectional switching element is directed counter to a switching direction of the third switching element (SE3), wherein the switching elements (SE1-4) each have a dielectric strength which lies below a rated voltage (Un) of the DC voltage line (2).
EP17176306.3A 2016-07-14 2017-06-16 Switching assembly and method for fault clearing Active EP3270397B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016212915.5A DE102016212915A1 (en) 2016-07-14 2016-07-14 Switching arrangement and method for faulty explanation

Publications (2)

Publication Number Publication Date
EP3270397A1 EP3270397A1 (en) 2018-01-17
EP3270397B1 true EP3270397B1 (en) 2022-10-26

Family

ID=59070524

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17176306.3A Active EP3270397B1 (en) 2016-07-14 2017-06-16 Switching assembly and method for fault clearing

Country Status (2)

Country Link
EP (1) EP3270397B1 (en)
DE (1) DE102016212915A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018219376A1 (en) 2018-11-13 2020-05-14 Robert Bosch Gmbh Procedures for selecting and accelerating action responses
EP3879548B1 (en) 2020-03-10 2022-12-21 ABB Schweiz AG Fault current limiter circuit breaker

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011057675A1 (en) 2009-11-16 2011-05-19 Abb Technology Ag Device and method to break the current of a power transmission or distribution line and current limiting arrangement
DE102010052136A1 (en) 2010-11-22 2012-05-24 Siemens Aktiengesellschaft Circuit arrangements for electronically controlled DC networks
WO2013115915A1 (en) 2012-01-31 2013-08-08 Atlantic Grid Operations A., Llc Control and protection of a dc power grid
WO2013174726A1 (en) 2012-05-24 2013-11-28 Alstom Technology Ltd Method of fault clearance
WO2014053554A1 (en) 2012-10-05 2014-04-10 Abb Technology Ag Circuit breaker with stacked breaker modules
WO2014117807A1 (en) 2013-01-29 2014-08-07 Siemens Aktiengesellschaft Dc voltage switch for switching a short interruption
WO2015078525A1 (en) 2013-11-29 2015-06-04 Siemens Aktiengesellschaft Device and method for switching a direct current
DE102013114259A1 (en) 2013-12-17 2015-06-18 Eaton Electrical Ip Gmbh & Co. Kg Switching device for guiding and separating electric currents
US20160105014A1 (en) 2014-10-10 2016-04-14 Lsis Co., Ltd Direct current circuit breaker and method using the same
DE202016102119U1 (en) 2016-04-21 2016-05-09 Abb Technology Ltd. High-speed switch, which includes an on-resistance
WO2016083138A1 (en) 2014-11-25 2016-06-02 Alstom Technology Ltd Start-up of hvdc converters
WO2016092038A1 (en) 2014-12-12 2016-06-16 General Electric Technology Gmbh Dc electrical network
DE102015211339A1 (en) 2015-06-19 2016-12-22 Siemens Aktiengesellschaft DC circuit breaker

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011057675A1 (en) 2009-11-16 2011-05-19 Abb Technology Ag Device and method to break the current of a power transmission or distribution line and current limiting arrangement
DE102010052136A1 (en) 2010-11-22 2012-05-24 Siemens Aktiengesellschaft Circuit arrangements for electronically controlled DC networks
WO2013115915A1 (en) 2012-01-31 2013-08-08 Atlantic Grid Operations A., Llc Control and protection of a dc power grid
WO2013174726A1 (en) 2012-05-24 2013-11-28 Alstom Technology Ltd Method of fault clearance
WO2014053554A1 (en) 2012-10-05 2014-04-10 Abb Technology Ag Circuit breaker with stacked breaker modules
WO2014117807A1 (en) 2013-01-29 2014-08-07 Siemens Aktiengesellschaft Dc voltage switch for switching a short interruption
WO2015078525A1 (en) 2013-11-29 2015-06-04 Siemens Aktiengesellschaft Device and method for switching a direct current
DE102013114259A1 (en) 2013-12-17 2015-06-18 Eaton Electrical Ip Gmbh & Co. Kg Switching device for guiding and separating electric currents
US20160105014A1 (en) 2014-10-10 2016-04-14 Lsis Co., Ltd Direct current circuit breaker and method using the same
WO2016083138A1 (en) 2014-11-25 2016-06-02 Alstom Technology Ltd Start-up of hvdc converters
WO2016092038A1 (en) 2014-12-12 2016-06-16 General Electric Technology Gmbh Dc electrical network
DE102015211339A1 (en) 2015-06-19 2016-12-22 Siemens Aktiengesellschaft DC circuit breaker
DE202016102119U1 (en) 2016-04-21 2016-05-09 Abb Technology Ltd. High-speed switch, which includes an on-resistance

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "D5.1 HVDC Network Fault Analysis", PROMOTION – PROGRESS ON MESHED HVDC OFFSHORE TRANSMISSION NETWORKS, 10 June 2016 (2016-06-10), pages 1 - 63, XP093094974
DERAKHSHANFAR R, JONSSON T U, STEIGER U, HABERT M: "Hybrid HVDC breaker -Technology and applications in point-to-point connections and DC grids", CIGRE 2014, 1 January 2014 (2014-01-01), pages 1 - 11, XP093094959
IKHIDE M.A., TENNAKOON S.B., GRIFFITHS A., SUBRAMANIAN S., HA H., ADAMCZYK A.: "Limitations of di/dt technique in DC line protection", 13TH INTERNATIONAL CONFERENCE ON DEVELOPMENT IN POWER SYSTEM PROTECTION 2016 (DPSP), 1 January 2016 (2016-01-01), pages 1 - 6, XP093094962, ISBN: 978-1-78561-138-4, DOI: 10.1049/cp.2016.0049
JARDINI JOSE: "Overvoltage Assessment of Point-to-Point VSC-Based HVDC Systems", PRZEGLAD ELEKTROTECHNICZNY, 1 January 2015 (2015-01-01), pages 105 - 112, XP093094972, ISSN: 0033-2097, DOI: 10.15199/48.2015.08.26
MOKHBERDORAN ATAOLLAH; SILVA NUNO; LEITE HELDER; CARVALHO ADRIANO: "A directional protection strategy for multi-terminal VSC-HVDC grids", 2016 IEEE 16TH INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING (EEEIC), 7 June 2016 (2016-06-07), pages 1 - 6, XP032954991, DOI: 10.1109/EEEIC.2016.7555819
SALIMI M, CHEN X, WOODFORD D, GOLE A: "Fast Reduction of DC Voltage for Half-Bridge MMC HVDC Systems with Symmetrical Monopole during the Non-permanent Pole to Earth DC Fault", CIGRE, 1 January 2015 (2015-01-01), pages 1 - 8, XP093094966
TORRES E., EGUIA P., ITURREGI A., ABARRATEGUI O., ETXEGARAI A.: "Busbar Configurations for HVDC Grids", RENEWABLE ENERGY AND POWER QUALITY JOURNAL, no. 14, 1 May 2016 (2016-05-01), pages 512 - 516, XP093094963, ISSN: 2172-038X, DOI: 10.24084/repqj14.377
WOODFORD DENNIS: "Symmetrical Monopole VSC Transmission", ELECTRANIX CORPORATION, 25 March 2014 (2014-03-25), pages 1 - 23, XP093094967

Also Published As

Publication number Publication date
EP3270397A1 (en) 2018-01-17
DE102016212915A1 (en) 2018-01-18

Similar Documents

Publication Publication Date Title
EP3257147B1 (en) Converter arrangement and method for short-circuit protection thereof
EP2338214B1 (en) Device having an inverter
EP2507884B1 (en) Inverter for high voltages
DE102013110240B4 (en) Circuit arrangement for a photovoltaic inverter for off-load relief with short-circuit switches and uses of the circuit arrangement
DE102012109012B4 (en) Circuit arrangement for a solar power plant with a DC voltage source for an offset voltage
EP3639353B1 (en) Impedance for ac fault current handling for hvdc converter
EP3593434B1 (en) Method and assembly for generating an activating signal for an hvdc breaker
DE102019203977A1 (en) Protective switching device for direct voltage
EP3501100B1 (en) Isolating apparatus for a photovoltaic string
EP3797460A1 (en) Method and device for detecting an error in a high-voltage direct current transmission line and generating an activating signal for a direct current circuit breaker
EP3270397B1 (en) Switching assembly and method for fault clearing
EP3635851B1 (en) Current converter unit
DE102018128121A1 (en) AC / DC conversion arrangement
EP2845214B1 (en) Apparatus for switching in a dc voltage mains
WO2013107556A1 (en) Circuit arrangement for reducing the current intensity in a high-voltage dc transmission line, high-voltage dc transmission installation, and method for reducing the current intensity of an electrical current
EP3639360B1 (en) Converter arrangement having phase module arrester and method for short-circuit protection thereof
WO2016128162A1 (en) Arrangement for a railway power supply and method for operating the arrangement
WO2014090316A1 (en) Switch arrangement of a d.c. voltage network
EP1480241B1 (en) Hybrid DC circuit breaker with zero current switching and method of switching
WO2020193168A1 (en) Switch device for a dc voltage circuit
DE102015203843A1 (en) Arrangement and method for a DC traction power supply
DE102012106505A1 (en) De-energizing device in photovoltaic strand, has circuit breaker to temporarily disconnect direct voltage of photovoltaic strand to power source unit, and safety device to open circuit breaker when earthing switch is closed previously
DE102018109107B3 (en) A monitoring device and method for monitoring a solar generator for earth faults
EP3417468B1 (en) Switching apparatus, converter apparatus with switchingsinstallation and method to protect the converter apparatus
EP0613427B1 (en) Circuitry for rectifier substations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180705

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210215

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220607

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017013997

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1527657

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230126

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502017013997

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230627

Year of fee payment: 7

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: GENERAL ELECTRIC TECHNOLOGY GMBH

Effective date: 20230727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230616

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230616

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630