EP0413806A1 - Electronic starting and power supply device for preheated electrode fluorescent tubes - Google Patents

Electronic starting and power supply device for preheated electrode fluorescent tubes

Info

Publication number
EP0413806A1
EP0413806A1 EP90904853A EP90904853A EP0413806A1 EP 0413806 A1 EP0413806 A1 EP 0413806A1 EP 90904853 A EP90904853 A EP 90904853A EP 90904853 A EP90904853 A EP 90904853A EP 0413806 A1 EP0413806 A1 EP 0413806A1
Authority
EP
European Patent Office
Prior art keywords
circuit
capacitor
line
supply
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90904853A
Other languages
German (de)
French (fr)
Inventor
Jean-Claude Harel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0413806A1 publication Critical patent/EP0413806A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/285Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2851Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2856Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against internal abnormal circuit conditions

Definitions

  • the present invention relates to an electronic starting and supply device for gas or vapor discharge lamps provided with two preheatable electrodes such as fluorescent tubes.
  • a fluorescent tube was connected in parallel to a choke and this assembly was connected with an inductor in series to the network either to an alternating current of 280 V, 50 or 60 Hz.
  • the start being random and the energy consumption of the inductor during the operating regime being very high, we then turned to electronic circuits generating a high supply frequency more reliably and more economically. Multiple devices have thus made it possible to significantly improve the overall performance of these fluorescent tubes.
  • this filtering capacitor supplying the electronic circuits permanently retains the majority of its charge, which results in long periods of non-consumption of energy from the sector, followed by brief moments of recharging. Since these current draws are usually weak, this does not result in any perceptible change in the shape of the mains voltage as a function of time.
  • a first solution consists in adding an inductance L forming on the mains line with the capacitor C of filtering a low-pass filter with a threshold equal to 150 Hz.
  • the usual calculation of the resonance frequency for an LC circuit quickly shows that for a high capacitor value C the value of the inductance L must also be. There then appears a significant drop in potential at the terminals of this inductance, ie a loss of energy released into heat by the Joule effect, which amounts to the same drawback as the primitive branch circuits.
  • a second alternative consists in using a 1/1 ratio transformer providing galvanic isolation. But there too, energy losses by Joule effect are noted.
  • a last solution consists in carrying out a first high-frequency cutting of the low-frequency alternations of the sector before rectification, which effectively makes it possible to obtain galvanic isolation preventing the return of harmonics on the supply network but complicates the general device and limits the efficiency. global.
  • the ideal solution consists in fact of getting rid of this parasitic filtering generator, or at least of reducing it to a very low value. This has the immediate consequence that the supply voltage of the electronic circuits remains alternating with each period equivalent to a pure positive sinusoidal function (corresponding to values of input angles ranging from 0 to 180 °). Thus, this supply voltage passes cyclically through an almost zero value. We then see that such a form of voltage becomes unsuitable for supplying electronic devices for known fluorescent tubes.
  • This device essentially consists of a charging circuit comprising an inductor connected in series with a fluorescent tube and a capacitor connected between the terminals of this same tube; two transistors mounted in "push-pull" between the supply terminals and connected at their common point to the load circuit by means of a small transformer whose two secondary allow to take an alternating high frequency feedback signal driving these two transistors.
  • This device further comprises a circuit generating a starting pulse. Then, the regular passage of the supply voltage to an almost zero value no longer makes it possible to ensure by the two secondary transformers a minimum of voltage on the gates of these transistors which stop working.
  • a second type of electronic device comprises an independent oscillator supplying, through an amplification stage, a resonant charging circuit which supplies one or more fluorescent tubes with electrical energy suitable for the starting and keeping in the on condition.
  • a resonant charging circuit which supplies one or more fluorescent tubes with electrical energy suitable for the starting and keeping in the on condition.
  • an amplification stage comprising two power transistors connected in series between the supply terminals and a connected load circuit at their common point, which circuit includes a capacitor connected in parallel with a fluorescent tube and an inductor mounted with this same tube. More particularly in these circuits, the control element of these transistors, bases or gates, is controlled by an independent oscillating circuit alternately saturating one then the other transistor.
  • the object of the present invention is an electronic starting and supply device for fluorescent tubes with preheatable electrodes no longer requiring a capacitor for filtering the rectified mains voltage constituting the only polluting low frequency harmonic factor.
  • a device comprising:
  • each circuit being in the form of a series connection of an inductor, the first electrode of the fluorescent tube, a capacitor and the second electrode of the fluorescent tube ,
  • an amplification stage comprising two transistors mounted in series between the first and second supply lines of the device and connected at their common point to the load circuit, an oscillating circuit connected to a circuit for driving the transistors so that each either alternately in the conduction state, and
  • switching means the control element of which is controlled by a capacitive element, which means disconnects the return by the fourth line to the second line of the direct current from these circuits during a first phase of acquisition of energy by the means accumulation then, once the capacitive element is charged after a predetermined time, restores this return.
  • the permanent supply circuit of the oscillator and frequency converter circuits includes:
  • the circuit ensuring a minimum of voltage at the amplification stage comprises: - a transformer, the primary of which is connected in parallel to the load circuits and the secondary of which is on the one hand connected to the the present invention aims to solve the problem of starting from an unidirectional alternating supply voltage of 100 Hz unfiltered.
  • the starting sequence must be able to comply with a first phase of preheating the electrodes and a second instantaneous and reliable tripping phase of the fluorescent tubes.
  • the energy efficiency of the device should preferably be the best possible of the order of 90%.
  • it would be desirable for such a device also to easily modulate the light intensity delivered by these tubes.
  • a device whose value of the filtering capacitor at the output of the rectifier circuit, if present, is less than or equal to 0.04 ⁇ F and further comprising for direct current supply only the oscillating circuits and frequency converter along a third and fourth line a temporary supply circuit active during the start-up phase and a supply circuit dependent on one of the load circuits, which circuit is active in the permanent operation phase , as well as for supplying the amplification stage, therefore fluorescent tubes, a circuit ensuring a minimum of voltage corresponding to the defusing voltage of the tubes.
  • the temporary supply circuit comprises means for accumulating electrical energy in continuous form charged by the rectifier circuit and applying this second supply line of the device and on the other hand to the anode of a first rectifying diode,
  • the oscillator circuit then comprises two dividing bridges mounted in parallel between the third and fourth supply lines, a first essentially consisting of three identical resistors, a second consisting of two resistors and a capacitor, the voltage at the corresponding intermediate points being compared by two comparators respectively, the first acting on the input R, the second on the input S of a rocker whose output is firstly amplified by an amplifier before application to the primary d 'a transformer constituting the control circuit, on the other hand connected to an inverter which controls a switching element short-circuiting or not the capacitor.
  • the frequency converter circuit can then comprise a switching element connecting or not connecting a capacitor in parallel to the capacitor of the divider bridge and the control element of which is connected through a diode to one of the terminals of another capacitor. which terminal is also connected to the third supply line through a resistor, the other terminal of the capacitor being connected to the fourth line.
  • the oscillating circuit can comprise a first inverter whose output is connected to the input of a second inverter, the output of which is connected by a capacitor and a resistor connected in series to the input of the first inverter, these two inverters being supplied by the third and .
  • the frequency converter circuit can then comprise a first voltage divider bridge essentially consisting of a capacitor and two resistors connected in series between the third and the fourth line and a series connection of a resistor and a diode between d on the one hand the common point between the two resistors of the divider bridge and on the other hand the input of the second inverter.
  • the oscillating circuit may also include a diode interposed between the first and the second inverter and the anode of which is connected to the adjustable resistor while the cathode is connected to the input of the second inverter.
  • the transistors of the amplification stage are of the MOS type and they are protected against overvoltage between their gate and their source. by a zener diode bridge, in overvoltage between the drain and the source thanks to a diode, and in overcurrent by a circuit comprising a transistor short-circuiting through a diode the gate and the source according to a difference of potential appearing across a resistor connected in series with the source, which voltage is transmitted to the base of the transistor by diodes.
  • FIG. 1 is the block diagram of the device
  • FIG. 2 is the detailed plan of the electronic components forming a first embodiment of the device
  • FIG. 3 is a detailed plan of the oscillator 29 associated with the first embodiment of FIG. 2,
  • FIG. 4 is the detailed plan of the electronic components forming a second embodiment of the device
  • - Figure 5 is the detailed plan of the electronic components forming a variant of the second embodiment of the device.
  • the device according to the invention is connected to the low frequency alternating voltage 50 or 60 Hz of the network supplied by the National Office for Electric Power Production.
  • This voltage first passes through an anti-interference circuit 100 before being applied to the input terminals of a rectifier circuit 6.
  • This anti-interference circuit 100 prevents the rise of any residual interference of frequency around 100 kHz from the device to the sector.
  • These parasitic voltages being low, that is to say less than 1%, this circuit 100 is only considered as an option for very specific applications, in particular premises intended to house computer equipment or radars.
  • the rectifier circuit 6 is preferably a bridge of four diodes mounted according to the known method known as Graetz.
  • the voltage present on the output lines c and d is initially a positive unidirectional alternative, the form of the alternations of which corresponds to that present on the mains network but of frequency double, that is to say that these alternations have a duration of l / 100th (1 / I20th) of a second and a sinusoidal form whose input values go from 0 to 180 ° exactly.
  • Line d is hereinafter considered as the return ground line which is however different from the grounding line E explained below.
  • two transistors in series 34 and 43 that is to say that, in the case of MOS transistors, the drain of transistor 34 is connected to line c, the source of this transistor 34 is connected through a protection circuit 142 to the drain of transistor 43 and the source of transistor 43 is connected through a protection circuit 144 to line d.
  • Two capacitors 54 and 67 are connected in series between lines c and d. Between the common point M of the transistors 34 and 43 and the common point Q of the capacitors 54 and 67 is connected a charging circuit making it possible to supply one or more tubes with electrical energy in a suitable form during their start-up then during their operation.
  • this charging circuit is in the form of two parallel branches, each branch being in the form of a series connection of an inductor 51 or 56, of the first electrode of the fluorescent tube 52 or 57, a capacitor 55 or 59 and the second electrode of the fluorescent tube 53 or 58.
  • the inductor 51 or 56 is connected in series with the fluorescent tube, both of which electrodes are respectively connected to each other by a capacitor.
  • the transistors 34 and 43 are provided to be controlled by a circuit 135 so that cyclically one is in the conduction state and the other in the blocking state and then vice versa, this variation of situation taking place at very high frequency of the order of one hundred KHz. This makes it possible to show at the intermediate point M the voltage present between the lines c and d, but chopped at the switching frequency of transistors 34 and 43.
  • the capacitors 54 and 67 then authorize a return of electrical energy passing through the charge circuit to line c or d depending on the conduction state of the transistor 34 or 43 while cutting all residual DC components at this level.
  • a minimum voltage maintenance circuit includes a transformer 100 whose primary is connected between points M and Q. The secondary is firstly connected to the second line d and secondly to the cathode d 'a fast rectifying diode 105. The anode of this diode is connected to the common point of a series connection of a capacitor 110 and a diode 115 located between the first and the second line c and d, the cathode of the second diode 115 being connected to the first line c.
  • This diode 115 has two functions. On the one hand, it prevents the voltage from the AC network from coming to charge the capacitor 11 and consequently producing harmonics low frequency whose purpose of the invention is precisely to eliminate. On the other hand, it does not allow the capacitor 110 to discharge until the voltage on the first line c becomes insufficient. Thus, this supply voltage of the amplification stage cannot fall below the value of the charge voltage of the capacitor 110, thus preventing the fluorescent tubes from deionizing.
  • the output of the rectifier circuit 6 also supplies via lines a and b a temporary supply circuit 110, more precisely during start-up, of stabilized DC voltage on lines e and f.
  • a second circuit 150 is provided which, by taking electrical energy by means of either a winding 66 around the inductance 56, or a secondary of the transformer 100, makes it possible to supply the line e permanently via line k in DC voltage stabilized once the device has started.
  • Lipes e and f supply two circuits, namely an oscillator circuit 130 and a circuit 120 which by action on line g modifies the oscillation frequency of circuit 130.
  • the oscillating signal generated by circuit 130 is transmitted to a control circuit 135 which controls the alternating conduction of transistors 34 and 43 through individual protection circuits 142,144.
  • This control circuit can be constituted, as in the embodiments illustrated in FIGS. 2 and 4, of a transformer 135 comprising a primary and two secondary in phase opposition. We then obtain an alternative conduction of transistors as soon as their gate / source potential exceeds approximately 4 V.
  • this control circuit 135 may comprise an integrated circuit operating according to a technique known as "Botstrap" and receiving on two inputs 10, 12 the signals phase shifted at 180 ° from commands coming from the oscillator .
  • the capacitor 32 finds itself charged through the resistor 38 and the diode 39. This diode 39 prevents any discharge of the capacitor 32 by the resistor 38 during the following cycles.
  • a voltage close to that present on the third line is recorded across the capacitor 32.
  • the "Botstrap” effect then makes it possible to switch this voltage on the control circuit 142 of the transistors 34 in floating potential.
  • the resistance torque 30/37 and diode 31/40 constituting in this embodiment the individual circuits 142/144, allows a progressive charge of the trigger of the power transistors, while their discharge is instantaneous.
  • the frequencies during start-up and in the permanent operating phase of the signal generated by the oscillator 130 and its variator 120 are determined as a function of the values of the inductors 51.56 and of the capacitors 56.59 so that in the start-up phase the load circuits do not enter into resonance and allow the passage of a preheating current through the electrodes then, in the operating phase, the load circuits enter into resonance therefore apply across the terminals of 21
  • the capacitor 24 for breaking continuous components The second end of the winding 30 is connected to the line f. Furthermore, the output of flip-flop 330 is also applied to an inverter 350 controlling, through a resistor 360, the base of a transistor 370. This transistor 370 may or may not short-circuit the capacitor 20.
  • the potential at points y1 and y2 is equal to two thirds and one third of the voltage respectively.
  • the capacitor 20 being discharged, the voltage x2 is almost zero and the voltage xl is intermediate between y2 and yl.
  • the input R of the flip-flop 330 is in the low state while the input S is in the high state.
  • the output of the flip-flop 330 is then in the high state and the output of the inverter 350 controlling the transistor 370 is in the low state, which transistor is then in the non-conduction state.
  • the capacitor 20 being charged little by little, the voltage x2 becomes greater than y2 then the voltage xl also becomes greater than yl.
  • the input C for controlling the electronic component 29 provides access to the point yl of the divider bridge, thus making it possible to impose a different voltage of threshold vx at point yl and vx / 2 at point y2, which in another way modifies the oscillator frequency.
  • This terminal C can take advantage of this terminal C to apply a desired voltage and change at will the frequency of this oscillator, therefore the resulting light intensity of the fluorescent tube.
  • the frequency converter circuit 120 associated with the first embodiment of circuit 130 is now described in relation to FIG. 2.
  • This circuit essentially comprises a capacitor 27 connected on the one hand between the point common to the resistor 25 and to the capacitor 20 and on the other hand to the collector of a transistor 14 whose emitter is connected to line f.
  • the control circuit of the base of this transistor 14 comprises a first series connection of a resistor 23 and a zener diode 26 between the line e and the base of this transistor 14 as well as a parallel connection of a charge capacitor 22 and a discharge resistor 21 between the line f and the common point between the resistor 23 and the zener diode 26.
  • the block 110 first comprises a transistor 15 controlling the return of the line f to the line d via the line b.
  • the drain of this transistor 15 is connected to line f and the source is connected to line b back to line d.
  • a resistor 19 of high ohmic value connected between the lines f and d fixes a drain / source potential necessary for the switching of this MOS transistor 15.
  • the gate of this transistor 15 is controlled by a first circuit generating a time constant Tl and composed two resistors 7.8 connected in series between lines a and d, a resistor 12 and a zener diode 13 connected in series between the common point of resistors 7 and 8 and the gate of transistor 15 and a capacitor 17 and a discharge resistor 18 connected between the common point of the resistor 12 and the zener diode 13 and the line d.
  • Tl time constant
  • resistors 7.8 connected in series between lines a and d
  • resistor 12 and a zener diode 13 connected in series between the common point of resistors 7 and 8 and the gate of transistor 15
  • a capacitor 17 and a discharge resistor 18 connected between the common point of the resistor 12 and the zener diode 13 and the line d.
  • the temporary supply circuit 110 comprises a second circuit composed of a resistor 9 connected between the rectifier circuit 6 and the line e as well as a capacitor 11 and a discharge resistance 10 connected between the line e and the line d (in FIG. 5: capacitor 61 after the direct crossing 3-3 of the integrated circuit).
  • the period T1 during which the transistor 15 disconnects the return from line f to line d, the variator 120 and oscillator 130 circuits cannot make any current draw on line e.
  • the capacitor 11 can then be charged supplied by the rectifier circuit 6 through the resistor 9.
  • This period T1 is determined by the value of the resistors 7,8 and 12 and of the capacitor 17 so that it is long enough to allow a sufficient charge of the capacitor 11.
  • this capacitor 11 must supply the line e therefore the circuits 120 and 130 during a sufficiently long period T2 to allow preheating and tripping of fluorescent tubes.
  • the permanent supply circuit 150 comprises a winding 66 around the inductor 56 one of the branches of which is connected to line d and the other of which is connected to the cathode of a rectifier diode 64 via a resistor 65.
  • a filtering capacitor 63 is connected between the anode of this diode 64 and the line d.
  • a charge capacitor 61 and a zener diode 60 are connected on one side to the line d and on the other side on the one hand to the anode of the diode 64 through a 19
  • the permanent supply circuit in FIG. 5 is substantially identical except for the fact that the starting point is the secondary 66 of a small transformer 100 whose primary is connected between the points M and Q, therefore in parallel with the circuits of charge.
  • the charge capacitor 61 is coincident with that 11 of the temporary supply circuit.
  • This voltage thus filtered and regulated can then be applied via the lines k and e to supply the circuits 120 variator and 130 oscillator.
  • the resistors 62 and 65 are intended to limit the current passing through the diodes 64 and 60. It is easily understood that as long as the device has not started, this supply circuit 150 remains inoperative. But taking into account the presence of the temporary supply circuit 110 ensuring the supply of direct current during the entire period T2 corresponding to the preheating and then to the triggering of the fluorescent tubes, it is understood that at the end of this period T2 the tubes being tripped and the voltage across the inductor 56 having dropped to a lower value, then the circuit 150 can immediately take over and keep the variator 120 and oscillator 130 circuits in operation. 20
  • the variator 120 and oscillator 130 circuits should be as economical as possible.
  • This circuit 130 comprises an integrated electronic component 29 and a first voltage divider bridge consisting of the resistors 28, 25 and of the capacitor 20 connected in series between the lines e and f.
  • This integrated component 29 also includes a voltage divider bridge produced by three identical resistors 300 connected between the terminals v and m themselves connected to the lines e and f respectively. It further comprises two comparators 310 and 320. The positive input of comparator 310 is connected via the terminal Th at the intermediate point xl between the resistors 28 and 25; and the negative input is connected to the intermediate point yl between the first and the second resistor 300.
  • the negative input of the second comparator 320 is connected via the terminal T to the intermediate point x2 between the resistor 25 and the capacitor 20.
  • the input positive of this second comparator 320 is connected to the point y2 intermediate between the second and the third resistance 300.
  • the output of the first comparator 310 acts on the input R and the second on the input S of a rocker 330.
  • the output of this flip-flop 330 is amplified by an operational amplifier 340 to provide a current of about 200 mmA for both high and low states. This output signal is subsequently applied to the primary winding 30 via a in the state of non-conduction.
  • the oscillator circuit 130 then operates exactly as explained above at a high frequency but different from the resonance frequency of the load circuit.
  • the electrodes of the fluorescent tubes can then be preheated.
  • the positive terminal of the capacitor 22 charged by the resistor 23 has reached the threshold voltage of the zener diode 26 plus the base-emitter voltage of the transistor 14, then the latter will enter into conduction and will allow the connection via its collector / emitter junction in parallel with the capacitor 27 with the capacitor 20. Therefore, the frequency delivered by the circuit 130 will drop suddenly so as to then obtain the frequency putting the charging circuits in resonance which immediately ignite the fluorescent tubes.
  • the resistor 21 allows the capacitor 22 to be discharged more quickly than by its internal leaks, which systemically starts the system with a preheating phase.
  • This oscillator circuit 130 comprises a first inverter 80 whose output is connected through a diode 82 to the input of a second inverter 83.
  • the output of the inverter 83 is itself connected to the input of the first inverter 80 by a capacitor 84 and a resistor 86 connected in series.
  • a variable resistor 85 is connected between the output of the inverter 80 and the common point of the capacitor 84 and the resistor 86.
  • the signal present at the output of the inverter 83 is amplified by a parallel connection of four inverters 86 before being applied to the capacitor 24.
  • the two inverters 80 and 83 as well as the four inverters 86 are of the MOS type grouped in a single housing supplied between lines e and f .
  • the operation of the oscillator is as follows.
  • the potential at the output of the inverter 83 corresponds to a low logic level due to the discharge of the capacitor 84.
  • the adjustable resistor 85 being on the one hand connected to the output of the inverter 80 at the high level and on the other hand to the capacitor 84 discharged therefore at the low level , a current corresponding to the charge of this capacitor 84 will flow through this adjustable resistor 85.
  • This inverter 80 switches over and the initial conditions of the circuit are then found. The cycle described above begins again.
  • This circuit 130 thus oscillates on a frequency determined by the value of the adjustable resistor 85 and of the capacitor 84.
  • This oscillation present at the output of the inverter 83 is amplified by the parallel mounting of the other four inverters 86 before being applied to the primaries 30 of the transformer through the capacitor 24.
  • the capacitor 84 can no longer be discharge at a value lower than this minimum imposed voltage. In other words, this capacitor 84 will reach a voltage corresponding to 50% of the supply voltage more quickly, causing the inverter 80 to switch earlier than previously. There is therefore a greater rapidity of the oscillatory phenomenon described above, ie an increase in its frequency.
  • the diode 82 precisely allows the application of such a control voltage on the line g by preventing this voltage from disturbing the output of the inverter 80.
  • This circuit essentially comprises a voltage divider bridge consisting of the capacitor 73 and resistors 71 and 72 connected in series between lines e and f.
  • a resistor of high ohmic value 70 connected in parallel to the capacitor 73 makes it possible to discharge the latter when the device is stopped.
  • This frequency converter circuit 120 also includes a series connection of a resistor 75 and a diode 76 connecting on the one hand the common point between the resistors 71 and 72 and on the other hand, by the line g, the point common between the cathode of the diode 82 and the input of the inverter 83. This series connection makes it possible to apply to the input of the inverter 83 the voltage present at the common point of the resistors 71, 72.
  • This possibility of controlling the frequency of oscillations of the circuit 130 by applying a voltage on the line g can be taken advantage of during the operation of the fluorescent tubes to modulate their luminous flux by slight variations in this frequency of oscillation around the resonance value.
  • This additional circuit includes a series connection of a resistor 91 and a diode 95 connecting the line h to the resistor 75.
  • a capacitor 92, a resistor 93 and a zener diode 94 are connected in parallel between on the one hand the line f and on the other hand the common point between the resistor 91 and the anode of the diode 95.
  • the resistor 91 limits the intensity of the current.
  • the capacitor 92 provides anti-parasite filtering.
  • the zener diode 94 prevents the reported voltage from reaching a value greater than half of the supply voltage on line e so as not to block the oscillator circuit 130.
  • the diode 95 allows this voltage to be injected. control without disturbing the preheating phase.
  • the oscillator and frequency converter circuits are identical to those described with reference to FIG. 4.
  • an additional device is provided for locking the annex modulation circuit of the luminous flux during the preheating of the tubes.
  • This device comprises a transitor 130, the collector and the transmitter of which are respectively connected to the terminals of the capacitor 92, therefore between the anode of the diode 95 and the fourth line f, and the base of which is connected by a series connection of a zener diode 134 and a resistor 133 at the common point between the capacitor 73 and the resistor 74.
  • the zener diode 134 When charging the capacitor 73, the zener diode 134, of value substantially equal to a quarter of the voltage present on the first line, allows the circulation of a current in the base of the transistor 130 via the resistor 133 which has the effect the cancellation by earthing any voltage present on the control input, for the entire duration of preheating. When the latter is finished, the voltage present at the common point of the capacitor 73 and of the zener diode 134 becomes lower than the value of the diode 134 which is blocked as well as the transistor 130 by absence of basic current. The voltage present at the input of the annex modulation circuit becomes active again.
  • the transistors 34 and 43 present in FIGS. 2 and 4 being preferably of the MOS type, it is desirable to provide identical protection circuits 142, 144 for each of the transistors. More particularly in the circuit 142, any overvoltage between the drain and the source of the transistor 34 is protected by the diode 50 and any overvoltage between the gate and the source is protected by a bridge of zener diodes connected in series but opposite between the gate and source.
  • the protection against an overcurrent which may appear between the drain and the source comprises a resistance 39 of low ohmic value connected between the source of the transistor 34 and the intermediate point M.
  • the potential drop caused by the passage of current through this resistance is applied by a diode 38 between the base and the emitter of a transistor 37 whose emitter-collector junction short-circuits through a diode 35 the voltage between the gate and the source of the transistor 34.
  • the current passing through the resistance 39 exceeds 4 A for example, the potential difference appearing between the base and the emitter of the transistor 37 brings it to the saturation state thus immediately lowering the gate voltage therefore putting the transistor 34 in the non-conduction state.
  • the protection circuit 144 for the transistor 43 is strictly identical to the circuit 142 previously described.
  • the device according to the invention succeeded in supplying the load circuit with voltage rectified and hatched sector at a high frequency of the order of a hundred KHz, and this with a very low or nonexistent filter capacitor 16.
  • this filtering capacitor it was possible to eliminate the very cause of the parasites of the order of one hundred or so truly polluting Hz by inducing distortion on the mains voltage.
  • this device allows its installation in large numbers in buildings without calling into question the electrotechnical wiring of the latter. In very specific cases requiring an almost perfect network voltage, it has however been found that this device still induces extremely low interference of the order of a hundred KHz.
  • an optional interference suppression circuit 100 which comprises two windings 2 and 3 mounted in phase opposition respectively on lines a and b, a capacitor 1 mounted upstream of the windings and a capacitor bridge 4 and 5 mounted downstream windings, that is to say close to the rectifying circuit 6.
  • the common point of the capacitors 4 and 5 is then connected to the physical earth.
  • C67 100 nF / 500 V.
  • the components mentioned above the constituent are generally of small size which makes it possible to assemble this device easily on a small plate of the order of 80 mm. long by 10 mm wide and 15 mm high.
  • the material production of such devices can easily be carried out by fully automatic machines ensuring a high level of reliability.
  • this device has increased reliability due to a lower overall operating temperature.

Abstract

Dispositif électronique de démarrage et d'alimentation pour tubes fluorescents comprenant un ou plusieurs circuits de charge résonnant (51/56, 52/57, 55/59, 53/58); un étage d'amplification comprenant deux transistors (34, 43) montés en série; un circuit oscillant (130) pilotant les transistors (34, 43) et un circuit (120) variant la fréquence du circuit oscillant (130). Plus particulièrement, la valeur du condensateur de filtrage (16), lorsque présent, à la sortie du circuit redresseur (6) est inférieure ou égale à 0,04 muF. Le dispositif comprend de plus pour l'alimentation en courant continu du circuit oscillant (130) et du circuit variateur de fréquence (120) le long de lignes (e) et (f) un circuit d'alimentation temporaire (110) actif lors de la phase de démarrage et un circuit d'alimentation (150) dépendant de l'un des circuits de charge, lequel circuit (150) est actif en phase de fonctionnement permanent. Le dispositif comprend également, pour l'alimentation de l'étage d'amplification, un circuit (100, 105, 110, 115) assurant un minimum de tension.Electronic starting and feeding device for fluorescent tubes comprising one or more resonant load circuits (51/56, 52/57, 55/59, 53/58); an amplification stage comprising two transistors (34, 43) connected in series; an oscillating circuit (130) driving the transistors (34, 43) and a circuit (120) varying the frequency of the oscillating circuit (130). More particularly, the value of the filtering capacitor (16), when present, at the output of the rectifier circuit (6) is less than or equal to 0.04 muF. The device further comprises for the direct current supply of the oscillating circuit (130) and of the frequency converter circuit (120) along lines (e) and (f) a temporary power supply circuit (110) active during the starting phase and a power supply circuit (150) depending on one of the load circuits, which circuit (150) is active in the permanent operating phase. The device also comprises, for the power supply of the amplification stage, a circuit (100, 105, 110, 115) ensuring a minimum voltage.

Description

DISPOSITIF ELECTRONIQUE DE DEMARRAGE ET D'ALIMENTATION POUR TUBES FLUORESCENTS A ELECTRODES PRECHAUFFABLES ELECTRONIC STARTING AND SUPPLY DEVICE FOR FLUORESCENT TUBES WITH PREHEATABLE ELECTRODES
La présente invention est relative à un dispositif électronique de démarrage et d'alimentation pour lampes à décharge dans un gaz ou vapeur munies de deux électrodes préchauffables tels que tubes fluorescents.The present invention relates to an electronic starting and supply device for gas or vapor discharge lamps provided with two preheatable electrodes such as fluorescent tubes.
Primitivement, un tube fluorescent était branché en parallèle à un starter et cet ensemble était connecté avec une inductance en série au réseau soit à un courant alternatif de 280 V, 50 ou 60 Hz . Le démarrage étant aléatoire et la consommation en énergie de l'inductance pendant le régime de fonctionnement étant très fort, on s'est orienté par la suite vers des circuits électroniques générant une haute fréquence d'alimentation de manière plus fiable et plus économique. De multiples dispositifs ont ainsi permis d'améliorer sensiblement le rendement global de ces tubes fluorescents.Initially, a fluorescent tube was connected in parallel to a choke and this assembly was connected with an inductor in series to the network either to an alternating current of 280 V, 50 or 60 Hz. The start being random and the energy consumption of the inductor during the operating regime being very high, we then turned to electronic circuits generating a high supply frequency more reliably and more economically. Multiple devices have thus made it possible to significantly improve the overall performance of these fluorescent tubes.
La majorité de ces dispositifs fonctionnent suivant un principe de conversion du courant alternatif basse fréquence du secteur en courant continu, lui-même reconverti en courant alternatif haute fréquence. Un nouveau phénomène parasite apparaît alors du fait que la conversion courant alternatif/courant continu s'effectue normalement grâce à l'utilisation de quatre diodes montées en pont de Graetz suivi d'un filtrage du courant puisé unidirectionnel résultant à l'aide d'un condensateur de valeur obligatoirement élevée. En effet, on peut observer que l'absorption de courant sur le réseau électrique alternatif se présente dans le temps sous la forme d'une suite de pics correspondants au maximum des alternances, soit au moment où la tension secteur dépasse la tension présente aux bornes du condensateur de filtrage. En d'autres termes, ce condensateur de filtrage alimentant les circuits électroniques conserve en permanence la majorité de sa charge ce qui résulte en de longues périodes de non-consommation d'énergie du secteur, suivit de brefs moments de recharge. Ces appels de courant étant usuellement faibles, il n'en résulte alors aucune modification perceptible de la forme de la tension secteur en fonction du temps.The majority of these devices operate according to a principle of conversion of the low frequency alternating current of the sector into direct current, itself reconverted into high frequency alternating current. A new parasitic phenomenon then appears owing to the fact that the conversion alternating current / direct current is carried out normally thanks to the use of four diodes assembled in bridge of Graetz followed by a filtering of the pulsed current unidirectional resulting using a necessarily high value capacitor. Indeed, it can be observed that the absorption of current on the AC electrical network occurs over time in the form of a series of peaks corresponding to the maximum of the alternations, that is to say at the moment when the mains voltage exceeds the voltage present at the terminals filter capacitor. In other words, this filtering capacitor supplying the electronic circuits permanently retains the majority of its charge, which results in long periods of non-consumption of energy from the sector, followed by brief moments of recharging. Since these current draws are usually weak, this does not result in any perceptible change in the shape of the mains voltage as a function of time.
Toutefois, tel n'est plus tout-à-fait le cas lorsque l'on envisage l'installation d'un nombre important de dispositifs dans un bâtiment. Alors, l'intensité totale au niveau de l'ensemble du bâtiment à fournir ponctuellement n'est plus négligeable. Ceci a comme conséquence une déformation notable de la forme de la tension au maximum des alternances, soit l'apparition d'harmoniques de basse fréquence de prédominance impaire. Vis-à-vis du réseau électrique, cet effet est inacceptable. De plus, de récents décrets de normes électriques définissent la valeur maximale des harmoniques autorisées vis-à-vis du courant à 25 % de la valeur efficace de ce courant pour une harmonique de rang 3 soit 150 Hz.However, this is no longer quite the case when considering the installation of a large number of devices in a building. So the total intensity at the level of the entire building to be supplied on time is no longer negligible. This results in a notable deformation of the form of the voltage at the maximum of the half-waves, that is to say the appearance of low frequency harmonics of odd predominance. With regard to the electricity network, this effect is unacceptable. In addition, recent decrees of electrical standards define the maximum value of the harmonics authorized with respect to the current at 25% of the effective value of this current for a harmonic of rank 3, ie 150 Hz.
Pour obvier ce problème, plusieurs solutions sont actuellement utilisées. Une première solution consiste à ajouter sur la ligne secteur une inductance L formant avec le condensateur C de filtrage un filtre passe-bas de seuil égal à 150 Hz. Le calcul usuel de la fréquence de resonnance pour un circuit LC montre rapidement que pour une valeur de condensateur C élevée la valeur de l'inductance L doit l'être aussi. Il apparaît alors une chute de potentiel importante aux bornes de cette inductance soit une perte d'énergie dégagée en chaleur par effet joule ce qui revient au même inconvénient que les circuits de branchement primitifs.To overcome this problem, several solutions are currently used. A first solution consists in adding an inductance L forming on the mains line with the capacitor C of filtering a low-pass filter with a threshold equal to 150 Hz. The usual calculation of the resonance frequency for an LC circuit quickly shows that for a high capacitor value C the value of the inductance L must also be. There then appears a significant drop in potential at the terminals of this inductance, ie a loss of energy released into heat by the Joule effect, which amounts to the same drawback as the primitive branch circuits.
Une seconde alternative consiste en l'utilisation d'un transformateur de rapport 1/1 réalisant une isolation galvanique. Mais là aussi, des pertes d'énergie par effet joule sont constatées.A second alternative consists in using a 1/1 ratio transformer providing galvanic isolation. But there too, energy losses by Joule effect are noted.
Une dernière solution consiste à réaliser un premier découpage haute fréquence des alternances basse fréquence du secteur avant redressement ce qui permet d'obtenir effectivement une isolation galvanique empêchant le retour d'harmonique sur le réseau d'alimentation mais complique le dispositif général et limite le rendement global.A last solution consists in carrying out a first high-frequency cutting of the low-frequency alternations of the sector before rectification, which effectively makes it possible to obtain galvanic isolation preventing the return of harmonics on the supply network but complicates the general device and limits the efficiency. global.
La solution idéale consiste en fait à s'affranchir de ce condensateur de filtrage générateur de parasite, ou du moins de le réduire à une très faible valeur. Ceci a comme conséquence immédiate que la tension d'alimentation des circuits électroniques reste alternative avec chaque période équivalent à une pure fonction sinusoïdale positive (soit correspondante à des valeurs d'angles d'entrée allant de 0 à 180°). Ainsi, cette tension d'alimentation passe cycliquement par une valeur quasiment nulle. On constate alors qu'une telle forme de tension devient impropre à alimenter les dispositifs électroniques pour de tubes fluorescents connus.The ideal solution consists in fact of getting rid of this parasitic filtering generator, or at least of reducing it to a very low value. This has the immediate consequence that the supply voltage of the electronic circuits remains alternating with each period equivalent to a pure positive sinusoidal function (corresponding to values of input angles ranging from 0 to 180 °). Thus, this supply voltage passes cyclically through an almost zero value. We then see that such a form of voltage becomes unsuitable for supplying electronic devices for known fluorescent tubes.
En effet, soit considéré un premier type de dispositif dit "auto-oscillant" tel, par exemple, celui décrit dans l'exposé FR 2 599 208. Ce dispositif est essentiellement constitué d'un circuit de charge comprenant une inductance branchée en série avec un tube fluorescent et un condensateur branché entre les bornes de ce même tube ; deux transistors montés en "push-pull" entre les bornes d'alimentation et reliés en leur point commun au circuit de charge par l'intermédiaire d'un petit transformateur dont les deux secondaires permettent de prélever un signal alternatif haute fréquence de contre-réaction pilotant ces deux transistors. Ce dispositif comprend de plus un circuit générant une impulsion de démarrage. Alors, le passage régulier de la tension d'alimentation à une valeur quasiment nulle ne permet plus d'assurer par les deux secondaires du transformateur un minimum de tension sur les grilles de ces transistors qui cessent de fonctionner. Le cycle complet de démarrage décrit doit alors se répéter à chaque alternance de la tension d'alimentation soit 100 fois par seconde. Quand bien même on laisserait ce cycle de démarrage se répéter avec de réels risques de ratés, il en résulterait aussi l'apparition de sonorités conséquentes de fréquence 100 Hz polluantes.In fact, let us consider a first type of device called "self-oscillating" such, for example, that described in the presentation FR 2 599 208. This device essentially consists of a charging circuit comprising an inductor connected in series with a fluorescent tube and a capacitor connected between the terminals of this same tube; two transistors mounted in "push-pull" between the supply terminals and connected at their common point to the load circuit by means of a small transformer whose two secondary allow to take an alternating high frequency feedback signal driving these two transistors. This device further comprises a circuit generating a starting pulse. Then, the regular passage of the supply voltage to an almost zero value no longer makes it possible to ensure by the two secondary transformers a minimum of voltage on the gates of these transistors which stop working. The complete start-up cycle described must then be repeated at each alternation of the supply voltage, ie 100 times per second. Even if we let this start-up cycle repeat itself with real risks of failures, it would also result in the appearance of consequent tones of polluting frequency 100 Hz.
Un second type de dispositif électronique comprend un oscillateur indépendant alimentant au travers d'un étage d'amplification un circuit de charge résonnant qui fournit à un ou plusieurs tubes fluorescents l'énergie électrique adaptée au démarrage et au maintien en condition allumée. Dans les dispositifs de ce type, décrit par exemple dans les exposés FR 2520575 et EP 0 065 794, on retrouve comme précédemment un étage d'amplification comprenant deux transistors de puissance montés en série entre les bornes d'alimentation et un circuit de charge branché en leur point commun, lequel circuit inclut un condensateur branché en parallèle avec un tube fluorescent et une inductance montée avec ce même tube. Plus particulièrement dans ces circuits, l'élément de commande de ces transistors, bases ou grilles, est contrôlé par un circuit oscillant indépendant saturant alternativement l'un puis l'autre transistor. Tel qu'expliqué dans ces exposés, il est de plus apparu nécessaire de prévoir un second circuit indépendant modifiant la fréquence de l'oscillateur au cours du démarrage du dispositif afin de réaliser une première phase de préchauffage, une seconde phase d'amorçage et une dernière phase de fonctionnement permanent. Là encore, tel que divulgué, il est toujours prévu un convertisseur de la tension alternative secteur en courant continu stabilisé pour l'alimentation globale du dispositif de par la présence d'éléments semi-conducteurs, tels qu'amplificateurs opérationnels ou bascules, présents dans ces circuits variateur de fréquence ou oscillateur, ce circuit de conversion présentant les désavantages mentionnés ci- dessus.A second type of electronic device comprises an independent oscillator supplying, through an amplification stage, a resonant charging circuit which supplies one or more fluorescent tubes with electrical energy suitable for the starting and keeping in the on condition. In devices of this type, described for example in the presentations FR 2520575 and EP 0 065 794, there is, as before, an amplification stage comprising two power transistors connected in series between the supply terminals and a connected load circuit at their common point, which circuit includes a capacitor connected in parallel with a fluorescent tube and an inductor mounted with this same tube. More particularly in these circuits, the control element of these transistors, bases or gates, is controlled by an independent oscillating circuit alternately saturating one then the other transistor. As explained in these presentations, it appeared moreover necessary to provide a second independent circuit modifying the frequency of the oscillator during the starting of the device in order to carry out a first phase of preheating, a second phase of priming and a last phase of permanent operation. Here again, as disclosed, there is always provided a converter of the AC mains voltage into stabilized direct current for the overall supply of the device by the presence of semiconductor elements, such as operational amplifiers or flip-flops, present in these frequency converter or oscillator circuits, this conversion circuit having the disadvantages mentioned above.
Par ailleurs, le fait que la tension d'alimentation puisée unidirectionnelle passe cycliquement par une valeur quasiment nulle provoque en plus le désarmorçage cyclique des tubes fluorescents faute d'alimentation. Pour palier à cet inconvénient responsable d'une usure plus rapide des tubes et d'une consommation globale plus élevée liée à l'énergie nécessaire aux réamorçages répétitifs, il conviendrait d'empêcher que cette tension d'alimentation ne retombe en deçà d'une certaine valeur correspondante au seuil de désamorçage des tubes.Furthermore, the fact that the unidirectional pulsed supply voltage passes cyclically through an almost zero value also causes cyclic disarming of the fluorescent tubes in the absence of supply. To overcome this drawback responsible for faster wear of the tubes and higher overall consumption linked to the energy required for repetitive restrikes, it should be prevented that this supply voltage falls below a certain value corresponding to the threshold of defusing the tubes.
Le but de présente invention est un dispositif électronique de démarrage et d'alimentation pour tubes fluorescents à électrodes préchauffables ne nécessitant plus de condensateur de filtrage de la tension secteur redressée constituant l'unique facteur d'harmonique basse fréquence polluante.The object of the present invention is an electronic starting and supply device for fluorescent tubes with preheatable electrodes no longer requiring a capacitor for filtering the rectified mains voltage constituting the only polluting low frequency harmonic factor.
Plus particulièrement, dans un dispositif comprenant :More particularly, in a device comprising:
- un circuit redresseur (6) du courant alternatif secteur délivrant un courant unidirectionnel puisé sur une première et seconde ligne,- a rectifier circuit (6) of the AC alternating current delivering a unidirectional current drawn from a first and second line,
- un ou plusieurs circuits de charge résonnant montés en parallèle, chaque circuit se présentant sous la forme d'un branchement en série d'une inductance, de la première électrode du tube fluorescent, d'un condensateur et de la seconde électrode du tube fluorescent,- one or more resonant load circuits connected in parallel, each circuit being in the form of a series connection of an inductor, the first electrode of the fluorescent tube, a capacitor and the second electrode of the fluorescent tube ,
- un étage d'amplification comprenant deux transistors montés en série entre les première et seconde lignes d'alimentation du dispositif et reliés en leur point commun au circuit de charge, un circuit oscillant relié à un circuit de pilotage des transistors de telle sorte que chacun soit alternativement en l'état de conduction, etan amplification stage comprising two transistors mounted in series between the first and second supply lines of the device and connected at their common point to the load circuit, an oscillating circuit connected to a circuit for driving the transistors so that each either alternately in the conduction state, and
- un circuit variant la fréquence du circuit oscillant lors du démarrage du dispositif, 8- a circuit varying the frequency of the oscillating circuit when the device is started, 8
énergie le long de la troisième ligne au circuit variateur de fréquence et au circuit oscillant ; et des moyens de commutation dont l'élément de commande est contrôlé par un élément capacitif, lequel moyen déconnecte le retour par la quatrième ligne à la seconde ligne du courant continu de ces circuits pendant une première phase d'acquisition d'énergie par les moyens d'accumulation puis, une fois l'élément capacitif chargé après un temps prédéterminé, rétablit ce retour.energy along the third line to the frequency converter circuit and the oscillating circuit; and switching means, the control element of which is controlled by a capacitive element, which means disconnects the return by the fourth line to the second line of the direct current from these circuits during a first phase of acquisition of energy by the means accumulation then, once the capacitive element is charged after a predetermined time, restores this return.
Utilement, le circuit d'alimentation permanent des circuits oscillateur et variateur de fréquence comprend :Usefully, the permanent supply circuit of the oscillator and frequency converter circuits includes:
- soit un enroulement autour de l'inductance de l'un des circuits de charge soit un secondaire d'un transformateur dont le primaire est branché en parallèle aux circuits de charge, bobinage dont l'une des extrémités est reliée à la seconde ligne d'alimentation du dispositif et l'autre extrémité est reliée à l'anode d'une diode de redressement,- either a winding around the inductance of one of the load circuits or a secondary of a transformer whose primary is connected in parallel to the load circuits, winding one of whose ends is connected to the second line d power supply to the device and the other end is connected to the anode of a rectifying diode,
- un condensateur de filtrage, un condensateur de charge et une diode zener de régulation de tension, ceux-ci étant branchés en parallèle d'un côté à la seconde ligne et de l'autre côté d'une part à la cathode de la diode de redressement et d'autre part à la troisième ligne d'alimentation des circuits variateur et oscillateur.- a filter capacitor, a charge capacitor and a voltage regulation zener diode, these being connected in parallel on one side to the second line and on the other side on the one hand to the cathode of the diode rectification and on the other hand to the third supply line of the variator and oscillator circuits.
De préférence alors, le circuit assurant un minimum de tension à l'étage d'amplification comprend : - un transformateur dont le primaire est branché en parallèle aux circuits de charge et dont un secondaire est d'une part branché à la la présente invention tend à résoudre le problème du démarrage à partir d'une tension d'alimentation alternative unidirectionnelle de 100 Hz non filtrée.Preferably then, the circuit ensuring a minimum of voltage at the amplification stage comprises: - a transformer, the primary of which is connected in parallel to the load circuits and the secondary of which is on the one hand connected to the the present invention aims to solve the problem of starting from an unidirectional alternating supply voltage of 100 Hz unfiltered.
Bien évidemment, la séquence de démarrage doit pouvoir respecter une première phase de préchauffage des électrodes et une seconde phase de déclenchement instantané et fiable des tubes fluorescents. Le rendement énergétique du dispositif doit de préférence être la meilleure possible de l'ordre de 90 %. Enfin, il serait souhaitable qu'un tel dispositif permette aussi de moduler aisément l'intensité lumineuse délivrée par ces tubes.Obviously, the starting sequence must be able to comply with a first phase of preheating the electrodes and a second instantaneous and reliable tripping phase of the fluorescent tubes. The energy efficiency of the device should preferably be the best possible of the order of 90%. Finally, it would be desirable for such a device also to easily modulate the light intensity delivered by these tubes.
Ces buts sont réalisés grâce à un dispositif dont la valeur du condensateur de filtrage à la sortie du circuit redresseur, si présent, est inférieur ou égal à 0,04 μF et comprenant de plus pour l'alimentation en courant continu des seuls circuits oscillant et variateur de fréquence le long d'une troisième et quatrième ligne un circuit d'alimentation temporaire actif lors de la phase de démarrage et un circuit d'alimentation dépendant de l'un des circuits de charge, lequel circuit est actif en phase de fonctionnement permanent, ainsi que pour, l'alimentation de l'étage d'amplification donc des tubes fluorescents, un circuit assurant un minimum de tension correspondant à la tension de désamorçage des tubes.These goals are achieved by a device whose value of the filtering capacitor at the output of the rectifier circuit, if present, is less than or equal to 0.04 μF and further comprising for direct current supply only the oscillating circuits and frequency converter along a third and fourth line a temporary supply circuit active during the start-up phase and a supply circuit dependent on one of the load circuits, which circuit is active in the permanent operation phase , as well as for supplying the amplification stage, therefore fluorescent tubes, a circuit ensuring a minimum of voltage corresponding to the defusing voltage of the tubes.
Avantageusement, le circuit d'alimentation temporaire comprend des moyens d'accumulation de l'énergie électrique sous forme continue chargés par le circuit redresseur et appliquant cette seconde ligne d'alimentation du dispositif et d'autre part à l'anode d'une première diode de redressement,Advantageously, the temporary supply circuit comprises means for accumulating electrical energy in continuous form charged by the rectifier circuit and applying this second supply line of the device and on the other hand to the anode of a first rectifying diode,
- un condensateur branché entre la seconde ligne d'alimentation et la cathode de la première diode, - une seconde diode d'isolation dont l'anode est branchée au point commun de la première diode et du condensateur et dont la cathode est branchée à la première ligne d'alimentation.- a capacitor connected between the second supply line and the cathode of the first diode, - a second isolation diode the anode of which is connected to the common point of the first diode and of the capacitor and the cathode of which is connected to the first supply line.
Selon un premier mode de réalisation préférentiel, le circuit oscillateur comprend alors deux ponts diviseurs montés en parallèle entre les troisièmes et quatrièmes lignes d'alimentation, un premier essentiellement constitué de trois résistances identiques, un second constitué de deux résistances et d'un condensateur, la tension aux points intermédiaires correspondants étant comparée par deux comparateurs respectivement, le premier agissant sur l'entrée R, le second sur l'entrée S d'une bascule dont la sortie est d'une part amplifiée par un amplificateur avant application au primaire d'un transformateur constituant le circuit de pilotage, d'autre part branchée à un inverseur qui pilote un élément de commutation court-circuitant ou non le condensateur. Le circuit variateur de fréquence peut alors comprendre un élément de commutation reliant ou non un condensateur en parallèle au condensateur du pont diviseur et dont l'élément de contrôle est relié au travers d'une diode à l'une des bornes d'un autre condensateur laquelle borne est aussi reliée à la troisième ligne d'alimentation au travers d'une résistance, l'autre borne du condensateur étant reliée à la quatrième ligne. Selon un second mode de réalisation préférentiel, le circuit oscillant peut comprendre un premier inverseur dont la sortie est reliée à l'entrée d'un second inverseur, la sortie duquel est reliée par un condensateur et une résistance branchée en série à l'entrée du premier inverseur, ces deux inverseurs étant alimentés par la troisième et .la quatrième ligne ; une résistance ajustable branchée entre la sortie du premier inverseur et le point commun du condensateur et de la résistance ; ainsi qu'un montage en parallèle d'au moins deux inverseurs amplifiant le signal issu de la sortie du second inverseur avant application au circuit de pilotage. Le circuit variateur de fréquence peut comprendre alors un premier pont diviseur de tension essentiellement constitué d'un condensateur et de deux résistances montées en série entre la troisième et la quatrième ligne et un branchement en série d'une résistance et d'une diode entre d'une part le point commun entre les deux résistances du pont diviseur et d'autre part l'entrée du second inverseur. Le circuit oscillant peut comprendre également une diode intercalée entre le premier et le second inverseur et dont l'anode est reliée à la résistance ajustable alors que la cathode est reliée à l'entrée du second inverseur.According to a first preferred embodiment, the oscillator circuit then comprises two dividing bridges mounted in parallel between the third and fourth supply lines, a first essentially consisting of three identical resistors, a second consisting of two resistors and a capacitor, the voltage at the corresponding intermediate points being compared by two comparators respectively, the first acting on the input R, the second on the input S of a rocker whose output is firstly amplified by an amplifier before application to the primary d 'a transformer constituting the control circuit, on the other hand connected to an inverter which controls a switching element short-circuiting or not the capacitor. The frequency converter circuit can then comprise a switching element connecting or not connecting a capacitor in parallel to the capacitor of the divider bridge and the control element of which is connected through a diode to one of the terminals of another capacitor. which terminal is also connected to the third supply line through a resistor, the other terminal of the capacitor being connected to the fourth line. According to a second preferred embodiment, the oscillating circuit can comprise a first inverter whose output is connected to the input of a second inverter, the output of which is connected by a capacitor and a resistor connected in series to the input of the first inverter, these two inverters being supplied by the third and . the fourth line; an adjustable resistor connected between the output of the first inverter and the common point of the capacitor and the resistor; as well as a parallel connection of at least two inverters amplifying the signal from the output of the second inverter before application to the control circuit. The frequency converter circuit can then comprise a first voltage divider bridge essentially consisting of a capacitor and two resistors connected in series between the third and the fourth line and a series connection of a resistor and a diode between d on the one hand the common point between the two resistors of the divider bridge and on the other hand the input of the second inverter. The oscillating circuit may also include a diode interposed between the first and the second inverter and the anode of which is connected to the adjustable resistor while the cathode is connected to the input of the second inverter.
Il peut être utile d'inclure un circuit de filtrage de fréquences comprises entre 50 et 150 KHz en amont du circuit redresseur comprenant deux bobinages respectivement montés en série sur les lignes d'alimentation secteur et en opposition de phases l'un par rapport à l'autre, un premier condensateur monté en amont des bobinages entre les bornes secteurs et un pont de condensateurs monté en aval des bobinages entre les bornes secteurs et ayant leur point commun relié à la terre.It may be useful to include a filtering circuit of frequencies between 50 and 150 KHz upstream of the rectifier circuit comprising two windings respectively connected in series on the mains supply lines and in phase opposition one with respect to the other, a first capacitor mounted upstream of the windings between the sector terminals and a bridge of capacitors mounted downstream of the windings between the sector terminals and having their common point connected to earth.
Suivant des dispositions préférentielles lorsque le circuit de pilotage est essentiellement constitué d'un transformateur avec deux secondaires montés en opposition de phase, les transistors de l'étage d'amplification sont du type MOS et ils sont protégés en surtension entre leur grille et leur source par un pont de diode zener, en surtension entre le drain et la source grâce à une diode, et en surintensité par un circuit comprenant un transistor court-circuitant au travers d'une diode la grille et la source en fonction d'une différence de potentiel apparaissant aux bornes d'une résistance montés en série à la source, laquelle tension est transmise à la base du transistor par des diodes.According to preferential arrangements when the control circuit essentially consists of a transformer with two secondaries mounted in phase opposition, the transistors of the amplification stage are of the MOS type and they are protected against overvoltage between their gate and their source. by a zener diode bridge, in overvoltage between the drain and the source thanks to a diode, and in overcurrent by a circuit comprising a transistor short-circuiting through a diode the gate and the source according to a difference of potential appearing across a resistor connected in series with the source, which voltage is transmitted to the base of the transistor by diodes.
L'invention sera mieux comprise à l'étude d'un mode de réalisation pris à titre d'exemple nullement limitatif et décrit par les figures suivantes :The invention will be better understood from the study of an embodiment taken by way of nonlimiting example and described by the following figures:
- la figure 1 est le diagramme de principe du dispositif,FIG. 1 is the block diagram of the device,
- la figure 2 est le plan détaillé des composants électroniques formant un premier mode de réalisation du dispositif,FIG. 2 is the detailed plan of the electronic components forming a first embodiment of the device,
- la figure 3 est un plan détaillé de l'oscillateur 29 associé au premier mode de réalisation de la figure 2,FIG. 3 is a detailed plan of the oscillator 29 associated with the first embodiment of FIG. 2,
- la figure 4 est le plan détaillé des composants électroniques formant un second mode de réalisation du dispositif,et - la figure 5 est le plan détaillé des composants électroniques formant une variante du second mode de réalisation du dispositif.FIG. 4 is the detailed plan of the electronic components forming a second embodiment of the device, and - Figure 5 is the detailed plan of the electronic components forming a variant of the second embodiment of the device.
En référence à la figure 1, le dispositif selon l'invention est branché à la tension alternative basse fréquence 50 ou 60 Hz du réseau alimenté par l'Office National de Production d'Energie Electrique. Cette tension passe d'abord par un circuit antiparasitage 100 avant d'être appliquée aux bornes d'entrée d'un circuit redresseur 6. Ce circuit antiparasitage 100 empêche la remontée de tout parasite résiduel de fréquence avoisinant 100 Khz du dispositif vers le secteur. Ces tensions parasites étant faibles, c'est-à-dire inférieures à 1% , ce circuit 100 n'est considéré que comme une option pour des applications très particulières, notamment des locaux prévus pour abriter des matériels informatiques ou radars. Le circuit redresseur 6 est de préférence un pont de quatre diodes monté selon la méthode connue dite de Graetz. Le condensateur 16 branché à la sortie de ce circuit redresseur 6 étant très faible voire inexistant, la tension présente sur les lignes de sortie c et d est initalement alternative unidirectionnelle positive dont la forme des alternances correspond à celle présente sur le réseau secteur mais de fréquence double, c'est-à-dire que ces alternances ont une durée d'l/100ème (1/I20ème) de seconde et une forme sinusoïdale dont les valeurs d'entrée vont de 0 à 180° exactement. La ligne d est dans la suite de l'exposé considérée comme la ligne de masse de retour qui est toutefois différente de la ligne de mise à la terre E expliquée par la suite. Entre ces deux lignes d'alimentation c et d sont branchés deux transistors en série 34 et 43, c'est-à-dire que, dans le cas de transistors MOS, le drain du transistor 34 est relié à la ligne c, la source de ce transistor 34 est reliée au travers d'un circuit de protection 142 au drain du transistor 43 et la source du transistor 43 est reliée au travers d'un circuit de protection 144 à la ligne d. Deux condensateurs 54 et 67 sont branchés en série entre les lignes c et d. Entre le point commun M des transistors 34 et 43 et le point commun Q des condensateurs 54 et 67 est branché un circuit de charge permettant d'alimenter un ou plusieurs tubes en énergie électrique sous une forme adaptée lors de leur démarrage puis de leur fonctionnement. Dans le cas de deux tubes fluorescents, ce circuit de charge se présente sous la forme de deux branches parallèles, chaque branche se présentant sous la forme d'un branchement en série d'une inductance 51 ou 56, de la première électrodre du tube fluorescent 52 ou 57, d'un condensateur 55 ou 59 et de la seconde électrode du tube fluorescent 53 ou 58. En d'autres termes, sur chaque branche, l'inductance 51 ou 56 est branchée en série avec le tube fluorescent dont les deux électrodes sont respectivement reliée entre elles par un condensateur.With reference to FIG. 1, the device according to the invention is connected to the low frequency alternating voltage 50 or 60 Hz of the network supplied by the National Office for Electric Power Production. This voltage first passes through an anti-interference circuit 100 before being applied to the input terminals of a rectifier circuit 6. This anti-interference circuit 100 prevents the rise of any residual interference of frequency around 100 kHz from the device to the sector. These parasitic voltages being low, that is to say less than 1%, this circuit 100 is only considered as an option for very specific applications, in particular premises intended to house computer equipment or radars. The rectifier circuit 6 is preferably a bridge of four diodes mounted according to the known method known as Graetz. Since the capacitor 16 connected to the output of this rectifier circuit 6 is very low or even non-existent, the voltage present on the output lines c and d is initially a positive unidirectional alternative, the form of the alternations of which corresponds to that present on the mains network but of frequency double, that is to say that these alternations have a duration of l / 100th (1 / I20th) of a second and a sinusoidal form whose input values go from 0 to 180 ° exactly. Line d is hereinafter considered as the return ground line which is however different from the grounding line E explained below. Between these two supply lines c and d are connected two transistors in series 34 and 43, that is to say that, in the case of MOS transistors, the drain of transistor 34 is connected to line c, the source of this transistor 34 is connected through a protection circuit 142 to the drain of transistor 43 and the source of transistor 43 is connected through a protection circuit 144 to line d. Two capacitors 54 and 67 are connected in series between lines c and d. Between the common point M of the transistors 34 and 43 and the common point Q of the capacitors 54 and 67 is connected a charging circuit making it possible to supply one or more tubes with electrical energy in a suitable form during their start-up then during their operation. In the case of two fluorescent tubes, this charging circuit is in the form of two parallel branches, each branch being in the form of a series connection of an inductor 51 or 56, of the first electrode of the fluorescent tube 52 or 57, a capacitor 55 or 59 and the second electrode of the fluorescent tube 53 or 58. In other words, on each branch, the inductor 51 or 56 is connected in series with the fluorescent tube, both of which electrodes are respectively connected to each other by a capacitor.
Les transistors 34 et 43 sont prévus d'être pilotés par un circuit 135 de telle sorte que cycliquement l'un soit en l'état de conduction et l'autre en l'état de blocage puis inversement, cette variation de situation s'effectuant à très haute fréquence de l'ordre de la centaine de KHz. Ceci permet de faire apparaître au point intermédiaire M la tension présente entre les lignes c et d, mais hachée à la fréquence de basculement des transistors 34 et 43. Les condensateurs 54 et 67 autorisent alors un retour de l'énergie électrique traversant le circuit de charge vers la ligne c ou d selon l'état de conduction du transistor 34 ou 43 tout en coupant toutes composantes continues résiduelles à ce niveau.The transistors 34 and 43 are provided to be controlled by a circuit 135 so that cyclically one is in the conduction state and the other in the blocking state and then vice versa, this variation of situation taking place at very high frequency of the order of one hundred KHz. This makes it possible to show at the intermediate point M the voltage present between the lines c and d, but chopped at the switching frequency of transistors 34 and 43. The capacitors 54 and 67 then authorize a return of electrical energy passing through the charge circuit to line c or d depending on the conduction state of the transistor 34 or 43 while cutting all residual DC components at this level.
Comme mentionné précédemment, la tension présente sur les lignes de sortie c et d est initalement alternative unidirectionnelle positive et passe donc cycliquement par une valeur quasi nulle ce qui désamorce les tubes de manière préjudiciable. Pour obvier ce problème, un circuit de maintien de tension minimum comprend un transformateur 100 dont le primaire est relié entre les points M et Q. Le secondaire est d'une part branché à la seconde ligne d et d'autre part à la cathode d'une diode de redressement rapide 105. L'anode de cette diode est branchée au point commun d'un montage en série d'un condensateur 110 et d'une diode 115 située entre la première et la seconde ligne c et d, la cathode de la seconde diode 115 étant reliée à la première ligne c.As mentioned previously, the voltage present on the output lines c and d is initially a positive unidirectional alternative and therefore passes cyclically through an almost zero value, which defuses the tubes in a detrimental manner. To overcome this problem, a minimum voltage maintenance circuit includes a transformer 100 whose primary is connected between points M and Q. The secondary is firstly connected to the second line d and secondly to the cathode d 'a fast rectifying diode 105. The anode of this diode is connected to the common point of a series connection of a capacitor 110 and a diode 115 located between the first and the second line c and d, the cathode of the second diode 115 being connected to the first line c.
Lors du fonctionnement, une haute tension est induite dans le secondaire, le rapport du transformateur 100 étant sensiblement égal à l'unité. Cette tension secondaire est redressée par la diode 36 puis filtrée par le condensateur 11 avant d'être réinjectée à travers la diode 41 dans la première ligne d'alimentation c. Cette diode 115 a deux fonctions. D'une part, elle empêche la tension issue du réseau alternatif de venir charger le condensateur 11 et produire par voie de conséquence des harmoniques basse fréquence dont le but de l'invention est justement d'éliminer. D'autre part, elle ne laisse le condensateur 110 se décharger que lorsque la tension sur la première ligne c devient insuffisante. Ainsi, cette tension d'alimentation de l'étage d'amplification ne peut redescendre en dessous de la valeur de la tension de charge du condensateur 110, évitant ainsi que les tubes fluorescents ne se déionisent.During operation, a high voltage is induced in the secondary, the ratio of the transformer 100 being substantially equal to unity. This secondary voltage is rectified by the diode 36 then filtered by the capacitor 11 before being reinjected through the diode 41 in the first supply line c. This diode 115 has two functions. On the one hand, it prevents the voltage from the AC network from coming to charge the capacitor 11 and consequently producing harmonics low frequency whose purpose of the invention is precisely to eliminate. On the other hand, it does not allow the capacitor 110 to discharge until the voltage on the first line c becomes insufficient. Thus, this supply voltage of the amplification stage cannot fall below the value of the charge voltage of the capacitor 110, thus preventing the fluorescent tubes from deionizing.
La sortie du circuit redresseur 6 alimente par ailleurs par les lignes a et b un circuit 110 d'alimentation temporaire, plus précisément lors du démarrage, de tension continue stabilisée sur les lignes e et f. Un second circuit 150 est prévu qui, en prélevant de l'énergie électrique au moyen soit d'un enroulement 66 autour de l'inductance 56, soit d'un secondaire du transformateur 100, permet d'alimenter de manière permanente la ligne e via la ligne k en tension continue stabilisée une fois le dispositif démarré.The output of the rectifier circuit 6 also supplies via lines a and b a temporary supply circuit 110, more precisely during start-up, of stabilized DC voltage on lines e and f. A second circuit 150 is provided which, by taking electrical energy by means of either a winding 66 around the inductance 56, or a secondary of the transformer 100, makes it possible to supply the line e permanently via line k in DC voltage stabilized once the device has started.
Les lipes e et f alimentent deux circuits à savoir un circuit 130 oscillateur et un circuit 120 qui par action sur la ligne g modifie la fréquence d'oscillation du circuit 130. Le signal oscillant généré par le circuit 130 est transmis à un circuit de pilotage 135 qui contrôle la conduction alternée des transistors 34 et 43 au travers de circuits de protection individuels 142,144.Lipes e and f supply two circuits, namely an oscillator circuit 130 and a circuit 120 which by action on line g modifies the oscillation frequency of circuit 130. The oscillating signal generated by circuit 130 is transmitted to a control circuit 135 which controls the alternating conduction of transistors 34 and 43 through individual protection circuits 142,144.
Ce circuit de pilotage peut être constitué, comme dans les réalisations illustrées sur les figures 2 et 4, d'un transformateur 135 comprenant un primaire et deux secondaires en opposition de phase. On obtient alors une conduction alternative des transistors et ce dès que leur potentiel grille/source dépasse environ 4 V.This control circuit can be constituted, as in the embodiments illustrated in FIGS. 2 and 4, of a transformer 135 comprising a primary and two secondary in phase opposition. We then obtain an alternative conduction of transistors as soon as their gate / source potential exceeds approximately 4 V.
En alternative et comme illustré sur la figure 5, ce circuit de pilotage 135 peut comprendre un circuit intégré fonctionnant selon une technique dite de "Botstrap" et recevant sur deux entrées 10, 12 les signaux déphasés à 180° de commandes issus de l'oscillateur. A chaque conduction du transistor 43, le condensateur 32 se retrouve chargé à travers la résistance 38 et la diode 39. Cette diode 39 évite toute décharge du condensateur 32 par la résistance 38 lors des cycles suivants. Une fois le transistor 43 bloqué, une tension proche de celle présente sur la troisième ligne est enregistrée aux bornes du condensateur 32. L'effet "Botstrap" permet alors de basculer cette tension sur le circuit de commande 142 du transistors 34 en potentiel flottant. Le couple de résistance 30/37 et diode 31/40, constituant dans cette réalisation les circuits individuels 142/144, permet une charge progressive de la gâchette des transistors de puissance, alors que leur décharge est instantanée.As an alternative and as illustrated in FIG. 5, this control circuit 135 may comprise an integrated circuit operating according to a technique known as "Botstrap" and receiving on two inputs 10, 12 the signals phase shifted at 180 ° from commands coming from the oscillator . At each conduction of the transistor 43, the capacitor 32 finds itself charged through the resistor 38 and the diode 39. This diode 39 prevents any discharge of the capacitor 32 by the resistor 38 during the following cycles. Once the transistor 43 is blocked, a voltage close to that present on the third line is recorded across the capacitor 32. The "Botstrap" effect then makes it possible to switch this voltage on the control circuit 142 of the transistors 34 in floating potential. The resistance torque 30/37 and diode 31/40, constituting in this embodiment the individual circuits 142/144, allows a progressive charge of the trigger of the power transistors, while their discharge is instantaneous.
Les fréquences lors du démarrage et en phase de fonctionnement permanent du signal généré par l'oscillateur 130 et son variateur 120 sont déterminées en fonction des valeurs des inductances 51,56 et des condensateurs 56,59 de telle sorte qu'en phase de démarrage les circuits de charge n'entrent pas en resonnance et permettent le passage d'un courant de préchauffage au travers des électrodes puis, en phase de fonctionnement les circuits de charge entrent en resonnance donc appliquent aux bornes des 21The frequencies during start-up and in the permanent operating phase of the signal generated by the oscillator 130 and its variator 120 are determined as a function of the values of the inductors 51.56 and of the capacitors 56.59 so that in the start-up phase the load circuits do not enter into resonance and allow the passage of a preheating current through the electrodes then, in the operating phase, the load circuits enter into resonance therefore apply across the terminals of 21
condensateur 24 de coupure de composantes continues. La seconde extrémité de l'enroulement 30 est reliée à la ligne f. Par ailleurs, la sortie de la bascule 330 est aussi appliquée à un inverseur 350 commandant au travers d'une résistance 360 la base d'un transistor 370. Ce transistor 370 court-circuite ou non le condensateur 20.capacitor 24 for breaking continuous components. The second end of the winding 30 is connected to the line f. Furthermore, the output of flip-flop 330 is also applied to an inverter 350 controlling, through a resistor 360, the base of a transistor 370. This transistor 370 may or may not short-circuit the capacitor 20.
A la mise sous tension du circuit 130, le potentiel aux points yl et y2 est égal au deux tiers et au tiers de la tension respectivement. Le condensateur 20 étant déchargé, la tension x2 est quasiment nulle et la tension xl est intermédiaire entre y2 et yl. Alors, compte-tenu des branchements des comparateurs, l'entrée R de la bascule 330 est à l'état bas alors que l'entrée S est à l'état haut. La sortie de la bascule 330 est alors à l'état haut et la sortie de l'inverseur 350 commandant le transistor 370 est à l'état bas, lequel transistor est alors en état de non conduction. Le condensateur 20 se chargeant petit-à-petit, la tension x2 devient supérieure à y2 puis la tension xl devient elle-aussi supérieure à yl. Alors l'entrée R bascule à l'état haut alors que l'entrée S est elle-même déjà passée à l'état bas. Ceci a comme conséquence le changement à l'état bas de la sortie de la bascule 330 donc à l'état haut de la sortie de l'inverseur 350 soit la saturation du transistor 370 qui court-circuite maintenant le condensateur 20. Ce condensateur 20 se déchargeant, les tensions en xl et x2 s'abaissent jusqu'à des valeurs inférieures aux tensions présentes en yl et y2 provoquant un nouveau changement d'état de la bascule 330 donc l'ouverture à nouveau du transistor 370. On comprend ainsi que ce circuit se met automatiquement en oscillation avec une fréquence 22When the circuit 130 is energized, the potential at points y1 and y2 is equal to two thirds and one third of the voltage respectively. The capacitor 20 being discharged, the voltage x2 is almost zero and the voltage xl is intermediate between y2 and yl. Then, taking into account the connections of the comparators, the input R of the flip-flop 330 is in the low state while the input S is in the high state. The output of the flip-flop 330 is then in the high state and the output of the inverter 350 controlling the transistor 370 is in the low state, which transistor is then in the non-conduction state. The capacitor 20 being charged little by little, the voltage x2 becomes greater than y2 then the voltage xl also becomes greater than yl. Then the input R switches to the high state while the input S has already gone to the low state. This results in the change in the low state of the output of the flip-flop 330 therefore in the high state of the output of the inverter 350, ie the saturation of the transistor 370 which now short-circuits the capacitor 20. This capacitor 20 discharging, the voltages in xl and x2 drop to values lower than the voltages present in yl and y2 causing a new change of state of the flip-flop 330 therefore the opening again of the transistor 370. It is thus understood that this circuit automatically starts to oscillate with a frequency 22
dépendante essentiellement de la vitesse de charge et de décharge du condensateur 20 donc de sa valeur propre.essentially dependent on the charge and discharge speed of the capacitor 20 therefore on its eigenvalue.
L'entrée C de contrôle du composant électronique 29 permet d'accéder au point yl du pont diviseur permettant alors d'imposer une tension différente de seuil vx au point yl et vx/2 au point y2 ce qui modifie d'une autre manière la fréquence de l'oscillateur. On peut mettre à profit cette borne C pour y appliquer une tension voulue et modifier à volonté la fréquence de cet oscillateur, donc l'intensité lumineuse résultante du tube fluorescent.The input C for controlling the electronic component 29 provides access to the point yl of the divider bridge, thus making it possible to impose a different voltage of threshold vx at point yl and vx / 2 at point y2, which in another way modifies the oscillator frequency. We can take advantage of this terminal C to apply a desired voltage and change at will the frequency of this oscillator, therefore the resulting light intensity of the fluorescent tube.
Le circuit variateur de fréquence 120 associé au premier mode de réalisation du circuit 130 est maintenant décrit en relation avec la figure 2. Ce circuit comprend essentiellement un condensateur 27 branché d'une part entre le point commun à la résistance 25 et au condensateur 20 et d'autre part au collecteur d'un transistor 14 dont l'émetteur est relié à la ligne f. Le circuit de contrôle de la base de ce transistor 14 comprend un premier branchement en série d'une résistance 23 et d'une diode zener 26 entre la ligne e et la base de ce transistor 14 ainsi qu'un branchement en parallèle d'un condensateur de charge 22 et d'une résistance de décharge 21 entre la ligne f et le point commun situé entre la résistance 23 et la diode zener 26.The frequency converter circuit 120 associated with the first embodiment of circuit 130 is now described in relation to FIG. 2. This circuit essentially comprises a capacitor 27 connected on the one hand between the point common to the resistor 25 and to the capacitor 20 and on the other hand to the collector of a transistor 14 whose emitter is connected to line f. The control circuit of the base of this transistor 14 comprises a first series connection of a resistor 23 and a zener diode 26 between the line e and the base of this transistor 14 as well as a parallel connection of a charge capacitor 22 and a discharge resistor 21 between the line f and the common point between the resistor 23 and the zener diode 26.
Lors de l'application de la tension continue filtrée sur la ligne e, le condensateur 22 étant encore déchargé, la tension à l'entrée de la diode zener 26 est faible et le transistor 14 reste 17During the application of the filtered DC voltage on line e, the capacitor 22 being still discharged, the voltage at the input of the zener diode 26 is low and the transistor 14 remains 17
condensateurs et des électrodes une surtension de facteur Q de l'ordre de 4 qui permet le déclenchement et le maintien allumé des tubes fluorescents.capacitors and electrodes a Q factor overvoltage of the order of 4 which allows the fluorescent tubes to be triggered and kept on.
Le détail des circuits cités précédemment va maintenant être décrit en relation avec les figures 2, 3, 4 et 5.The details of the circuits mentioned above will now be described in relation to FIGS. 2, 3, 4 and 5.
De manière identique sur les figures 24 et 5, le bloc 110 comprend d'abord un transistor 15 contrôlant le retour de la ligne f vers la ligne d via la ligne b. Le drain de ce transistor 15 est relié à la ligne f et la source est reliée à la ligne b de retour vers la ligne d. Une résistance 19 de forte valeur ohmique branchée entre les lignes f et d fixe un potentiel drain/source nécessaire à la commutation de ce transistor MOS 15. La grille de ce transistor 15 est contrôlée par un premier circuit générant une constante de temps Tl et composé de deux résistances 7,8 branchées en série entre les lignes a et d, d'une résistance 12 et d'une diode zener 13 branchée en série entre le point commun des résistances 7 et 8 et la grille du transistor 15 et d'un condensateur 17 et d'une résistance 18 de décharge branchés entre le point commun de la résistance 12 et de la diode zener 13 et la ligne d. Comme on peut aisément le comprendre, la portion de tension présente entre les résistances 7 et 8 permet de charger lentement le condensateur 17. Une fois que la tension présente aux bornes de ce condensateur dépasse la tension d'ouverture de la diode zener 13 plus 2 V, soit à la fin d'un délai Tl, cette tension est appliquée à la grille du transistor 15 qui, saturant, relie seulement alors la ligne f à la ligne b puis d. 18In the same way in FIGS. 24 and 5, the block 110 first comprises a transistor 15 controlling the return of the line f to the line d via the line b. The drain of this transistor 15 is connected to line f and the source is connected to line b back to line d. A resistor 19 of high ohmic value connected between the lines f and d fixes a drain / source potential necessary for the switching of this MOS transistor 15. The gate of this transistor 15 is controlled by a first circuit generating a time constant Tl and composed two resistors 7.8 connected in series between lines a and d, a resistor 12 and a zener diode 13 connected in series between the common point of resistors 7 and 8 and the gate of transistor 15 and a capacitor 17 and a discharge resistor 18 connected between the common point of the resistor 12 and the zener diode 13 and the line d. As can easily be understood, the voltage portion present between resistors 7 and 8 allows the capacitor 17 to be charged slowly. Once the voltage present at the terminals of this capacitor exceeds the opening voltage of the zener diode 13 plus 2 V, ie at the end of a delay T1, this voltage is applied to the gate of transistor 15 which, saturating, only then connects line f to line b then d. 18
Par ailleurs, le circuit 110 d'alimentation temporaire comprend un second circuit composé d'une résistance 9 branchée entre le circuit redresseur 6 et la ligne e ainsi qu'un condensateur 11 et une résistance de décharge 10 branchés entre la ligne e et la ligne d (sur la figure 5 : condensateur 61 après la traversée directe 3-3 du circuit intégré). Durant la période Tl pendant laquelle le transistor 15 débranche le retour de la ligne f à la ligne d, les circuits variateur 120 et oscillateur 130 ne pourront faire aucun appel de courant sur la ligne e. Le condensateur 11 pourra alors se charger alimenté par le circuit redresseur 6 au travers de la résistance 9. Cette période Tl est déterminée par la valeur des résistances 7,8 et 12 et du condensateur 17 de telle sorte qu'elle soit suffisamment longue pour permettre une charge suffisante du condensateur 11. En effet, une fois cette période Tl achevée et le transistor 15 commuté reliant ainsi la ligne f à ligne b, ce condensateur 11 doit alimenter la ligne e donc les circuits 120 et 130 durant une période T2 suffisamment longue pour permettre le préchauffage et le déclenchement des tubes fluorescents.Furthermore, the temporary supply circuit 110 comprises a second circuit composed of a resistor 9 connected between the rectifier circuit 6 and the line e as well as a capacitor 11 and a discharge resistance 10 connected between the line e and the line d (in FIG. 5: capacitor 61 after the direct crossing 3-3 of the integrated circuit). During the period T1 during which the transistor 15 disconnects the return from line f to line d, the variator 120 and oscillator 130 circuits cannot make any current draw on line e. The capacitor 11 can then be charged supplied by the rectifier circuit 6 through the resistor 9. This period T1 is determined by the value of the resistors 7,8 and 12 and of the capacitor 17 so that it is long enough to allow a sufficient charge of the capacitor 11. In fact, once this period T1 has ended and the transistor 15 switched thus connecting the line f to line b, this capacitor 11 must supply the line e therefore the circuits 120 and 130 during a sufficiently long period T2 to allow preheating and tripping of fluorescent tubes.
De manière identique sur les figures 2 et 4, le circuit d'alimentation permanent 150 comprend un enroulement 66 autour de l'inductance 56 dont l'une des branches est reliée à ligne d et l'autre est branché à la cathode d'une diode de redressement 64 via une résistance 65. Un condensateur de filtrage 63 est branché entre l'anode de cette diode 64 et la ligne d. Un condensateur de charge 61 et une diode zener 60 sont branchés d'un côté à la ligne d et de l'autre côté d'une part à l'anode de la diode 64 au travers d'une 19Identically in FIGS. 2 and 4, the permanent supply circuit 150 comprises a winding 66 around the inductor 56 one of the branches of which is connected to line d and the other of which is connected to the cathode of a rectifier diode 64 via a resistor 65. A filtering capacitor 63 is connected between the anode of this diode 64 and the line d. A charge capacitor 61 and a zener diode 60 are connected on one side to the line d and on the other side on the one hand to the anode of the diode 64 through a 19
résistance 62 et d'autre part à la ligne k rejoignant la ligne e mentionnée précédemment. Le circuit d'alimentation permanent sur la figure 5 est sensiblement identique hormis le fait que le point de départ est le secondaire 66 d'un petit transformateur 100 dont le primaire est branché entre les points M et Q, donc en parallèle avec les circuits de charge. De plus, le condensateur de charge 61 est confondu avec celui 11 du circuit d'alimentation temporaire. Ainsi, la tension alternative prélevée par l'enroulement ou le secondaire 66 est redressée par la diode 64 puis préfiltrée par le condensateur 63. Le courant issu, traversant la résistance 62 de faible valeur ohmique, va charger le condensateur de type chimique 61 jusqu'à la valeur correspondant à la tension de zener de la diode 60 qui a pour fonction de réguler cette tension. Cette tension ainsi filtrée et régulée peut alors être appliquée via les lignes k et e pour alimenter les circuits 120 variateur et 130 oscillateur. Les résistances 62 et 65 ont pour objet de limiter le courant traversant les diodes 64 et 60. On comprend aisément que tant que le dispositif n'a pas démarré, ce circuit d'alimentation 150 reste inopérant. Mais compte-tenu de la présence du circuit d'alimentation temporaire 110 assurant l'alimentation en courant continu durant toute la période T2 correspondant au préchauffage puis au déclenchement des tubes fluorescents, on comprend qu'à la fin de cette période T2 les tubes étant déclenchés et la tension aux bornes de l'inductance 56 ayant chutée à une plus faible valeur, alors le circuit 150 peut immédiatement prendre le relai et maintenir les circuits variateur 120 et oscillateur 130 en fonctionnement. 20resistance 62 and on the other hand to the line k joining the line e mentioned above. The permanent supply circuit in FIG. 5 is substantially identical except for the fact that the starting point is the secondary 66 of a small transformer 100 whose primary is connected between the points M and Q, therefore in parallel with the circuits of charge. In addition, the charge capacitor 61 is coincident with that 11 of the temporary supply circuit. Thus, the alternating voltage sampled by the winding or the secondary 66 is rectified by the diode 64 then prefiltered by the capacitor 63. The current issuing, passing through the resistor 62 of low ohmic value, will charge the capacitor of chemical type 61 until to the value corresponding to the zener voltage of the diode 60 which has the function of regulating this voltage. This voltage thus filtered and regulated can then be applied via the lines k and e to supply the circuits 120 variator and 130 oscillator. The resistors 62 and 65 are intended to limit the current passing through the diodes 64 and 60. It is easily understood that as long as the device has not started, this supply circuit 150 remains inoperative. But taking into account the presence of the temporary supply circuit 110 ensuring the supply of direct current during the entire period T2 corresponding to the preheating and then to the triggering of the fluorescent tubes, it is understood that at the end of this period T2 the tubes being tripped and the voltage across the inductor 56 having dropped to a lower value, then the circuit 150 can immediately take over and keep the variator 120 and oscillator 130 circuits in operation. 20
Compte-tenu de la capacité limitée dans le temps, soit pendant la période T2, d'alimentation en courant continu du condensateur 11, il convient que les circuits variateur 120 et oscillateur 130 soient les plus économiques possibles.Given the limited capacity in time, ie during the period T2, of direct current supply to the capacitor 11, the variator 120 and oscillator 130 circuits should be as economical as possible.
Un premier mode de réalisation avantageux du circuitA first advantageous embodiment of the circuit
130 va maintenant être décrit en relation avec la figure 3. Ce circuit 130 comprend un composant électronique intégré 29 et un premier pont diviseur de tension constitué des résistances 28,25 et du condensateur 20 monté en série entre les lignes e et f. Ce composant intégré 29 comprend également un pont diviseur de tension réalisé par trois résistances 300 identiques branchées entre les bornes v et m elles-mêmes reliées aux lignes e et f respectivement. Il comprend de plus deux comparateurs 310 et 320. L'entrée positive du comparateur 310 est reliée via la borne Th au point intermédiaire xl entre les résistances 28 et 25 ; et l'entrée négative est reliée au point intermédiaire yl entre la première et la seconde résistance 300. L'entrée négative du second comparateur 320 est reliée via la borne T au point intermédiaire x2 entre la résistance 25 et le condensateur 20. L'entrée positive de ce second comparateur 320 est reliée au point y2 intermédiaire entre la seconde et la troisième résistance 300. La sortie du premier comparateur 310 agit sur l'entrée R et le second sur l'entrée S d'une bascule 330. La sortie de cette bascule 330 est amplifiée par un amplificateur opérationnel 340 pour fournir un courant d'environ 200 mmA aussi bien pour les états hauts que bas. Ce signal de sortie est par la suite appliqué à l'enroulement primaire 30 via un en l'état de non- conduction. Le circuit oscillateur 130 fonctionne alors exactement tel qu'expliqué précédemment à fréquence élevée mais différente de la fréquence de resonnance du circuit de charge. Les électrodes des tubes fluorescents peuvent alors être préchauffées. Lorsque la borne positive du condensateur 22 chargée par la résistance 23 aura atteint la tension de seuil de la diode zener 26 plus la tension base-émetteur du transistor 14, alors ce dernier entrera en conduction et permettra, via sa jonction collecteur/émetteur le branchement en parallèle du condensateur 27 avec le condensateur 20. De ce fait, la fréquence délivrée par le circuit 130 chutera brutalement de manière à obtenir alors la fréquence mettant les circuits de charge en resonnance ce qui amorcent immédiatement les tubes fluorescents. A l'inverse, lorsque le dispositif est coupé du réseau, la résistance 21 permet de décharger le condensateur 22 plus rapidement que par ses fuites internes ce qui assure le démarrage du système systématiquement avec une phase de préchauffage.130 will now be described in relation to FIG. 3. This circuit 130 comprises an integrated electronic component 29 and a first voltage divider bridge consisting of the resistors 28, 25 and of the capacitor 20 connected in series between the lines e and f. This integrated component 29 also includes a voltage divider bridge produced by three identical resistors 300 connected between the terminals v and m themselves connected to the lines e and f respectively. It further comprises two comparators 310 and 320. The positive input of comparator 310 is connected via the terminal Th at the intermediate point xl between the resistors 28 and 25; and the negative input is connected to the intermediate point yl between the first and the second resistor 300. The negative input of the second comparator 320 is connected via the terminal T to the intermediate point x2 between the resistor 25 and the capacitor 20. The input positive of this second comparator 320 is connected to the point y2 intermediate between the second and the third resistance 300. The output of the first comparator 310 acts on the input R and the second on the input S of a rocker 330. The output of this flip-flop 330 is amplified by an operational amplifier 340 to provide a current of about 200 mmA for both high and low states. This output signal is subsequently applied to the primary winding 30 via a in the state of non-conduction. The oscillator circuit 130 then operates exactly as explained above at a high frequency but different from the resonance frequency of the load circuit. The electrodes of the fluorescent tubes can then be preheated. When the positive terminal of the capacitor 22 charged by the resistor 23 has reached the threshold voltage of the zener diode 26 plus the base-emitter voltage of the transistor 14, then the latter will enter into conduction and will allow the connection via its collector / emitter junction in parallel with the capacitor 27 with the capacitor 20. Therefore, the frequency delivered by the circuit 130 will drop suddenly so as to then obtain the frequency putting the charging circuits in resonance which immediately ignite the fluorescent tubes. Conversely, when the device is cut off from the network, the resistor 21 allows the capacitor 22 to be discharged more quickly than by its internal leaks, which systemically starts the system with a preheating phase.
Un second mode de réalisation avantageux du circuit 130 va maintenant être décrit en relation avec la figure 4. Ce circuit oscillateur 130 comprend un premier inverseur 80 dont la sortie est reliée au travers d'une diode 82 à l'entrée d'un second inverseur 83. La sortie de l'inverseur 83 est elle-même reliée à l'entrée du premier inverseur 80 par un condensateur 84 et une résistance 86 branchés en série. Une résistance variable 85 est branchée entre la sortie de l'inverseur 80 et le point commun du condensateur 84 et de la résistance 86. Le signal présent à la sortie de l'inverseur 83 est amplifié par un montage en parallèle de quatre inverseurs 86 avant d'être appliqué au condensateur 24. Les deux inverseurs 80 et 83 ainsi que les quatre inverseurs 86 sont du type MOS regroupés dans un seul et unique boîtier alimenté entre les lignes e et f.A second advantageous embodiment of the circuit 130 will now be described in relation to FIG. 4. This oscillator circuit 130 comprises a first inverter 80 whose output is connected through a diode 82 to the input of a second inverter 83. The output of the inverter 83 is itself connected to the input of the first inverter 80 by a capacitor 84 and a resistor 86 connected in series. A variable resistor 85 is connected between the output of the inverter 80 and the common point of the capacitor 84 and the resistor 86. The signal present at the output of the inverter 83 is amplified by a parallel connection of four inverters 86 before being applied to the capacitor 24. The two inverters 80 and 83 as well as the four inverters 86 are of the MOS type grouped in a single housing supplied between lines e and f .
En supposant la diode 82 court-circuitée et le condensateur 84 initialement déchargé, le fonctionnement de l'oscillateur est le suivant. Lors de la mise sous tension simultanée des six inverseurs, le potentiel à la sortie de l'inverseur 83 correspond à un niveau logique bas du fait de la décharge du condensateur 84. Ceci implique un niveau haut sur son entrée donc sur la sortie de l'inverseur 80 soit un niveau bas sur l'entrée de cet inverseur 80. La résistance ajustable 85 étant d'une part connectée sur la sortie de l'inverseur 80 au niveau haut et d'autre part au condensateur 84 déchargé donc au niveau bas, un courant correspondant à la charge de ce condensateur 84 va circuler au travers de cette résistance ajustable 85. La tension au point commun du condensateur 84 et de la résistance ajustable 85 qui se trouve appliquée à l'entrée de l'inverseur 80 grâce à la résistance 86 va donc augmenter au fur et à mesure de la charge du condensateur 84. Lorsque cette tension au point commun aura atteint 50 % de la tension d'alimentation présent sur la ligne e, l'inverseur 80 va basculer imposant alors un niveau haut à l'entrée de l'inverseur 83 qui lui-même basculera impliquant un niveau bas à sa sortie. Le potentiel aux bornes de la résistance 85 et du condensateur 84 est donc inversé provoquant le passage d'un courant déchargeant ce condensateur 84. Une fois celui-ci déchargé, la tension au point commun entre la résistance ajustable 85 et le condensateur 84 est à nouveau basse, cette tension se retrouvant à l'entrée de l'inverseur 80 par la résistance 86. Cet inverseur 80 bascule et on retrouve alors les conditions initiales du circuit. Le cycle décrit précédemment recommence. Ce circuit 130 oscille ainsi sur une fréquence déterminée par la valeur de la résistance ajustable 85 et du condensateur 84. Cette oscillation présente à la sortie de l'inverseur 83 est amplifiée par le montage en parallèle des quatre autres inverseurs 86 avant d'être appliquée aux primaires 30 du transformateur au travers du condensateur 24.Assuming the diode 82 short-circuited and the capacitor 84 initially discharged, the operation of the oscillator is as follows. When the six inverters are simultaneously energized, the potential at the output of the inverter 83 corresponds to a low logic level due to the discharge of the capacitor 84. This implies a high level at its input and therefore at the output of the 'inverter 80 is a low level on the input of this inverter 80. The adjustable resistor 85 being on the one hand connected to the output of the inverter 80 at the high level and on the other hand to the capacitor 84 discharged therefore at the low level , a current corresponding to the charge of this capacitor 84 will flow through this adjustable resistor 85. The voltage at the common point of the capacitor 84 and the adjustable resistor 85 which is applied to the input of the inverter 80 thanks to the resistor 86 will therefore increase as the capacitor 84 charges. When this common point voltage has reached 50% of the supply voltage present on the line e, the inverter 80 will switch imposing then an n high level at the input of the inverter 83 which itself will switch implying a low level at its output. The potential at the terminals of the resistor 85 and of the capacitor 84 is therefore reversed, causing the passage of a current discharging this capacitor 84. Once the latter is discharged, the voltage at the point common between the adjustable resistor 85 and the capacitor 84 is again low, this voltage being found at the input of the inverter 80 by the resistor 86. This inverter 80 switches over and the initial conditions of the circuit are then found. The cycle described above begins again. This circuit 130 thus oscillates on a frequency determined by the value of the adjustable resistor 85 and of the capacitor 84. This oscillation present at the output of the inverter 83 is amplified by the parallel mounting of the other four inverters 86 before being applied to the primaries 30 of the transformer through the capacitor 24.
Si un minimum de tension, par exemple 10% de la tension présente sur la ligne e, est imposé par une ligne g entre la sortie de l'inverseur 80 et l'entrée de l'inverseur 83, le condensateur 84 ne pourra plus se décharger à une valeur inférieure à cette tension minimum imposée. En d'autres termes, ce condensateur 84 atteindra plus rapidement une tension correspondant à 50 % de la tension d'alimentation provoquant un basculement plus tôt que précédemment de l'inverseur 80. On constate donc une plus grande rapidité du phénomène oscillatoire décrit précédemment soit une augmentation de sa fréquence. La diode 82 permet justement l'application d'une telle tension de commande sur la ligne g en empêchant cette tension de perturber la sortie de l'inverseur 80.If a minimum voltage, for example 10% of the voltage present on line e, is imposed by a line g between the output of the inverter 80 and the input of the inverter 83, the capacitor 84 can no longer be discharge at a value lower than this minimum imposed voltage. In other words, this capacitor 84 will reach a voltage corresponding to 50% of the supply voltage more quickly, causing the inverter 80 to switch earlier than previously. There is therefore a greater rapidity of the oscillatory phenomenon described above, ie an increase in its frequency. The diode 82 precisely allows the application of such a control voltage on the line g by preventing this voltage from disturbing the output of the inverter 80.
Le circuit variateur de fréquence 120 associé à ce second mode de réalisation du circuit 130 est maintenant décrit toujours en relation avec la figure 4. Ce circuit comprend essentiellement un pont diviseur de tension constitué du condensateur 73 et des résistances 71 et 72 montées en série entre les lignes e et f. Une résistance de forte valeur ohmique 70 branchée en parallèle au condensateur 73 permet de décharger ce dernier lors de l'arrêt du dispositif. Ce circuit variateur de fréquence 120 comprend également un branchement en série d'une résistance 75 et d'une diode 76 reliant d'une part le point commun entre les résistances 71 et 72 et d'autre part, par la ligne g, le point commun entre la cathode de la diode 82 et l'entrée de l'inverseur 83. Ce branchement en série permet d'appliquer à l'entrée de l'inverseur 83 la tension présente au point commun des résistances 71,72.The frequency converter circuit 120 associated with this second embodiment of the circuit 130 is now described always in relation to FIG. 4. This circuit essentially comprises a voltage divider bridge consisting of the capacitor 73 and resistors 71 and 72 connected in series between lines e and f. A resistor of high ohmic value 70 connected in parallel to the capacitor 73 makes it possible to discharge the latter when the device is stopped. This frequency converter circuit 120 also includes a series connection of a resistor 75 and a diode 76 connecting on the one hand the common point between the resistors 71 and 72 and on the other hand, by the line g, the point common between the cathode of the diode 82 and the input of the inverter 83. This series connection makes it possible to apply to the input of the inverter 83 the voltage present at the common point of the resistors 71, 72.
Lors de l'application de la tension continue filtrée sur la ligne e, le condensateur 73 ayant été préalablement déchargé par la résistance 70, un fort courant de charge apparaît dans les résistances 71 et 72. Une différence de potentiel apparaît donc aux bornes de la résistance 72 qui est appliquée via la résistance 75 et la diode 76 à l'entrée de l'inverseur 83. La diode 76 permet d'injecter cette tension dans le circuit oscillant 130 sans qu'un retour en arrière du signal oscillatoire ne soit rendu possible. La résistance 75 limite l'intensité fournit à l'entrée de l'inverseur 83 car seul un paramètre en tension importe. Le circuit oscillateur 130 a alors commencé à fonctionner tel qu'expliqué précédemment à une fréquence élevée qui est supérieure à la fréquence de resonnance du circuit de charge permettant aux électrodes des tubes fluorescents d'être préchauffées. Au fur et à mesure de la charge du condensateur 73, le courant traversant la résistance 72 diminue ce qui abaisse par la même la fréquence d'oscillation du circuit 130. Lorsque ce condensateur 73 est totalement chargé, plus aucune tension n'apparaît sur la ligne g et le circuit 130 oscille à une fréquence maintenant imposée par les valeurs du condensateur 84 et de la résistance ajustable 85, laquelle fréquence correspond à celle de résonnances du circuit de charge ce qui amorce immédiatement les tubes fluorescents.During the application of the filtered DC voltage on line e, the capacitor 73 having been previously discharged by the resistor 70, a strong charging current appears in the resistors 71 and 72. A potential difference therefore appears at the terminals of the resistor 72 which is applied via resistor 75 and diode 76 to the input of the inverter 83. Diode 76 allows this voltage to be injected into the oscillating circuit 130 without a backtracking of the oscillatory signal being made possible. The resistor 75 limits the intensity supplied to the input of the inverter 83 because only a voltage parameter matters. The oscillator circuit 130 then began to operate as explained above at a high frequency which is higher than the resonance frequency of the charging circuit allowing the electrodes of the fluorescent tubes to be preheated. As the capacitor 73 charges, the current passing through the resistor 72 decreases this which also lowers the oscillation frequency of circuit 130. When this capacitor 73 is fully charged, no more voltage appears on line g and circuit 130 oscillates at a frequency now imposed by the values of capacitor 84 and the adjustable resistor 85, which frequency corresponds to that of resonances of the charging circuit which immediately initiates the fluorescent tubes.
Cette possibilté de contrôle de la fréquence d'oscillations du circuit 130 par application d'une tension sur la ligne g peut être mis à profit lors du fonctionnement des tubes fluorescents pour moduler leur flux lumineux par légères variations de cette fréquence d'oscillation autour de la valeur de resonnance. Ceci est réalisé grâce à un circuit annexe recevant une tension continue au point 22 sur la ligne h. Ce circuit annexe comprend un montage en série d'une résistance 91 et d'une diode 95 reliant la ligne h à la résistance 75. Un condensateur 92, une résistance 93 et une diode zener 94 sont reliés en parallèle entre d'une part la ligne f et d'autre part le point commun entre la résistance 91 et l'anode de la diode 95. La résistance 91 limite l'intensité du courant. Le condensateur 92 assure un filtrage anti-parasites. La diode zener 94 empêche la tension rapportée d'atteindre une valeur supérieure à la moitié de la tension d'alimentation sur la ligne e de manière à ne pas bloquer le circuit oscillateur 130. Enfin, la diode 95 permet d'injecter cette tension de commande sans pertuber la phase de préchauffage. Dans le mode de réalisation illustré sur la figure 5, on reconnaît le circuit de pilotage intégré des transistors 135 avec la résistance 38, la diode 39 et le condensateur 32 associés, les circuits 30/37 et 31/40 ainsi que le circuit de maintien de tension minimum 100, 105,110 et 115 décrit précédemment. Les circuits oscillateur et variateur de fréquence sont identiques à ceux décrits en référence à la figure 4. Toutefois, l'amorçage des tubes devant s'effectuer dans les meilleures conditions, il est prévu un dispositif supplémentaire permettant de verrouiller le circuit annexe de modulation du flux lumineux pendant le préchauffage des tubes. Ce dispositif comprend un transitor 130 dont le collecteur et l'émetteur sont respectivement reliés aux bornes du condensateur 92, donc entre l'anode de la diode 95 et la quatrième ligne f, et dont la base est reliée par un montage en série d'une diode zener 134 et d'une résistance 133 au point commun entre le condensateur 73 et la résistance 74.This possibility of controlling the frequency of oscillations of the circuit 130 by applying a voltage on the line g can be taken advantage of during the operation of the fluorescent tubes to modulate their luminous flux by slight variations in this frequency of oscillation around the resonance value. This is achieved by an auxiliary circuit receiving a DC voltage at point 22 on line h. This additional circuit includes a series connection of a resistor 91 and a diode 95 connecting the line h to the resistor 75. A capacitor 92, a resistor 93 and a zener diode 94 are connected in parallel between on the one hand the line f and on the other hand the common point between the resistor 91 and the anode of the diode 95. The resistor 91 limits the intensity of the current. The capacitor 92 provides anti-parasite filtering. The zener diode 94 prevents the reported voltage from reaching a value greater than half of the supply voltage on line e so as not to block the oscillator circuit 130. Finally, the diode 95 allows this voltage to be injected. control without disturbing the preheating phase. In the embodiment illustrated in Figure 5, we recognize the integrated control circuit of the transistors 135 with the resistor 38, the diode 39 and the associated capacitor 32, the circuits 30/37 and 31/40 as well as the holding circuit minimum voltage 100, 105, 110 and 115 described above. The oscillator and frequency converter circuits are identical to those described with reference to FIG. 4. However, the tubes must be primed under the best possible conditions, an additional device is provided for locking the annex modulation circuit of the luminous flux during the preheating of the tubes. This device comprises a transitor 130, the collector and the transmitter of which are respectively connected to the terminals of the capacitor 92, therefore between the anode of the diode 95 and the fourth line f, and the base of which is connected by a series connection of a zener diode 134 and a resistor 133 at the common point between the capacitor 73 and the resistor 74.
Lors de la charge du condensateur 73, la diode zener 134, de valeur sensiblement égale au quart de la tension présente sur la première ligne, permet la circulation d'un courant dans la base du transistor 130 via la résistance 133 ce qui a comme effet l'annulation par la mise à la masse de toute tension présente sur l'entrée de contrôle, et ce pendant toute la durée du préchauffage. Lorsque ce dernier est terminé, la tension présente au point commun du condensateur 73 et de la diode zener 134 devient inférieure à la valeur de la diode 134 qui se trouve bloquée ainsi que le transistor 130 par absence de courant de base. La tension présente à l'entrée du circuit annexe de modulation redevient active.When charging the capacitor 73, the zener diode 134, of value substantially equal to a quarter of the voltage present on the first line, allows the circulation of a current in the base of the transistor 130 via the resistor 133 which has the effect the cancellation by earthing any voltage present on the control input, for the entire duration of preheating. When the latter is finished, the voltage present at the common point of the capacitor 73 and of the zener diode 134 becomes lower than the value of the diode 134 which is blocked as well as the transistor 130 by absence of basic current. The voltage present at the input of the annex modulation circuit becomes active again.
Les transistors 34 et 43 présents sur les figures 2 et 4 étant de préférence du type MOS, il est souhaitable de prévoir des circuits de protection 142,144 identiques pour chacun des transistors. Plus particulièrement dans le circuit 142, toute surtension entre le drain et la source du transistor 34 est protégé par la diode 50 et toute surtension entre la grille et la source est protégée par un pont de diodes zener monté en série mais opposé entre la grille et la source. La protection contre une surintensité pouvant apparaître entre le drain et la source comprend une résistance 39 de faible valeur ohmique branchée entre la source du transistor 34 et le point intermédiaire M. La chute de potentielle provoquée par le passage du courant au travers de cette résistance est appliqué grâce à une diode 38 entre la base et l'émetteur d'un transistor 37 dont la jonction émetteur collecteur court-circuite au travers d'une diode 35 la tension entre la grille et la source du transistor 34. Ainsi, si l'intensité traversant la résistance 39 dépasse 4 A par exemple, la différence de potentiel apparaissant entre la base et l'émetteur du transistor 37 l'amène à l'état de saturation abaissant ainsi immédiatement la tension de grille donc mettant le transistor 34 en l'état de non-conduction. Le circuit de protection 144 pour le transistor 43 est rigoureusement identique au circuit 142 précédemment décrit.The transistors 34 and 43 present in FIGS. 2 and 4 being preferably of the MOS type, it is desirable to provide identical protection circuits 142, 144 for each of the transistors. More particularly in the circuit 142, any overvoltage between the drain and the source of the transistor 34 is protected by the diode 50 and any overvoltage between the gate and the source is protected by a bridge of zener diodes connected in series but opposite between the gate and source. The protection against an overcurrent which may appear between the drain and the source comprises a resistance 39 of low ohmic value connected between the source of the transistor 34 and the intermediate point M. The potential drop caused by the passage of current through this resistance is applied by a diode 38 between the base and the emitter of a transistor 37 whose emitter-collector junction short-circuits through a diode 35 the voltage between the gate and the source of the transistor 34. Thus, if the current passing through the resistance 39 exceeds 4 A for example, the potential difference appearing between the base and the emitter of the transistor 37 brings it to the saturation state thus immediately lowering the gate voltage therefore putting the transistor 34 in the non-conduction state. The protection circuit 144 for the transistor 43 is strictly identical to the circuit 142 previously described.
Comme on peut le constater, le dispositif selon l'invention réussi à alimenter le circuit de charge en tension secteur redressée et hachurée à une haute fréquence de l'ordre d'une centaine de KHz, et ce avec un condensateur 16 de filtrage très faible voire inexistant. Ainsi, de par la suppression de ce condensateur de filtrage, on a pu éliminer la cause même des parasites de l'ordre d'une centaine d'Hz véritablement polluants par l'induction de distortion sur la tension secteur. Outre le fait de satisfaire aux nouvelles normes électrotechniques en vigueur, ce dispositif permet son installation en grand nombre dans des bâtiments sans pour autant remettre en cause le câblage électrotechnique de ce dernier. Dans des cas très particuliers nécessitant une tension réseau quasiment parfait on a toutefois constaté que ce dispositif induit encore des parasites extrêmement faible de l'ordre d'une centaine de KHz. Pour ce, un circuit antiparasitage 100 optionnel a été prévu qui comprend deux bobinages 2 et 3 montés en opposition de phase respectivement sur les lignes a et b, un condensateur 1 monté en amont des bobinages et un pont de condensateur 4 et 5 monté en aval des bobinages, c'est-à- dire proche du circuit de redressement 6. Le point commun des condensateurs 4 et 5 est alors relié à la terre physique. Ainsi, les parasites de haute fréquence apparaissant dans les bobinages 2 et 3 mais en sens opposé s'annulent d'eux-mêmes alors que la tension basse fréquence du réseau traverse ce circuit 100 vers le circuit de redressement 6 sans aucune difficulté.As can be seen, the device according to the invention succeeded in supplying the load circuit with voltage rectified and hatched sector at a high frequency of the order of a hundred KHz, and this with a very low or nonexistent filter capacitor 16. Thus, by eliminating this filtering capacitor, it was possible to eliminate the very cause of the parasites of the order of one hundred or so truly polluting Hz by inducing distortion on the mains voltage. In addition to meeting the new electrotechnical standards in force, this device allows its installation in large numbers in buildings without calling into question the electrotechnical wiring of the latter. In very specific cases requiring an almost perfect network voltage, it has however been found that this device still induces extremely low interference of the order of a hundred KHz. For this, an optional interference suppression circuit 100 has been provided which comprises two windings 2 and 3 mounted in phase opposition respectively on lines a and b, a capacitor 1 mounted upstream of the windings and a capacitor bridge 4 and 5 mounted downstream windings, that is to say close to the rectifying circuit 6. The common point of the capacitors 4 and 5 is then connected to the physical earth. Thus, the high frequency parasites appearing in the windings 2 and 3 but in the opposite direction cancel themselves out while the low frequency voltage of the network crosses this circuit 100 towards the rectifying circuit 6 without any difficulty.
A titre nullement limitatif, les valeurs numériques préférentielles pour les composants importants du dispositif sont présentées ci-dessous. R9 = 50 KΩ R23 = 100 KΩBy way of non-limiting example, the preferred numerical values for the important components of the device are presented below. R9 = 50 KΩ R23 = 100 KΩ
Cil = 470μF C22 = 10 μFEyelash = 470μF C22 = 10μF
R12 = 100 KΩ R25 = 1 KΩR12 = 100 KΩ R25 = 1 KΩ
C17 = 10 μF C27 = 47 pF C20 = 10 pFC17 = 10 μF C27 = 47 pF C20 = 10 pF
C110= 22 μF 129 = IC 555C110 = 22 μ F 129 = IC 555
C73 = 10 μF T34,43 = IRF 830C73 = 10 μF T34.43 = IRF 830
R74 = 10 KΩ R32,40 = 22ΩR74 = 10 KΩ R32.40 = 22Ω
R72 = 47 KΩ L56,51 = 1 mHR72 = 47 KΩ L56.51 = 1 mH
R75 = 100 KΩ L66 = 3 tours sur L56R75 = 100 KΩ L66 = 3 turns on L56
R86 = 10 KΩ C61 = 10 μFR86 = 10 KΩ C61 = 10 μF
R85 = 20 KΩ aj Z60 = 16 V/l 3R85 = 20 KΩ aj Z60 = 16 V / l 3
C84 = 1 nF C54 = 100 nF/500 V C67 = 100 nF/500 V.C84 = 1 nF C54 = 100 nF / 500 V C67 = 100 nF / 500 V.
Il est à noter que si le dispositif précédemment décrit présente une certaine complexité, les composants mentionnés ci- dessus le constituant sont en général de taille faible ce qui permet d'assembler ce dispositif facilement sur une petite plaque de l'ordre de 80 mm de long par 10 mm de large et 15 mm de haut. La réalisation matérielle de tels dispositifs peut aisément être effectuée par des machines entièrement automatiques assurant un haut niveau de fiabilité. De plus, de par le choix particulier des transistors 34,43 associés aux résistances 32,40 ce dispositif présente une fiabilité augmentée due à une température globale de fonctionnement plus basse.It should be noted that if the device described above has a certain complexity, the components mentioned above the constituent are generally of small size which makes it possible to assemble this device easily on a small plate of the order of 80 mm. long by 10 mm wide and 15 mm high. The material production of such devices can easily be carried out by fully automatic machines ensuring a high level of reliability. In addition, by the particular choice of transistors 34,43 associated with resistors 32,40 this device has increased reliability due to a lower overall operating temperature.
De nombreuses améliorations peuvent être apportées à ce dispositif dans le cadre de cette invention. Many improvements can be made to this device in the context of this invention.

Claims

REVENDICATIONS
1. Dispositif électronique de démarrage et d'alimentation pour tubes fluorescents à électrodes préchauffables comprenant : - un circuit redresseur (6) du courant alternatif secteur délivrant un courant redressé sur une première et seconde ligne (c, d) ,1. Electronic starting and supply device for fluorescent tubes with preheatable electrodes comprising: - a rectifier circuit (6) of the AC mains supply delivering rectified current on a first and second line (c, d),
- un ou plusieurs circuits de charge résonnant montés en parallèle, chaque circuit se présentant sous la forme d'un branchement en série d'une inductance (51,56), de la première électrode (52,57) du tube fluorescent, d'un condensateur (55,59) et de la seconde électrode (53,58) du tube fluorescent,- one or more resonant load circuits connected in parallel, each circuit being in the form of a series connection of an inductor (51,56), of the first electrode (52,57) of the fluorescent tube, a capacitor (55,59) and the second electrode (53,58) of the fluorescent tube,
- un étage d'amplification comprenant deux transistors (34,43) montés en série entre les première et seconde lignes d'alimentation (c,d) du dispositif et reliés en leur point commun (m) au circuit de charge,an amplification stage comprising two transistors (34,43) connected in series between the first and second supply lines (c, d) of the device and connected at their common point (m) to the charging circuit,
- un circuit oscillant (130) relié à un circuit de pilotage (135) des transistors (34,43) de telle sorte que chacun soit alternativement en l'état de conduction, etan oscillating circuit (130) connected to a control circuit (135) of the transistors (34,43) so that each is alternately in the conduction state, and
- un circuit (120) variant la fréquence du circuit oscillant (130) lors du démarrage du dispositif caractérisé en ce que, si présent, la valeur du condensateur de filtrage (16) à la sortie du circuit redresseur (6) est inférieure ou égale à 0,04 μF et en ce que le dispositif comprend de plus pour l'alimentation en courant continu du circuit oscillant (130) et du circuit variateur de fréquence (120) le long d'une troisième et quatrième ligne (e) et (f) un circuit d'alimentation temporaire (110) actif lors de la phase de démarrage et un circuit d'alimentation (150) dépendant de l'un des circuits de charge, lequel circuit (150) est actif en phase de fonctionnement permanent. ainsi que, pour l'alimentation de l'étage d'amplification donc des tubes fluorescents, un circuit assurant un minimum de tension correspondant à la tension de désamorçage des tubes.- a circuit (120) varying the frequency of the oscillating circuit (130) when the device is started, characterized in that, if present, the value of the filtering capacitor (16) at the output of the rectifier circuit (6) is less than or equal at 0.04 μF and in that the device further comprises for the direct current supply of the oscillating circuit (130) and the frequency converter circuit (120) along a third and fourth line (e) and (f) a temporary supply circuit (110) active during the start-up phase and a supply circuit (150) dependent on one of the load circuits, which circuit (150) is active in permanent operating phase. as well as, for the supply of the amplification stage therefore of the fluorescent tubes, a circuit ensuring a minimum of voltage corresponding to the defusing voltage of the tubes.
2. Dispositif selon la revendication 1, caractérisé en ce que le circuit d'alimentation temporaire (110) comprend des moyens d'accumulation de d'énergie électrique sous forme continue (11) chargés par le circuit redresseur (6) et appliquant cette énergie le long de la troisième ligne (e), et des moyens de commutation (15) dont l'élément de commande est contrôlé par un élément capacitif (17), lequels moyens déconnectent le retour par la quatrième ligne (f) à la seconde ligne (d) du courant continu des circuits variateur de fréquence (120) et oscillateur (130) pendant une première phase d'accumulation d'énergie par l'élément (11) puis, une fois l'élément capacitif (17) chargé après un temps prédéterminé, rétablit ce retour.2. Device according to claim 1, characterized in that the temporary supply circuit (110) comprises means for accumulating electrical energy in continuous form (11) charged by the rectifier circuit (6) and applying this energy along the third line (e), and switching means (15), the control element of which is controlled by a capacitive element (17), which means disconnect the return by the fourth line (f) to the second line (d) of the direct current of the frequency converter (120) and oscillator (130) circuits during a first phase of energy accumulation by the element (11) then, once the capacitive element (17) is charged after a predetermined time, restores this return.
3. Dispositif selon la revendication 1, caractérisé en ce que le circuit d'alimentation permanent des circuits oscillateur et variateur de fréquence (150) comprend3. Device according to claim 1, characterized in that the permanent supply circuit of the oscillator and frequency converter circuits (150) comprises
- soit un enroulement (66) autour de l'inductance (56) de l'un des circuits de charge soit le secondaire d'un transformateur dont le primaire est branché en parallèle au circuit de charge, bobinage dont l'une des extrémités est reliée à la seconde ligne d'alimentation (d) et l'autre extrémité est reliée à l'anode d'une diode de redressement (64),- either a winding (66) around the inductance (56) of one of the charging circuits or the secondary of a transformer whose primary is connected in parallel to the charging circuit, winding one of whose ends is connected to the second line supply (d) and the other end is connected to the anode of a rectifying diode (64),
- un condensateur de filtrage (63), un condensateur de charge (61) et une diode zener de régulation de tension, ceux-ci étant branchés en parallèle d'un côté à la seconde ligne (d) et de l'autre côté d'une part à la cathode de la diode de redressement (64) et d'autre part à la ligne (k) puis la troisième ligne (e) d'alimentation des circuits variateur (120) et oscillateur (130).- a filter capacitor (63), a charge capacitor (61) and a voltage regulation zener diode, these being connected in parallel on one side to the second line (d) and on the other side d on the one hand to the cathode of the rectifying diode (64) and on the other hand to the line (k) then the third line (e) of supply of the variator (120) and oscillator (130) circuits.
4. Dispositif selon la revendication 1, caractérisé en ce que le circuit assurant un minimum de tension à l'étage d'amplification comprend :4. Device according to claim 1, characterized in that the circuit ensuring a minimum of voltage in the amplification stage comprises:
- un transformateur (100) dont le primaire est branché en parallèle aux circuits de charge et dont un secondaire (66) est d'une part branché à la seconde ligne d'alimentation du dispositif et d'autre part à l'anode d'une première diode de redressement (105), un condensateur (110) branché entre la seconde ligne d'alimentation et la cathode de la première diode (105), et- a transformer (100) the primary of which is connected in parallel to the charging circuits and the secondary (66) of which is on the one hand connected to the second supply line of the device and on the other hand to the anode of a first rectification diode (105), a capacitor (110) connected between the second supply line and the cathode of the first diode (105), and
- une seconde diode d'isolation (115) dont l'anode est branchée au point commun de la première diode (105) et du condensateur (110) et dont la cathode est branchée à la première ligne d'alimentation (c).- A second isolation diode (115), the anode of which is connected to the common point of the first diode (105) and of the capacitor (110) and the cathode of which is connected to the first supply line (c).
5. Dispositif selon la revendication 1, caractérisé en ce que le circuit oscillateur (130) comprend deux ponts diviseurs montés parallèlement entre les troisième et quatrième lignes d'alimentation (e) et (f), un premier essentiellement constitué de trois résistances identiques (300), un second constitué de deux résistances (28,25) et d'un condensateur (20), la tension aux points intermédiaires correspondants (xl/yl,x2/y2) étant comparée par deux comparateurs (310,320) respectivement, le premier (310) agissant sur l'entrée (R), le second sur l'entrée (S) d'une bascule (330) dont la sortie est d'une part amplifiée par un amplificateur (340) avant application au primaire du transformateur 135 constituant le circuit de pilotage , d'autre part branchée à un inverseur (350) qui pilote un élément de commutation (370) court-circuitant ou non le condensateur (20).5. Device according to claim 1, characterized in that the oscillator circuit (130) comprises two dividing bridges mounted in parallel between the third and fourth supply lines (e) and (f), a first essentially consisting of three identical resistors ( 300), a second consisting of two resistors (28,25) and a capacitor (20), the voltage at the points corresponding intermediates (xl / yl, x2 / y2) being compared by two comparators (310,320) respectively, the first (310) acting on the input (R), the second on the input (S) of a rocker (330 ) the output of which is on the one hand amplified by an amplifier (340) before application to the primary of the transformer 135 constituting the control circuit, on the other hand connected to an inverter (350) which controls a short switching element (370) -circuiting or not the capacitor (20).
6. Dispositif selon la revendication 4, caractérisé en ce que le circuit variateur de fréquence (120) comprend un élément de commutation (14) reliant ou non un condensateur (27) en parallèle au condensateur (20) et dont l'élément de contrôle est relié au travers d'une diode (26) à l'une des bornes d'un condensateur (22) laquelle borne est aussi reliée à la troisième ligne (e) d'alimentation au travers d'une résistance (23), l'autre borne du condensateur (22) étant reliée à la quatrième ligne (f).6. Device according to claim 4, characterized in that the frequency converter circuit (120) comprises a switching element (14) connecting or not connecting a capacitor (27) in parallel to the capacitor (20) and whose control element is connected through a diode (26) to one of the terminals of a capacitor (22) which terminal is also connected to the third supply line (e) through a resistor (23), l 'other terminal of the capacitor (22) being connected to the fourth line (f).
7. Dispositif selon la revendication 1, caractérisé en ce que le circuit oscillant (130) comprend un premier inverseur (80) dont la sortie est reliée à l'entrée d'un second inverseur (83), la sortie duquel est reliée par un condensateur (84) et une résistance (86) branchée en série à l'entrée du premier inverseur (80), ces deux inverseurs étant alimentés par la troisième (e) et la quatrième ligne (j) ; une résistance ajustable (85) branchée entre la sortie du premier inverseur (80) et le point commun du condensateur (84) et de la résistance ; ainsi qu'un montage en parallèle d'au moins deux inverseurs amplifiant le signal issu de la sortie du second inverseur (83) avant application au circuit de pilotage (135).7. Device according to claim 1, characterized in that the oscillating circuit (130) comprises a first inverter (80) whose output is connected to the input of a second inverter (83), the output of which is connected by a capacitor (84) and a resistor (86) connected in series to the input of the first inverter (80), these two inverters being supplied by the third (e) and the fourth line (j); an adjustable resistor (85) connected between the output of the first inverter (80) and the common point of the capacitor (84) and the resistor; as well as a parallel connection of at least two inverters amplifying the signal from the output of the second inverter (83) before application to the control circuit (135).
8. Dispositif selon la revendication 6, caractérisé en ce que le circuit oscillant comprend une diode (82) intercalée entre le premier (80) et le second inverseur (83) et dont l'anode est reliée à la résistance ajustable (85) alors que la cathode est reliée à l'entrée du second inverseur (83) et en ce que le circuit variateur de fréquence (120) comprend un premier pont diviseur de tension essentiellement constitué d'un condensateur (73) et de deux résistances (71,72) montées en série entre la troisième (e) et la quatrième ligne (f) et un branchement en série d'une résistance (75) et d'une diode (76) entre d'une part le point commun entre les deux résistances du pont diviseur et d'autre part l'entrée du second inverseur (83).8. Device according to claim 6, characterized in that the oscillating circuit comprises a diode (82) interposed between the first (80) and the second inverter (83) and the anode of which is connected to the adjustable resistor (85) then that the cathode is connected to the input of the second inverter (83) and that the frequency converter circuit (120) comprises a first voltage divider bridge essentially consisting of a capacitor (73) and two resistors (71, 72) connected in series between the third (e) and the fourth line (f) and a series connection of a resistor (75) and a diode (76) between on the one hand the common point between the two resistors of the divider bridge and on the other hand the input of the second inverter (83).
9. Dispositif selon la revendication 1, caractérisé en ce qu'un circuit de filtrage des fréquences comprises entre 50 et 150 KHz (100) situé en amont du circuit redresseur (6) comprend deux bobinages (2,3) respectivement montés en série sur les lignes d'alimentation secteur (A,B) et en opposition de phases l'un par rapport à l'autre, un premier condensateur (1) monté en amont des bobinages entre les bornes (A,B) et un pont de condensateurs (5,4) montés en aval des bobinages entre les bornes (A,B) et ayant leur point commun relié à la terre.9. Device according to claim 1, characterized in that a circuit for filtering frequencies between 50 and 150 kHz (100) located upstream of the rectifier circuit (6) comprises two windings (2,3) respectively mounted in series on the mains supply lines (A, B) and in phase opposition to each other, a first capacitor (1) mounted upstream of the windings between the terminals (A, B) and a bridge of capacitors (5,4) mounted downstream of the windings between the terminals (A, B) and having their common point connected to earth.
10. Dispositif selon la revendication l, caractérisé en ce que le circuit de pilotage est essentiellement constitué d'un transformateur avec deux secondaires montés en opposition de phase, en ce que les transistors (34,43) sont du type MOS et en ce qu'ils sont protégés en surtension entre leur grille et leur source par un pont de diode zener (33/36,41/45), en surtension entre le drain et la source grâce à une diode (50,48), et en surintensité par un circuit comprenant un transistor (37,46) court-circuitant au travers d'une diode (35,42) la grille et la source en fonction d'une différence de potentiel apparaissant aux bornes d'une résistance (39,49) montée en série à la source, laquelle tension est transmise à la base des transistors (37,46) par des diodes (38,47). 10. Device according to claim l, characterized in that the control circuit consists essentially of a transformer with two secondaries mounted in phase opposition, in that the transistors (34,43) are of the MOS type and in that they are protected against overvoltage between their gate and their source by a zener diode bridge (33/36 , 41/45), in overvoltage between the drain and the source thanks to a diode (50,48), and in overcurrent by a circuit comprising a transistor (37,46) short-circuiting through a diode (35, 42) the grid and the source as a function of a potential difference appearing across a resistor (39,49) connected in series with the source, which voltage is transmitted to the base of the transistors (37,46) by diodes (38,47).
EP90904853A 1989-03-10 1990-03-08 Electronic starting and power supply device for preheated electrode fluorescent tubes Withdrawn EP0413806A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8903430A FR2644314A1 (en) 1989-03-10 1989-03-10 ELECTRONIC STARTING AND SUPPLY DEVICE FOR FLUORESCENT TUBES WITH PREHEATABLE ELECTRODES
FR8903430 1989-03-10

Publications (1)

Publication Number Publication Date
EP0413806A1 true EP0413806A1 (en) 1991-02-27

Family

ID=9379742

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90904853A Withdrawn EP0413806A1 (en) 1989-03-10 1990-03-08 Electronic starting and power supply device for preheated electrode fluorescent tubes

Country Status (8)

Country Link
EP (1) EP0413806A1 (en)
JP (1) JPH03504908A (en)
KR (1) KR920700524A (en)
CA (1) CA2028122A1 (en)
FI (1) FI905547A0 (en)
FR (1) FR2644314A1 (en)
HU (1) HUT55578A (en)
WO (1) WO1990011005A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4018865A1 (en) * 1990-01-20 1991-12-19 Semperlux Gmbh ELECTRONIC CONTROL UNIT FOR THE OPERATION OF DISCHARGE LAMPS
CH683219A5 (en) * 1992-04-06 1994-01-31 Starkstrom Elektronik Ag Electronic ballast for a low-pressure gas discharge lamp.
GB9226533D0 (en) * 1992-12-21 1993-02-17 Control & Readout Limited A switch mode power supply with power factor correction
US5483127A (en) * 1994-01-19 1996-01-09 Don Widmayer & Associates, Inc. Variable arc electronic ballast with continuous cathode heating
GB2298749B (en) * 1994-03-04 1998-01-07 Int Rectifier Corp Electronic ballasts for gas discharge lamps
US5545955A (en) * 1994-03-04 1996-08-13 International Rectifier Corporation MOS gate driver for ballast circuits
US5550436A (en) * 1994-09-01 1996-08-27 International Rectifier Corporation MOS gate driver integrated circuit for ballast circuits
CN1046615C (en) * 1996-10-08 1999-11-17 赵慧恋 Circuit for increasing power factor and its product for electronic ballast of fluorescent lamp
JP3039391U (en) * 1997-01-09 1997-07-15 船井電機株式会社 RCC type switching power supply
US6111368A (en) * 1997-09-26 2000-08-29 Lutron Electronics Co., Inc. System for preventing oscillations in a fluorescent lamp ballast

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109307A (en) * 1977-05-04 1978-08-22 Gte Sylvania Incorporated High power factor conversion circuitry
EP0059064B1 (en) * 1981-02-21 1985-10-02 THORN EMI plc Lamp driver circuits
US4560908A (en) * 1982-05-27 1985-12-24 North American Philips Corporation High-frequency oscillator-inverter ballast circuit for discharge lamps
DE3312575A1 (en) * 1983-01-08 1984-07-12 Trilux-Lenze Gmbh + Co Kg, 5760 Arnsberg Electronic ballast for fluorescent lamps
AU2708684A (en) * 1983-05-05 1984-11-08 Dubank Electronics Pty. Ltd. Electronic ballast and starter
CH663508A5 (en) * 1983-09-06 1987-12-15 Knobel Elektro App ELECTRONIC CONTROLLER FOR FLUORESCENT LAMPS AND METHOD FOR THE OPERATION THEREOF.
DE3729383A1 (en) * 1987-09-03 1989-03-16 Philips Patentverwaltung CIRCUIT ARRANGEMENT FOR STARTING A HIGH-PRESSURE DISCHARGE LAMP
ATE103458T1 (en) * 1988-04-20 1994-04-15 Zumtobel Ag BALLAST FOR A DISCHARGE LAMP.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9011005A1 *

Also Published As

Publication number Publication date
KR920700524A (en) 1992-02-19
FI905547A0 (en) 1990-11-09
CA2028122A1 (en) 1990-09-11
FR2644314A1 (en) 1990-09-14
HU902766D0 (en) 1991-02-28
HUT55578A (en) 1991-05-28
WO1990011005A1 (en) 1990-09-20
JPH03504908A (en) 1991-10-24

Similar Documents

Publication Publication Date Title
EP0680245B1 (en) Static converter with controlled switch and operating circuit
FR2707051A1 (en)
FR2511830A1 (en) Power generator for ionic conduction lamp - provides power at high impedance during starting and power at lower impedance during operation of lamp
FR2795283A1 (en) Starter circuit for discharge lamps uses common circuit with capacitor to apply stepped up voltage to corresponding discharge lamp via secondary winding
FR2577100A1 (en) BALLAST FOR HIGH PRESSURE DISCHARGE LAMPS, IN PARTICULAR FOR SODIUM VAPOR LAMPS
WO1990011005A1 (en) Electronic starting and power supply device for preheated electrode fluorescent tubes
FR2493092A1 (en) STARTING AND CONTROL CIRCUIT FOR DISCHARGE LAMPS
EP3010133B1 (en) Controlled rectifier circuit
FR2727586A1 (en) CONTROL CIRCUIT FOR A SEMICONDUCTOR SWITCH
FR2493091A1 (en) STARTING AND CONTROL CIRCUIT FOR DISCHARGE LAMPS
EP3345456B1 (en) Electronic converter and lighting system including such a converter
FR2486326A1 (en) CONTROL CIRCUIT FOR A SWITCHING TRANSISTOR IN A STATIC CONVERTER AND CONVERTER COMPRISING THE SAME
EP0970593B1 (en) Power supply system for a group of lamps
WO1998044764A9 (en) Power supply system for a group of lamps
CA1211499A (en) Control circuit for a synchronous motor with two windings
FR2834392A1 (en) HIGH VOLTAGE OSCILLATOR HAVING FAST REACTION TIME
EP0578575A1 (en) Device for operating a discharge tube with a high frequency high voltage signal
FR2698499A1 (en) Circuit for operating an inductive load.
EP0946081A1 (en) Device for operating a discharge lamp in a vehicle headlamp
FR2744857A1 (en) High frequency high tension half-period resonant inverter used in engine ignition device or strobe light ballast
FR2665322A1 (en) Converter for supplying lamps
EP0538102A1 (en) Power supply device for ozonizer
WO1987007469A1 (en) Electronic supply system for fluorescent electrode tubes
FR2512289A1 (en) Transistor oscillator for HF DC=DC converter - uses pair of power transistors working into centre tapped output transformer and electronic base drive with current feedback
WO1989006481A1 (en) Self-compensated electronic ballast

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19921001