EP0674381B1 - Procédé de régulation du couple d'une machine asynchrone - Google Patents

Procédé de régulation du couple d'une machine asynchrone Download PDF

Info

Publication number
EP0674381B1
EP0674381B1 EP95104131A EP95104131A EP0674381B1 EP 0674381 B1 EP0674381 B1 EP 0674381B1 EP 95104131 A EP95104131 A EP 95104131A EP 95104131 A EP95104131 A EP 95104131A EP 0674381 B1 EP0674381 B1 EP 0674381B1
Authority
EP
European Patent Office
Prior art keywords
stator
rotor
torque
frequency
space vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95104131A
Other languages
German (de)
English (en)
Other versions
EP0674381A1 (fr
Inventor
Manfred Prof. Dr. Depenbrock
Dieter Maischak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bombardier Transportation GmbH
Original Assignee
ABB Daimler Benz Transportation Schweiz AG
ABB Daimler Benz Transportation Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4413153A external-priority patent/DE4413153A1/de
Application filed by ABB Daimler Benz Transportation Schweiz AG, ABB Daimler Benz Transportation Technology GmbH filed Critical ABB Daimler Benz Transportation Schweiz AG
Publication of EP0674381A1 publication Critical patent/EP0674381A1/fr
Application granted granted Critical
Publication of EP0674381B1 publication Critical patent/EP0674381B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors

Definitions

  • the invention relates to a method for torque control an asynchronous machine according to the preamble of claim 1 and can both in general in industrial drives as especially also with electric rail vehicles be used.
  • the space pointer sizes used in the following can be after known rules from the corresponding three strand sizes be calculated (see also IEEE Transactions on power electronics, Vol. 3, No. 4, October 1988, pages 420 to 429). No practical ones exist for river chains usable transmitter, so that this is usually through a machine model can be calculated from measurable quantities.
  • the rotor flow space pointer moves in stationary operation with almost constant angular velocity on one Circular path.
  • the rotor flux of a squirrel cage asynchronous machine can change slowly so that rapid torque changes in principle only by changing the total flow amount or the flux angle between total flux and rotor flux can be.
  • the induction machine In order to make optimum use of the power section of the drive in steady-state operation, the induction machine must always generate the required torque, which is as large as possible, with a minimum stator current at a maximum stator voltage amount, that is, corresponding to the maximum possible total flow amount.
  • the maximum total flow amount must be limited to the rated flow ⁇ and o in view of the saturation of the stator iron.
  • stator angular frequency ⁇ S with which the electrical quantities oscillate in the stator windings of the induction machine corresponds in stationary operation to the sum of the electrically effective angular velocity ⁇ of the rotor compared to the stator and the rotor circular frequency ⁇ r (short rotor frequency) with which the electrical quantities in Swing rotor.
  • stator angular frequency of the three-phase voltage system (stator frequency for short) fed into the stator windings must also contain a dynamic component ⁇ ⁇ proportional to the rate of change of the flux angle ⁇ .
  • the rotor frequency is with knowledge of the rotor resistance and the easily calculable square of the rotor flux amount clearly according to the torque certainly.
  • Target of all known torque controls for induction machines is the stator frequency given in equation (4) so that the torque reaches its setpoint follows with the best possible dynamics and target and actual torque match stationary.
  • the invention has for its object a method for Torque control of an asynchronous machine of the aforementioned Specify that a highly dynamic torque control in the entire speed range of a highly utilized Guaranteed three-phase drive.
  • stator voltage amplitude no voltage reserve, i.e. always maximum possible stator voltage amplitude
  • Induction machine already in stationary operation with maximum To feed stator voltage amplitude. This will generates the required torque with minimal stator current and the power section optimally without loss of dynamics exploited.
  • stator current amount during the no significant increase compared to dynamic processes has stationary operation. This means that the Power section despite the good dynamics regarding the current does not have to be oversized.
  • the space pointer The stator voltage to be applied to the stator terminals of the induction machine on average per pulse period results directly from the stator equation of the machine model with the condition made in equations (2, 3).
  • the stator voltage space vector is obtained as the sum of the voltage drop on the stator resistance and the magnetizing voltage , in the fixed coordinate system of the temporal change of the total flow area pointer corresponds, according to
  • the stator current space pointer can be easily measured in analog or digital form.
  • the total flow area pointer is obtained using the stator equation according to the machine model
  • phase position X ⁇ corresponds directly to the transformation angle required for the transformation into coordinates that are fixed to the overall flow, for which the following simple relationship applies according to equation (8)
  • Equation (11) contains no trigonometric functions, so that no sin / cos table is required.
  • the division of the stator voltage shown in FIG. 1 into a component e sx parallel to the total flow space vector and an orthogonal component e sy can be seen directly therein.
  • the component of the stator voltage oriented parallel to the total flow space vector changes or corrects the total flow amount.
  • Their magnitude e sx is referred to below as the flow correction factor.
  • the amount e sy, referred to as the stator frequency factor, of the component of the stator voltage orthogonal to the total flow space vector is proportional to the stator frequency and thus enables the torque to be adjusted.
  • FIG. 2 shows a block diagram of the torque and total flow amount control with indirect torque control by means of rotor frequency control, as is used for torque control in the voltage setting range (amplitude adjustment).
  • a subtractor 4 forms ⁇ rsoll - ⁇ r , with ⁇ rsoll previously using a limiter 3 to a positive or negative peak value respectively. is limited.
  • the difference determined by the subtractor 4 reaches a rotor frequency controller 5 (preferably a PI controller in the arrangement according to FIG. 2), the output signal of which corresponds to the stator frequency factor e sy and is fed to a coordinate transformer 6.
  • a subtractor 7 forms the difference ⁇ soll o - Wherein ⁇ sollo corresponds to the Be horrsflußsollwert, and this difference to a Bacflußbetragsregler 8 (in the arrangement of Figure 2 preferably a PI controller) to whose output signal corresponds to the Flußkorrekturmine e sx and is also supplied to the coordinate transformer. 6
  • the stator voltage space vector is on the output side of the coordinate transformer 6 removable.
  • the multiplier 9 outputs the space pointer on the output side the inverter control in the stationary ⁇ / ⁇ coordinate system to a pulse width modulator 10 for controlling the power semiconductors of an inverter.
  • the switching frequency of the power semiconductors is 1 kHz or above.
  • the coordinate transformation subsequently carried out in accordance with equation (9), which only corresponds to the consideration of the current phase position of the total flow space vector, supplies the stator voltage space vector in resting coordinates.
  • the rated DC link voltage E d0 is chosen to avoid overdriving of the inverter, insofar as this is impermissible, so that the inverter delivers the rated stator voltage ê 0 of the fed induction machine at maximum sine output.
  • the room pointer of the inverter control calculated in this way is then passed to the pulse width modulator (PWM).
  • PWM pulse width modulator
  • a significant improvement in the torque control behavior compared to the basic version according to FIG. 2 is achieved if the above-described rotor frequency control is achieved by suitable pre-control of the stationary stator frequency is added.
  • An adder 11 sums to ⁇ and ⁇ , and supplies the stationary stator circuit frequency reference thus formed a multiplier 12.
  • the multiplier 12 calculates the stationary component orthogonal to the total flow space vector the magnetization voltage as a product and ⁇ should be 0 and feeds it to an adder 13, which consists of e Ry and the stationary stator frequency factor forms and feeds an adder 16 arranged between the rotor frequency controller 5 and the coordinate transformer 6.
  • a coordinate transformer 14 is provided to form e Ry the components i sx and i sy of the stator current space vector are calculated in the x / y system.
  • stator frequency precontrol it is essential in the stator frequency precontrol according to FIG. 3 that it is based on simple analytical equations which can also be solved exactly on signal processors under real-time conditions.
  • the setpoint of the stationary stator frequency determined according to equation (4) as the sum of the electrical speed ⁇ and the rotor frequency setpoint ⁇ rset calculated from the torque setpoint in accordance with equation (6).
  • Equation (11) By multiplying the steady-state stator frequency setpoint by the rated total flow setpoint oll ⁇ soll 0 , Equation (11) gives directly the component that is to be set in steady-state operation with a constant total flow amount and is orthogonal to the total flow space pointer of the magnetization voltage space vector.
  • stator voltage stationary stator frequency factor
  • stator voltage space vector With an unlimited amount of the stator voltage space vector, the machine could be operated in the entire operating range with the rated flux ⁇ and 0 . With the above-described rotor frequency and total flux amount control, very good torque dynamics could then always be achieved, regardless of the speed, because of the arbitrarily high control reserve of the stator voltage amplitude.
  • the rated frequency is determined by the rated flux ⁇ and 0 and the rated voltage ê 0 of the machine as well as the voltage factor k u .
  • the total flux must correspond to the so-called field weakening factor are weakened so that the stator voltage amplitude then required is just achieved with a fully controlled inverter.
  • the power section of the drive is optimally used in stationary operation.
  • the inverter is already full in stationary operation controlled, there is in principle no dynamic control reserve the stator voltage amplitude available and the Path velocity of the total flow space pointer cannot be increased more.
  • the flow angle ⁇ between the total flow space pointer and the rotor flow space pointer according to the equation (1) be quickly enlarged in other ways.
  • the required great rate of change ⁇ ⁇ des Flow angle can with constant path velocity of the total flow space pointer only by appropriately shortening the total flow path curve can be achieved.
  • the transition between the operating points A, C is carried out optimally quickly if the total flow space pointer at point A is brought to a negative value by suddenly reducing the tension angle ⁇ u to the linear connection between A and C chosen as the shortest possible dynamic trajectory.
  • the reduction in the voltage angle is achieved in accordance with equation (20) by reducing the portion e sx of the stator voltage which is parallel to the total flow space vector .
  • the turning angle ⁇ uA at point A determines how quickly the torque increases. It can theoretically assume values up to 90 ° in accordance with equation (20), so that the total flow space pointer would then be led directly from the point A in FIG. 4 through the origin. The machine would then be de-energized and there would be no more torque.
  • Figure 5 shows the basic structure of the torque control by subordinate total flow amount control.
  • a subtractor 30 forms the signal M - M soll and passes this difference to a torque controller 31.
  • Another subtractor 32 forms from the total flow setpoint ⁇ ⁇ soll at the output of the controller 31 and the amount of the total flow space pointer the difference ⁇ ⁇ soll to be supplied to a total flow controller 33 - .
  • the controller 33 outputs the voltage angle ⁇ limited to a positive and negative maximum value ⁇ and u , ⁇ and u with the aid of a limiter 34 to a coordinate transformer 35.
  • the output signal of the coordinate transformer 35 is fed to a machine model 36, which uses this to generate the torque M and the total flow space vector forms. is fed to the coordinate transformer 35 and a magnitude generator 37, the latter the size forms and passes to the subtractor 32.
  • the superimposed torque controller 31 with PI characteristic tracks the torque according to its target value by presetting the subordinate total flow amount controller 33 with P characteristic the radius of the total flow trajectory.
  • the manipulated variable of the total flow rate controller 33 corresponds to the voltage angle ⁇ u defined in equation (20), which is limited in accordance with equation (21).
  • the stator voltage space vector is clearly given by the voltage angle ⁇ u and the angular position X ⁇ of the total flow space vector.
  • the machine model 36 provides all the sizes required for the control.
  • stator voltage amplitude and thus the path speed of the total flow space pointer at the moment be reduced suddenly, in which the torque is Setpoint reached. How the stator voltage amplitude decreased can be described in Figure 6.
  • FIG. 6 shows a torque control with exact pre-control of the total flow amount and voltage amplitude adjustment.
  • the basic structure is as described under FIGS. 2 and 3.
  • the signals e Rx ⁇ x and are fed to an amount generator 19, from which the stationary amount of the stator voltage space pointer.
  • a multiplier 20 generates the product and 1 / ku and feeds this to a reciprocal value generator 21.
  • the multiplier forms the product of ⁇ soll 0 and the stationary field weakening number limited to 1 and feeds it to the subtractor 7.
  • the reciprocal of this modulation amount is then called the stationary field weakening figure according to set. This ensures that the stator frequency required is exactly achieved with the maximum stator voltage amplitude.
  • the subsequent limitation of the field weakening figure to values less than 1 prevents stator frequencies below the rated frequency from being set with an impermissibly high total flow amount.
  • the total flow amount controller 8 receives the total flow setpoint in a pilot-controlled manner
  • FIG. 7 shows a torque control with dynamic field weakening with a limited voltage angle.
  • the basic structure is as shown in Figures 2, 3 and 6.
  • a proportional element 24 is provided, which forms the product of e ⁇ yD and V M ⁇ and feeds a subtractor 25, V M ⁇ representing a P gain.
  • the subtractor 25 forms a dynamic field weakening factor ⁇ D by calculating the difference between 1.0 and the product of the proportional element 24.
  • a multiplier 26 forms the product of the dynamic field weakening number ⁇ D and the stationary field weakening number . This product is limited to 1 with the aid of the limiter 22 and reaches the multiplier 23 as a field weakening number ⁇ , which multiplies ⁇ by ⁇ should 0 and feeds the flow setpoint thus formed to the subtractor 7.
  • a multiplier 27 forms the product of e sy and tan 60 ° and feeds it to a computing element 28.
  • This arithmetic element 28 realizes the condition specified in equation (21) and receives the sum signal of the adder 17 on the input side and outputs e sx to the coordinate transformer 6 on the output side.
  • the dynamic field weakening figure is obtained directly from the manipulated variable e ⁇ yD of the rotor frequency controller 5. Whose manipulated variable is weakened by the additionally inserted proportional element 24 with the P-gain V M ⁇ , so that the stability of the torque control loop remains guaranteed with dynamic field weakening.
  • the torque control with voltage amplitude adjustment described in FIG. 7 is characterized in that that in the absence of dynamic control reserve of the stator voltage amplitude theoretically possible torque rise times almost be achieved.
  • the additional P element 24 takes into account that the average stator frequency per pulse period in the voltage setting range due to the abruptly adjustable stator voltage amount, in the field weakening area, however, only through the continuously adjustable total flow amount can be influenced can.
  • the total flow setpoint is finally obtained as the product of the total flow setpoint, which is pre-controlled according to equation (23), and the dynamic field weakening factor calculated in equation (24)
  • the rotor flow space pointer is then in accordance with the flow angle and the total flow space pointer certainly.
  • Equation (29) shows that a predetermined limit of the stator current amount when limiting the rotor frequency ⁇ r respectively. is observed.
  • the plus sign stands for the limitation in engine operation and the minus sign accordingly for the limitation in generator operation.
  • the anti-tipper must be designed so that a reversal of the control sense is safely prevented without the dynamic behavior of the drive. As mentioned at the beginning, the anti-tip is suitably limited by the Rotor frequency realized.
  • the rotor frequencies must be known at which the motor tipping moment m and the generator tipping moment occurs.
  • the extreme positions of equation (33) are determined using known analytical methods, such as, for example, the Cardanic formula. In this way, solution functions are obtained which include the related tilt rotor frequencies n and r for the motor area included for the generator area as a function of the related speed n.
  • the related stationary rotor frequency n r stationary in the motor area is limited to the constant upper limit value n and rm , at which the limit characteristics as functions of n r for operation with maximum stator current and maximum torque m and cut.
  • the related stationary rotor frequency n r becomes stationary on the likewise constant lower limit value limited, at which the limit characteristics for operation at maximum speed n Max and operation with minimum torque to cut.
  • the actual tilting moment of the machine can be used almost completely (
  • the maximum achievable torque is initially set with unlimited dynamics. Only when the rotor flux drops does the limitation of the rotor frequency setpoint n rsetpoint begin to the limit value n and rm defined in accordance with the previously described method and the torque drops to the stationary overturning torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Claims (10)

  1. Procédé pour réguler le couple d'une machine asynchrone à rotor en court-circuit, alimentée par un onduleur excité par modulation d'impulsions en largeur, la résistance du rotor (Rr) et l'indicateur de capacité de flux du rotor (Ψr) ayant des valeurs prédéterminées, caractérisé
       en ce que la valeur de consigne (Mcons) du couple et la valeur effective (M) du couple sont converties selon ωrcons = 2Rr 3 Mcons Ψr 2 et ωr = 2Rr 3 M Ψr 2 dans des ordinateurs en la valeur de consigne de la fréquence angulaire du rotor (ωrcons) et la fréquence angulaire du rotor (ωr), en ce que le couple, par l'intermédiaire d'un régulateur de fréquence du rotor et d'un régulateur de quantité de flux total, est régulé selon eSy = VM • (ωrcons - ωr) + 1τm • ∫ (ωrcons - ωr)dt et
    Figure 00410001
       et en ce que l'indicateur de capacité de tension du stator
    Figure 00410002
    est composé à partir du facteur de fréquence du stator (eSy) et du facteur de correction de flux (eSx) au moyen d'un convertisseur de coordonnées (6), et où le couple du moteur est régulé en réglant le vecteur de sortie de l'onduleur
    Figure 00410003
    , et où les abréviations suivantes signifient :
    Rr =
    résistance du rotor
    Figure 00410004
    =
    indicateur de capacité de flux du rotor
    VM, VΨ =
    amplifications proportionnelles du régulateur
    τM, τΨ =
    temps de compensation du régulateur
    Ψcons =
    valeur de consigne de flux total
    Figure 00410005
    =
    indicateur de capacité de flux total.
  2. Procédé selon la revendication 1, caractérisé en ce que, pour composer l'indicateur de capacité de tension du stator
    Figure 00410006
    à partir du facteur de fréquence du stator et du facteur de correction de flux, une transformation de coordonnées concernant le facteur de fréquence du stator et du facteur de correction de flux est effectuée selon
    Figure 00410007
    Xµ = relation des phases de l'indicateur de capacité de flux total.
  3. Procédé selon la revendication 2, caractérisé en ce que l'indicateur de capacité de tension du stator
    Figure 00420001
    , pour composer l'indicateur de capacité de la modulation de l'onduleur
    Figure 00420002
    , est multiplié par la valeur réciproque du facteur de tension ku = Ed Ed0
    ED = tension continue indirecte
    Ed0 = tension continue indirecte de calcul de l'onduleur.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la valeur de consigne stationnaire de la fréquence angulaire du stator
    Figure 00420003
    est composée à partir de la valeur de consigne (ω) de la fréquence angulaire du rotor (ωrcons) et du couple électrique (ω), en ce que cette valeur de consigne est multipliée par la valeur de consigne du flux total de calcul (Ψµcons0), en ce que la composante stationnaire
    Figure 00420004
    , orthogonale par rapport à l'indicateur de capacité de flux total de l'indicateur de capacité de tension d'aimantation
    Figure 00420005
    , est totalisée avec la fraction (eRy) de la chute de tension
    Figure 00420006
    , orthogonale par rapport à l'indicateur de capacité de flux total, sur la résistance du stator, et en ce que le facteur de fréquence stationnaire du stator
    Figure 00420007
    ainsi obtenu est additionné à la fraction dynamique du facteur de fréquence du stator (ϑ ˙ = eΨyD), constituée par le régulateur de fréquence du rotor.
  5. Procédé selon la revendication 4, caractérisé en ce que l'on additionne à la fraction dynamique du facteur de correction de flux (eΨxD), constituée par le régulateur de quantité de flux total, une fraction de la chute de tension
    Figure 00430001
    , parallèle à l'indicateur de capacité de flux total, sur la résistance du stator comme un facteur stationnaire de correction de flux (eRx).
  6. Procédé selon les revendications 4 et 5, caractérisé en ce que la quantité de l'indicateur de capacité de tension du stator
    Figure 00430002
    est composée à partir du facteur stationnaire de la fréquence du stator
    Figure 00430003
    et le facteur stationnaire de correction de flux (eRx), en ce que selon
    Figure 00430004
    un chiffre d'affaiblissement de champ
    Figure 00430005
    est composé, en ce que ce chiffre d'affaiblissement de champ est limité à des valeurs inférieures à un, et en ce que la valeur de consigne du flux de calcul (Ψcons0) est multipliée par ce chiffre d'affaiblissement de champ limité, où
    Figure 00430006
    =
    tension de calcul du stator,
    Figure 00430007
    =
    indicateur de capacité stationnaire de la modulation de l'onduleur.
  7. Procédé selon la revendication 6, caractérisé en ce que le chiffre stationnaire d'affaiblissement de champ
    Figure 00430008
    est multiplié par un chiffre dynamique d'affaiblissement de champ γρ = 1 - V • eΨyD , où V = amplification proportionnelle.
  8. Procédé selon la revendication 7, caractérisé en ce que la quantité de l'angle de tension (δµ) entre l'indicateur de capacité de tension du stator
    Figure 00440001
    et l'indicateur de capacité de flux total
    Figure 00440002
    , tourné de +90°, est limitée à environ 60°.
  9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que, pour limiter le courant, la valeur de consigne de la fréquence angulaire du rotor est limitée à
    Figure 00440003
    en cas d'entraínement par moteur, et à
    Figure 00440004
    en cas d'entraínement par générateur, où les abréviations suivantes sont appliquées :
    Lµ = inductance d'aimantation,
    Lσ = inductance de dispersion,
    Figure 00440005
    = limite donnée de la quantité de l'indicateur de courant du stator.
  10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que, pour la protection contre le renversement, la fréquence stationnaire du rotor (nr), relative à la valeur réciproque de la constante de temps de dispersion du rotor, est limitée de façon stationnaire en cas d'entraínement par moteur à la valeur limite supérieure constante (n andrm), où se coupent les courbes caractéristiques limites pour le fonctionnement avec un courant de stator maximal
    Figure 00440006
    et le fonctionnement avec un couple maximal (m and), et en ce que la fréquence stationnaire du rotor (nr), relative à la valeur réciproque de la constante de temps de dispersion du rotor, est limitée de façon stationnaire en cas d'entraínement par générateur à la valeur limite inférieure constante
    Figure 00450001
    , où se coupent les courbes caractéristiques limites pour le fonctionnement avec une vitesse de rotation maximale (nMax) et le fonctionnement avec un couple minimal
    Figure 00450002
    .
EP95104131A 1994-03-23 1995-03-21 Procédé de régulation du couple d'une machine asynchrone Expired - Lifetime EP0674381B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4409936 1994-03-23
DE4409936 1994-03-23
DE4413153 1994-04-15
DE4413153A DE4413153A1 (de) 1994-03-23 1994-04-15 Verfahren zur Drehmomentregelung einer Asynchronmaschine

Publications (2)

Publication Number Publication Date
EP0674381A1 EP0674381A1 (fr) 1995-09-27
EP0674381B1 true EP0674381B1 (fr) 1999-06-16

Family

ID=25934973

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95104131A Expired - Lifetime EP0674381B1 (fr) 1994-03-23 1995-03-21 Procédé de régulation du couple d'une machine asynchrone

Country Status (3)

Country Link
US (1) US5610485A (fr)
EP (1) EP0674381B1 (fr)
AT (1) ATE181472T1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2477562C1 (ru) * 2011-09-02 2013-03-10 Государственное образовательное учреждение высшего профессионального образования "Мордовский государственный университет им. Н.П. Огарева" Устройство для управления двигателем двойного питания

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2759216B1 (fr) * 1997-02-06 1999-03-05 Alsthom Cge Alcatel Procede de regulation d'une machine tournante, systeme d'asservissement pour mettre en oeuvre ledit procede, et machine tournante pourvue d'un tel systeme
DE19913624C2 (de) * 1999-03-25 2001-12-13 Siemens Ag Verfahren und Vorrichtung zur Vermeidung eines stationären Betriebes einer drehgeberlosen, feldorientiert betriebenen Drehfeldmaschine innerhalb eines unzulässigen Statorfrequenzbereiches
US6870348B2 (en) * 2003-08-06 2005-03-22 General Motors Corporation Rotor resistance adaptation for indirect field oriented control of induction machine
DE10361215A1 (de) * 2003-12-24 2005-07-28 Daimlerchrysler Ag Elektrische Einrichtung und Betriebsverfahren
US7023168B1 (en) * 2004-09-13 2006-04-04 General Motors Corporation Field weakening motor control system and method
FR2886075B1 (fr) * 2005-05-23 2007-09-14 Alstom Transport Sa Procede et unite de commande a reponse pile d'une machine asynchrone, support d'enregistrement pour ce procede
DE102007058209B4 (de) * 2007-12-04 2009-10-08 Lenze Drives Gmbh Verfahren zum Aufschalten eines Umrichters auf eine geberlos betriebene Asynchronmaschine
DE102009021823A1 (de) * 2009-05-18 2010-12-09 Bombardier Transportation Gmbh Überstrombegrenzung bei der Regelung von stromrichtergespeisten Drehstrommaschinen
KR101583951B1 (ko) * 2014-07-02 2016-01-08 현대자동차주식회사 친환경 차량용 인버터의 전압이용율 향상 제어 장치 및 방법
DE102014226967A1 (de) * 2014-12-23 2016-06-23 Thyssenkrupp Ag Verfahren zum Bestimmen eines Statorstromvektors zum Starten einer Synchronmaschine eines Antriebs einer Personenbeförderungsvorrichtung
CN104953913B (zh) * 2015-07-03 2018-08-07 兰州交通大学 基于自抗扰的网络化交流电机ls-svm广义逆解耦控制方法
US10355629B2 (en) * 2017-05-30 2019-07-16 General Electric Company Control method for protecting generators

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2821679B2 (ja) * 1988-07-19 1998-11-05 株式会社日立製作所 Pwmインバータのゲート信号発生方法および装置、pwmインバータ装置
US4862054A (en) * 1988-10-31 1989-08-29 Westinghouse Electric Corp. Tacho-less vector control adaptive system for motor drive
JPH0755080B2 (ja) * 1989-09-29 1995-06-07 譲 常広 インバータの制御装置
US5334923A (en) * 1990-10-01 1994-08-02 Wisconsin Alumni Research Foundation Motor torque control method and apparatus
JP2861680B2 (ja) * 1992-10-13 1999-02-24 株式会社日立製作所 電気自動車用故障検出法及びそれを用いたフェールセイフ制御方法
DE69317642T2 (de) * 1993-01-11 1998-07-09 Meidensha Electric Mfg Co Ltd Vektorkontrollsystem für Induktionsmotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2477562C1 (ru) * 2011-09-02 2013-03-10 Государственное образовательное учреждение высшего профессионального образования "Мордовский государственный университет им. Н.П. Огарева" Устройство для управления двигателем двойного питания

Also Published As

Publication number Publication date
US5610485A (en) 1997-03-11
ATE181472T1 (de) 1999-07-15
EP0674381A1 (fr) 1995-09-27

Similar Documents

Publication Publication Date Title
EP0019138B1 (fr) Dispositif de réglage de charge d'une machine asynchrone alimentée par un convertisseur
DE2648150C2 (de) Anordnung zur Steuerung der Drehzahl eines über einen Zwischenkreisumrichter gespeisten Asynchronmotors
EP0007550B1 (fr) Circuit d'intégration d'une tension alternative pour produire un signal de tension proportionnel à une composante de flux dans une machine à champ tournant utilisation de deux tels circuits dans une machine motrice à champ tournant et procédé de mise en action d'une telle machine motrice
EP0674381B1 (fr) Procédé de régulation du couple d'une machine asynchrone
EP0179356A2 (fr) Procédé et dispositif de régulation d'une machine à champ tournant
DE3212439A1 (de) Verfahren und einrichtung zur regelung einer durch schnelle elektrische stellglieder gespeisten asynchronmaschine
DE69936505T2 (de) Regelvorrichtung für einen induktionsmotor
EP2027648A1 (fr) Limiteur de courant pour une machine asynchrone à double alimentation
DE2644748B2 (de) Anordnung zur Regelung der Drehzahl einer Asynchronmaschine
DE3110244C2 (fr)
EP0437669B1 (fr) Méthode et circuit pour la commande directe des courants de sortie d'un onduleur, alimentant un nombre prédéterminé de machines à champ tournant
DE3820125C2 (de) Verfahren zum Steuern eines wechselrichtergespeisten Asynchronmotors
EP2619900B1 (fr) Procédé de régulation optimisée en termes de pertes (dans le cuivre) pour un moteur asynchrone au moyen d'un convertisseur
EP0103133A1 (fr) Dispositif de réglage pour convertisseurs de courant
EP0884834B1 (fr) Procédé et dispositif pour la régulation de courant d'un moteur synchrone à aimant permanent et à f.e.m. trapézoidale et commandé par champ orienté
DE102010021488A1 (de) Verfahren zur (kupfer-)verlustoptimalen Regelung einer Asynchronmaschine mit einem Frequenzumrichter
DE3721631C2 (fr)
EP0085338B1 (fr) Dispositif pour déterminer la fréquence commune de deux valeurs alternatives indépendamment variables en particulier dans une machine à champ tournant
DE2342653A1 (de) Einrichtung zur regelung einer selbstgesteuerten synchronmaschine
DE4413153A1 (de) Verfahren zur Drehmomentregelung einer Asynchronmaschine
EP0281788B1 (fr) Méthode et circuit de réglage autonome des composantes d'un vecteurs de courant
DE2818933C2 (de) Regelverfahren für eine Asynchronmaschine sowie Schaltungsanordnung zur Durchführung des Verfahrens
DE2032227C3 (de) Anordnung zur Drehzahlregelung eines über steuerbare Halbleiter gespeisten Gleichstrommotors
EP0456854B1 (fr) Procédé et dispositif pour la régulation d'un onduleur d'impulsion triphasé
EP0171617B1 (fr) Méthode et dispositif pour l'exploitation d'un convertisseur indirect avec limitation de la montée de courant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT LU NL

17P Request for examination filed

Effective date: 19960217

17Q First examination report despatched

Effective date: 19970414

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB DAIMLER-BENZ TRANSPORTATION (TECHNOLOGY) GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT LU NL

REF Corresponds to:

Ref document number: 181472

Country of ref document: AT

Date of ref document: 19990715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59506193

Country of ref document: DE

Date of ref document: 19990722

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: ABB DAIMLER-BENZ TRANSPORTATION (TECHNOLOGY) G.M.

Effective date: 20000331

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030314

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030318

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040321

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050309

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050311

Year of fee payment: 11

Ref country code: AT

Payment date: 20050311

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060321

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060331

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061003

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070321