DE4016052A1 - Ceramic-fibre composite hot gas tube - with ceramic matrix formed from silicon polymer and fibres of inorganic materials or mixts., used for e.g. vehicle exhaust tube - Google Patents

Ceramic-fibre composite hot gas tube - with ceramic matrix formed from silicon polymer and fibres of inorganic materials or mixts., used for e.g. vehicle exhaust tube

Info

Publication number
DE4016052A1
DE4016052A1 DE4016052A DE4016052A DE4016052A1 DE 4016052 A1 DE4016052 A1 DE 4016052A1 DE 4016052 A DE4016052 A DE 4016052A DE 4016052 A DE4016052 A DE 4016052A DE 4016052 A1 DE4016052 A1 DE 4016052A1
Authority
DE
Germany
Prior art keywords
ceramic
al2o3
molding according
sic
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE4016052A
Other languages
German (de)
Other versions
DE4016052C2 (en
Inventor
Tilman Dr Haug
Rolf Dr Ostertag
Ursula Dipl Ing Ehrmann
Reinhold Dipl Ing Birrenbach
Wolfgang Dipl Ing Zankl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier GmbH
Original Assignee
Dornier Luftfahrt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier Luftfahrt GmbH filed Critical Dornier Luftfahrt GmbH
Priority to DE4016052A priority Critical patent/DE4016052A1/en
Publication of DE4016052A1 publication Critical patent/DE4016052A1/en
Application granted granted Critical
Publication of DE4016052C2 publication Critical patent/DE4016052C2/de
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/589Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/78Other construction of jet pipes
    • F02K1/82Jet pipe walls, e.g. liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/78Other construction of jet pipes
    • F02K1/82Jet pipe walls, e.g. liners
    • F02K1/822Heat insulating structures or liners, cooling arrangements, e.g. post combustion liners; Infrared radiation suppressors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

A ceramic hot gas tube is made of a ceramic-fibre composite material in which (a) the fibres consist of inorganic materials (e.g. C, SiC, SiO2, Al2O3, Si3N4 or Al2O3, SiO2, B2O3) or their mixts. or cpds.; and (b) the ceramic matrix is formed from a Si polymer ceramic precursor by cross-linking and pypolysis. The matrix is pref. produced from a silane, carbosilane, vinylsilane, silazane and/or siloxane and may contain upto 90 wt.% ceramic powder, pref. SiC, Si3N4, BN and/or Al2O3. The fibres (opt. woven) are pref. infiltrated with a slip of the matrix precursor and opt. the powder and, after pref. winding or laminating, the precursor is hardened using a chemical cross-linker or using elevated pressure and temp., followed by pressure-less thermal conversion to a ceramic material. USE/ADVANTAGE - The pipe is useful as an aircraft or vehicle exhaust tube. It is resistant to high temps. (at least 500 deg.C), corrosion and oxidn. has higher fracture toughness than monolithic ceramics, has low density (below 2.5 g/cu cm), can be mass produced and is self-supporting even when of large size (e.g. 0.5 m dia. and 1.5 m length). (3pp Dwg.No.0/0)

Description

Die Erfindung betrifft ein keramisches Heißgasrohr. Rohre dieser Art werden als Abgasrohre bei Flugtriebwerken verwendet.The invention relates to a ceramic hot gas pipe. Tubes of this type are used as exhaust pipes in aircraft engines.

Rohre zur Heißgasführung werden derzeit aus Metallen (z. B. Stahl) gefertigt. Monolithische keramische Werkstoffe (z. B. Al₂O₃, SiC, Si₃N₄) sind zwar hin­ sichtlich ihrer Korrosionsbeständigkeit, ihrer Hochtemperaturfestigkeit, ihrer Härte und ihres gegenüber Stahl deutlich geringeren spezifischen Gewichts geeignet, doch ist ihre Thermoschockbeständigkeit zu gering. Starke Tempe­ raturwechsel führen zur Rißbildung und damit zur Zerstörung des Bauteils. Die Sprödigkeit der keramischen Werkstoffe und ihre Neigung zu unterkritischem Rißwachstum reduzieren ihre Zuverlässigkeit und schließen die Verwendung monolithischer Keramikbauteile für sicherheitsrelevante Strukturen aus. Dies gilt insbesondere für den Flugzeugbau.Pipes for hot gas routing are currently made from metals (e.g. steel). Monolithic ceramic materials (e.g. Al₂O₃, SiC, Si₃N₄) are gone visibly their corrosion resistance, their high temperature resistance, their Hardness and its significantly lower specific weight than steel suitable, but their thermal shock resistance is too low. Strong tempe Changes in temperature lead to the formation of cracks and thus to the destruction of the component. The Brittleness of the ceramic materials and their tendency to subcritical Crack growth reduce their reliability and close the use monolithic ceramic components for safety-relevant structures. This applies in particular to aircraft construction.

Es werden seit mehreren Jahren Anstrengungen unternommen, durch den Einbau von Fasern in eine keramische Matrix die Schadenstoleranz des Ver­ bundwerkstoffes zu erhöhen und gleichzeitig die positiven Eigenschaften der monolithischen Keramik zu erhalten. Die Anwendung von carbonfaserver­ stärktem Sailiciumkarbid (C/SiC) oder siliciumkarbidverstärktem Siliciumcarbid für die Raumfahrt sind bekannt. Es sind dies Strukturbauteile und Teile von Raketentriebwerken sowie "nozzle flaps" für den Einsatz in militärischen Jet- Triebwerken. Das hierbei verwendete Herstellprizip der Abscheidung der Matrix aus der Gasphase (CVI) bedingt sehr lange Prozeßzeiten und damit hohe Kosten. Für den zivilen Flugzeugbau sind solche Teile daher nicht wirt­ schaftlich einsetzbar.Efforts have been underway for several years through the Incorporation of fibers in a ceramic matrix the damage tolerance of the ver to increase the material and at the same time the positive properties of the to obtain monolithic ceramics. The application of carbon fiber ver reinforced sailicium carbide (C / SiC) or silicon carbide reinforced silicon carbide  are known for space travel. These are structural components and parts from Rocket engines and "nozzle flaps" for use in military jet Engines. The manufacturing principle used here for the deposition of Gas phase matrix (CVI) requires very long process times and therefore high costs. Such parts are therefore not economical for civil aircraft construction socially applicable.

Neben faserverstärktem SiC wird heute für den Flugzeugbau C-faserverstärk­ ter Kohlenstoff eingesetzt. Dieser Werkstoff ist für den hier vorgesehenen Zweck auf Grund seiner mangelhaften Oxidationsbeständigkeit ab 500°C bis 600°C nicht geeignet. Zudem ist die Herstellung sehr aufwendig und der Werkstoff teuer.In addition to fiber-reinforced SiC, C-fiber reinforcement is now used for aircraft construction ter carbon used. This material is for the intended here Purpose due to its poor oxidation resistance from 500 ° C up to 600 ° C not suitable. In addition, the production is very complex and Material expensive.

Der Erfindung liegt die Aufgabe zugrunde, ein keramisches Rohr zu ent­ wickeln, das neben Beständigkeit gegen hohe Temperaturen (≧500°C), Be­ ständigkeit gegen Korrosion und Beständigkeit gegen Oxidation eine gegen­ über monolithischen Keramiken erhöhte Bruchzähigkeit aufweist. Das Rohr sollte eine möglichst geringe spezifische Dichte (<2,5 g/cm³) besitzen und in Serie herstellbar sein. Weiterhin sollte das Rohr auch bei großen Abmessungen (Durchmesser z. B. 0,5 m, Länge z. B. 1,5 m) selbsttragend sein. Die Wandstärke solcher Bauteile sollte vorzugsweise in der Größenordnung von 2 mm liegen.The invention has for its object to ent a ceramic tube wrap, in addition to resistance to high temperatures (≧ 500 ° C), Be resistance to corrosion and resistance to oxidation exhibits increased fracture toughness over monolithic ceramics. The pipe should have the lowest possible specific density (<2.5 g / cm³) and in Series can be produced. Furthermore, the pipe should also be large (Diameter e.g. 0.5 m, length e.g. 1.5 m) be self-supporting. The The wall thickness of such components should preferably be of the order of magnitude 2 mm.

Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Formteil aus einem Keramikwerkstoff (carbidisch, nitridisch oder oxidisch) mit darin einge­ lagerten keramischen Endlosfasern (carbidisch, nitridisch oder oxidisch) be­ steht. The object is achieved in that the molded part a ceramic material (carbidic, nitridic or oxidic) with it stored ceramic continuous fibers (carbidic, nitridic or oxidic) stands.  

Die Herstellung des Rohres aus endlosfaserverstärkter Keramik geschieht analog zu der Herstellung von faserverstärkten Kunststoffen entweder durch einen Prozeß, bei dem der Faden in einem Tauchbad mit einem Schlicker getränkt und anschließend auf einen Wickelkern abgelegt wird oder über Lami­ nation von getränkten Geweben. Erfindungsgemäß besteht der Schlicker aus einem gelösten Si-Polymer (z. B. Silan oder Siloxan) und einem keramischen Pulver, dessen rheologische Eigenschaften auf die Wickelparameter und die Fadencharakteristik abgestimmt sind. Das keramische Pulver dient als Mage­ rungsmittel, um die Schwindung der Matrix bei der nachfolgenden Tempera­ turbehandlung zu verringern.The tube is made from continuous fiber reinforced ceramic analogous to the manufacture of fiber reinforced plastics either by a process in which the thread in an immersion bath with a slip soaked and then placed on a winding core or over lami nation of soaked tissues. According to the invention, the slip consists of a dissolved Si polymer (e.g. silane or siloxane) and a ceramic Powder, whose rheological properties are based on the winding parameters and the Thread characteristics are matched. The ceramic powder serves as a stomach means to reduce the shrinkage of the matrix at the subsequent tempera to reduce turbo treatment.

Das fertig gewickelte oder laminierte Teil kann in einem Autoklaven unter er­ höhtem Druck (z. B. 1,5 MPa) und Temperaturerhöhung (z. B. 200 bis 450°C) vernetzt werden. Eine Vernetzung über chemische Hilfsstoffe (z. B. Borsäure) ist bei geeigneten Si-Polymeren auch bei Raumtemperatur möglich. Nach der Abformung wird das Teil bei Temperaturen <500°C keramisiert (z. B. durch Pyrolyse. Im Autoklaven wird das Polymer viskos und füllt damit die Zwischenräume und Poren im Werkstück auf. Bei der Vernetzung wird das Polymer fest.The finished wound or laminated part can be placed in an autoclave high pressure (e.g. 1.5 MPa) and temperature increase (e.g. 200 to 450 ° C) be networked. Networking via chemical auxiliaries (e.g. boric acid) is also possible at room temperature with suitable Si polymers. To the impression is ceramized at temperatures <500 ° C (e.g. through pyrolysis. The polymer becomes viscous in the autoclave and thus fills the Gaps and pores in the workpiece. With networking, it will Polymer solid.

Die Pyrolyse bewirkt eine Abspaltung organischer Gruppen und die Bildung eines keramischen Produkts, überwiegend SiC aus Silanen, Carbosilanen und Vinylsilanen, Si₃N₄ aus Silazanen und SiC mit SiO₂ aus Siloxanen. Das Pyrolyseprodukt verbindet die Pulverpartikel des Schlickers und die Fasern. Eine Pyrolyse unter Druck bringt eine geringe Verbesserung der keramischen Ausbeute, rechtfertigt jedoch kaum den erhöhten apparativen Aufwand.Pyrolysis causes organic groups to split off and form a ceramic product, mainly SiC from silanes, carbosilanes and vinyl silanes, Si₃N₄ from silazanes and SiC with SiO₂ from siloxanes. The Pyrolysis product connects the powder particles of the slip and the fibers. Pyrolysis under pressure brings little improvement in ceramic Yield, but hardly justifies the increased equipment.

Alternativ zur direkten Formgebung auf dem Wickelkern kann das Prepreg auch nach dem Trocknen vom Kern abgenommen werden. Die getrockneten Teile können durch Lösungsmittelzusatz wieder biegsam gemacht und zu Formteilen laminiert werden, bevor sie ausgehärtet und pyrolysiert werden. Die Formteile sind nach dem Aushärten formstabil.As an alternative to direct shaping on the winding core, the prepreg can be used  can also be removed from the core after drying. The dried ones Parts can be made flexible again by adding solvents Molded parts are laminated before they are cured and pyrolyzed. The molded parts are dimensionally stable after curing.

Das keramische Endprodukt ist gut mechanisch bearbeitbar und kann, falls er­ forderlich, mit einer keramischen Beschichtung versehen werden.The ceramic end product is easy to machine and if it can required to be provided with a ceramic coating.

In Abhängigkeit von der Pyrolysetemperatur und dem gewählten Si-Polymer kann eine Beständigkeit des keramischen Formteils gegen Temperaturen von mehr als 1400°C erreicht werden. Das Formteil besitzt ein geringes spezifi­ sches Gewicht (<2,5 g/cm³), ist bearbeitbar zum Beispiel mittels Drehen, Frä­ sen, Sägen, Bohren und selbsttragend.Depending on the pyrolysis temperature and the selected Si polymer resistance of the ceramic molding to temperatures of more than 1400 ° C can be reached. The molded part has a low specific cal weight (<2.5 g / cm³), can be processed, for example, by turning, milling cutting, sawing, drilling and self-supporting.

Die Matrix ist oxidationsbeständig. Bei Verwendung oxidationsbeständiger Fasern (SiC oder oxidische Fasern) ist kein zusätzlicher Oxidationsschutz not­ wendig. Der Werkstoff ist in hohem Maße schadenstolerant, selbst schwerste Schädigungen bleiben lokal begrenzt.The matrix is resistant to oxidation. When using more resistant to oxidation Fibers (SiC or oxidic fibers) do not require additional protection against oxidation agile. The material is highly tolerant of damage, even the heaviest Damage remains local.

Die Biegefestigkeit beträgt mehr als 100 MPa.The bending strength is more than 100 MPa.

Die chemische Zusammensetzung der Fasern und der Matrix ist so gewählt, daß eine Korrosionsbeständigkeit gewährleistet ist.The chemical composition of the fibers and the matrix is chosen so that corrosion resistance is guaranteed.

Die Vorteile der Erfindung liegen in dem geringen spezifischen Gewicht des keramischen Bauteils (<2,5 g/cm³) und der Hochtemperaturfestigkeit, Oxida­ tionsresistenz sowie der Thermoschockbeständigkeit. Hinzu kommt die we­ sentlich verringerte thermische Leitfähigkeit des keramischen Verbundmate­ rials, die zu einer Reduzierung der Menge des bislang verwendeten Isolier­ materials führen kann und damit zu einer weiteren Gewichtsersparnis beiträgt. The advantages of the invention lie in the low specific weight of the ceramic component (<2.5 g / cm³) and high temperature resistance, Oxida resistance and thermal shock resistance. Add to that the we considerably reduced thermal conductivity of the ceramic composite material rials leading to a reduction in the amount of insulation used so far materials can lead to further weight savings.  

Gegenüber anderen bekannten Verfahren der Herstellung keramischer Ver­ bundwerkstoffe (z. B. CVI) von Fasergelegen) besitzt das hier gezeigte Verfah­ ren deutliche Vorteile bezüglich des Preises der Ausgangsmaterialien und der Fertigungsdauer sowie der Fertigungskosten.Compared to other known methods of producing ceramic ver Bund materials (e.g. CVI) of fiber fabrics) has the procedure shown here significant advantages in terms of the price of the raw materials and the Manufacturing time and manufacturing costs.

Die Rohre können nach erprobten Verfahrensweisen, wie sie seit mehreren Jahren im Bereich der faserverstärkten Kunststoffe Standard sind, sowie einer ergänzenden einfachen Temperaturbehandlung (Pyrolyse) gefertigt werden. Notwendige Änderungen an der Herstellapparatur sind so weit optimiert, daß der Herstellungsprozeß ungehindert laufen kann. Die Verwendung vorhande­ ner Techniken ist die Basis für eine preiswerte Fertigung der Bauteile und die geringe Fertigungsdauer.The tubes can be tested according to proven procedures, as they have been for several Years in the field of fiber reinforced plastics are standard, as well as one complementary simple temperature treatment (pyrolysis). Necessary changes to the manufacturing equipment have been optimized so far that the manufacturing process can run freely. The use of existing techniques is the basis for an inexpensive production of the components and the short production time.

Ein Ausführungsbeispiel der Erfindung wird nachfolgend erläutert.An embodiment of the invention is explained below.

Es wurden nach der Lehre der Patentansprüche Rohre von einem maximalen Durchmesser von 300 mm und einer Länge von 420 mm bei einer Wand­ stärke von 1,5 mm hergestellt. Die Dimensionen unterliegen keinen prinzipiel­ len Beschränkungen. Untersuchungen der Biegefestigkeit der faserverstärk­ ten Keramik ergaben Werte von <300 MPa für unidirektionale Gelege sowie <150 MPa für bidirektionale Gelege. Mit unidirektional verstärkten Biegepro­ ben wurden bei 1100°C Prüftemperatur mittlere Festigkeiten von 400 MPa er­ reicht. Versuche an Gelegen, die in ihrem Aufbau der Rohrwand entsprechen, laufen derzeit.According to the teaching of the claims, pipes were of a maximum Diameter of 300 mm and a length of 420 mm for a wall 1.5 mm thick. The dimensions are not subject to any principle len restrictions. Investigations of the flexural strength of the fiber reinforcement ceramics gave values of <300 MPa for unidirectional fabrics as well <150 MPa for bidirectional fabrics. With unidirectionally reinforced bending pro Average strengths of 400 MPa were used at a test temperature of 1100 ° C enough. Tests on fabrics that correspond in structure to the pipe wall, are currently running.

Oxidationsversuche bis 700°C mit zyklischem Verlauf zeigen die Notwendig­ keit eines zusätzlichen Oxidationsschutzes für die C-Faser. Mit oxidationsbe­ ständigen Fasern (z. B. SiO₂, Al₂O₃, Al₂O₃ × SiO₂ × B₂O₃, SiC), konnte insbe­ sondere im Temperaturbereich bis 1100°C eine Oxidationsbeständigkeit bis 400 h nachgewiesen werden. Eine Langzeitbeständigkeit von mehreren 1000 h ist sehr wahrscheinlich und wird derzeit geprüft.Oxidation tests up to 700 ° C with a cyclic course show the necessity additional oxidation protection for the C-fiber. With oxidation permanent fibers (z. B. SiO₂, Al₂O₃, Al₂O₃ × SiO₂ × B₂O₃, SiC) could in particular  resistance to oxidation, especially in the temperature range up to 1100 ° C 400 h can be demonstrated. Long-term durability of several 1000 h is very likely and is currently being tested.

Eine mögliche Anwendung des Erfindungsgegenstands ist als Abgasrohr in den Triebwerken von Verkehrsflugzeugen oder Motoren von Kraftfahrzeugen. Eine weitere Anwendung ist die Führung von heißen Triebwerksgasen zum Zweck der Enteisung von gefährdeten Stellen an bemannten und unbemann­ ten Flugkörpern.A possible application of the subject matter of the invention is as an exhaust pipe in the engines of commercial aircraft or engines of motor vehicles. Another application is the guidance of hot engine gases to the Purpose of defrosting vulnerable areas in manned and unmanned areas missiles.

Neben heißen Gasen können auch heiße und korrosive Flüssigkeiten in diesen Röhren geführt werden.In addition to hot gases, hot and corrosive liquids can also be in these tubes.

Claims (9)

1. Keramisches Formteil zum Leiten heißer Gase (Heißgasrohr), dadurch gekennzeichnet, daß es aus einem keramischen Faserverbundwerk­ stoff besteht, wobei die Fasern aus anorganischem Material (z. B. Ci, SiC, SiO₂, Al₂O₃, Si₃N₄, Al₂O₃ · SiO₂ · B₂O₃) oder Mischungen oder Verbindungen daraus bestehen und die keramische Matrix aus einem präkeramischen Si-Polymer mittels Vernetzung und Pyrolyse gebildet wird.1. Ceramic molding for guiding hot gases (hot gas pipe), characterized in that it consists of a ceramic fiber composite material, the fibers of inorganic material (z. B. Ci, SiC, SiO₂, Al₂O₃, Si₃N₄, Al₂O₃ · SiO₂ · B₂O₃ ) or mixtures or compounds thereof and the ceramic matrix is formed from a preceramic Si polymer by means of crosslinking and pyrolysis. 2. Keramisches Formteil nach Anspruch 1, dadurch gekennzeichnet, daß das Formteil oder Gewebe mit einer anorganischen Be­ schichtung (z. B. C, SiC, TiC, TiN) in einer oder mehreren Lagen enthält.2. Ceramic molding according to claim 1, characterized in that the molded part or fabric with an inorganic Be Layering (e.g. C, SiC, TiC, TiN) contains in one or more layers. 3. Keramisches Formteil nach den Ansprüchen 1 und 2, dadurch ge­ kennzeichnet, daß die Matrix bis zu 90 Gew.-% eines keramischen Pulvers enthält und daß das Pulver vorzugsweise SiC, Si₃N₄, BN oder Al₂O₃ oder eine Mischung oder eine Verbindung dieser Stoffe ist.3. Ceramic molding according to claims 1 and 2, characterized ge indicates that the matrix up to 90 wt .-% of a ceramic Contains powder and that the powder is preferably SiC, Si₃N₄, BN or Al₂O₃ or a mixture or a compound of these substances. 4. Verfahren zur Herstellung eines keramischen Formteils nach den An­ sprüchen 1 bis 3, dadurch gekennzeichnet, daß es Si-Polymer ein Silan, Carbosilan, Vinylsilan, Silazan oder Siloxan oder eine Verbin­ dung oder eine Mischung daraus ist.4. Process for the production of a ceramic molding according to the An sayings 1 to 3, characterized in that it is a Si polymer Silane, carbosilane, vinylsilane, silazane or siloxane or a verb or a mixture of them. 5. Verfahren zur Herstellung eines keramischen Formteils nach den An­ sprüchen 1 bis 4, dadurch gekennzeichnet, daß dem Si-Polymer ein keramisches Pulver (z. B. Glas, SiO₂, SiC, Si₃N₄, BN oder Al₂O₃ oder Mischungen oder Verbindungen dieser Stoffe) zugemischt wird.5. Process for producing a ceramic molding according to the An  sayings 1 to 4, characterized in that the Si polymer a ceramic powder (e.g. glass, SiO₂, SiC, Si₃N₄, BN or Al₂O₃ or mixtures or compounds of these substances) is admixed. 6. Verfahren zur Herstellung eines keramischen Formteils nach den An­ sprüchen 1 bis 5, dadurch gekennzeichnet, daß die Fasern oder Gewebe mit der Mischung aus Si-Polymer und Pulver ("Schlicker") ge­ tränkt werden.6. Process for producing a ceramic molding according to the An sayings 1 to 5, characterized in that the fibers or Fabric with the mixture of Si polymer and powder ("slip") ge to be soaked. 7. Verfahren zur Herstellung eines keramischen Formteils nach den An­ sprüchen 1 bis 6, dadurch gekennzeichnet, daß es mittels eines Faserwickelprozesses oder in Laminiertechnik mit Gelegen oder Ge­ weben hergestellt wird.7. Process for producing a ceramic molding according to the An sayings 1 to 6, characterized in that it is by means of a Fiber winding process or in laminating technology with scrims or Ge weaving is made. 8. Verfahren zur Herstellung eines keramischen Formteils nach den An­ sprüchen 1 bis 7, dadurch gekennzeichnet, daß das Si-Polymer entweder durch chemische Vernetzer oder unter erhöhtem Druck und Temperatur (z. B. Autoklavenbedingungen) ausgehärtet und drucklos durch Temperaturerhöhung in einen keramischen Stoff umgesetzt wird.8. Process for producing a ceramic molding according to the An sayings 1 to 7, characterized in that the Si polymer either by chemical crosslinkers or under increased pressure and Temperature (e.g. autoclave conditions) hardened and depressurized is converted into a ceramic material by increasing the temperature. 9. Keramisches Formteil nach den Ansprüchen 1 bis zur Verwendung als Heißgasrohr in Triebwerken militärischer und ziviler Flugkörper und Flugzeuge sowie militärischer und ziviler Fahrzeuge.9. Ceramic molding according to claims 1 to use as Hot gas pipe in military and civil missile engines and Aircraft as well as military and civil vehicles.
DE4016052A 1990-05-18 1990-05-18 Ceramic-fibre composite hot gas tube - with ceramic matrix formed from silicon polymer and fibres of inorganic materials or mixts., used for e.g. vehicle exhaust tube Granted DE4016052A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4016052A DE4016052A1 (en) 1990-05-18 1990-05-18 Ceramic-fibre composite hot gas tube - with ceramic matrix formed from silicon polymer and fibres of inorganic materials or mixts., used for e.g. vehicle exhaust tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4016052A DE4016052A1 (en) 1990-05-18 1990-05-18 Ceramic-fibre composite hot gas tube - with ceramic matrix formed from silicon polymer and fibres of inorganic materials or mixts., used for e.g. vehicle exhaust tube

Publications (2)

Publication Number Publication Date
DE4016052A1 true DE4016052A1 (en) 1991-11-21
DE4016052C2 DE4016052C2 (en) 1992-08-06

Family

ID=6406738

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4016052A Granted DE4016052A1 (en) 1990-05-18 1990-05-18 Ceramic-fibre composite hot gas tube - with ceramic matrix formed from silicon polymer and fibres of inorganic materials or mixts., used for e.g. vehicle exhaust tube

Country Status (1)

Country Link
DE (1) DE4016052A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0549224A1 (en) * 1991-12-20 1993-06-30 Dow Corning Corporation Ceramic matrix composites and method for making same
DE4303016A1 (en) * 1993-02-03 1994-08-04 Dornier Gmbh Oxidn.-resistant ceramic fibre composite
WO1995030632A1 (en) * 1994-05-10 1995-11-16 Sri International Ceramic materials fabricated from hydridosiloxane-based ceramic precursors and metal and/or ceramic powders
WO1998027025A1 (en) * 1996-12-18 1998-06-25 Raytheon Company High yield-low carbon ceramic via polysilazane
EP0850713A1 (en) * 1996-12-26 1998-07-01 AEROSPATIALE Société Nationale Industrielle Method and device for the thermal and mechanical protection of a surface
WO2004106705A1 (en) * 2003-06-02 2004-12-09 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Vehicle exhaust system
WO2006076069A1 (en) * 2005-01-12 2006-07-20 The Boeing Company Method for manufacturing ceramic matrix composite structures
EP3401222A1 (en) * 2017-05-12 2018-11-14 Bell Helicopter Textron Inc. Engine exhaust duct mounting assembly
IT201700089373A1 (en) * 2017-08-03 2019-02-03 Petroceramics S P A PRE-IMPREGIATED FIBER-REINFORCED COMPOSITE MATERIAL AND FIBER-REINFORCED CERAMIC COMPOSITE MATERIAL OBTAINED BY FORMING AND NEXT PYROLYSIS OF SUCH PRE-IMPREGNATED MATERIAL
US11577477B2 (en) 2017-08-03 2023-02-14 Petroceramics S.P.A. Pre-impregnated fibre-reinforced composite material and manufactured article obtained by forming and complete curing of said pre-impregnated fibre-reinforced composite material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4202804A1 (en) * 1992-01-31 1993-08-05 Man Technologie Gmbh Fibre composite ceramic article with durable surface - made by applying ceramic foil or consolidation material onto article surface
DE19645634C2 (en) * 1996-11-06 2003-07-03 Hermsdorfer Inst Tech Keramik Ceramic-like, partially pyrolyzed composite material and process for its production
DE19655214C2 (en) * 1996-11-06 2003-11-20 Hermsdorfer Inst Tech Keramik Composites of organic and inorganic substances with ceramic properties,

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2119777A (en) * 1982-01-21 1983-11-23 Nippon Carbon Co Ltd Process for the preparation of sintered bodies
DE3724580A1 (en) * 1986-08-06 1988-02-11 Norton Co Ceramic composite
EP0346192A1 (en) * 1988-06-09 1989-12-13 Elf Atochem S.A. Intermediate transformation material for ceramic precursors, method of transformation, storage method and production method of precursors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2119777A (en) * 1982-01-21 1983-11-23 Nippon Carbon Co Ltd Process for the preparation of sintered bodies
DE3724580A1 (en) * 1986-08-06 1988-02-11 Norton Co Ceramic composite
EP0346192A1 (en) * 1988-06-09 1989-12-13 Elf Atochem S.A. Intermediate transformation material for ceramic precursors, method of transformation, storage method and production method of precursors

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635250A (en) * 1985-04-26 1997-06-03 Sri International Hydridosiloxanes as precursors to ceramic products
EP0549224A1 (en) * 1991-12-20 1993-06-30 Dow Corning Corporation Ceramic matrix composites and method for making same
DE4303016A1 (en) * 1993-02-03 1994-08-04 Dornier Gmbh Oxidn.-resistant ceramic fibre composite
WO1995030632A1 (en) * 1994-05-10 1995-11-16 Sri International Ceramic materials fabricated from hydridosiloxane-based ceramic precursors and metal and/or ceramic powders
US6063327A (en) * 1996-12-18 2000-05-16 Raytheon Company Method for making high yield-low carbon ceramic via polysilazane
WO1998027025A1 (en) * 1996-12-18 1998-06-25 Raytheon Company High yield-low carbon ceramic via polysilazane
US6200660B1 (en) 1996-12-26 2001-03-13 Aerospatiale Societe Nationale Industrielle Device and method for thermal protection of a surface against a thermally and mechanically aggressive environment
FR2757902A1 (en) * 1996-12-26 1998-07-03 Aerospatiale DEVICE AND METHOD FOR THE THERMAL PROTECTION OF A SURFACE FROM A THERMALLY AND MECHANICALLY AGGRESSIVE ENVIRONMENT
EP0850713A1 (en) * 1996-12-26 1998-07-01 AEROSPATIALE Société Nationale Industrielle Method and device for the thermal and mechanical protection of a surface
WO2004106705A1 (en) * 2003-06-02 2004-12-09 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Vehicle exhaust system
WO2006076069A1 (en) * 2005-01-12 2006-07-20 The Boeing Company Method for manufacturing ceramic matrix composite structures
EP3401222A1 (en) * 2017-05-12 2018-11-14 Bell Helicopter Textron Inc. Engine exhaust duct mounting assembly
US10279924B2 (en) 2017-05-12 2019-05-07 Bell Helicopter Textron Inc. Engine exhaust duct mounting assembly
IT201700089373A1 (en) * 2017-08-03 2019-02-03 Petroceramics S P A PRE-IMPREGIATED FIBER-REINFORCED COMPOSITE MATERIAL AND FIBER-REINFORCED CERAMIC COMPOSITE MATERIAL OBTAINED BY FORMING AND NEXT PYROLYSIS OF SUCH PRE-IMPREGNATED MATERIAL
WO2019026035A1 (en) * 2017-08-03 2019-02-07 Petroceramics S.P.A. Pre-impregnated fibre-reinforced composite material and fibre-reinforced composite ceramic material, obtained by forming and subsequent pyrolysis of said pre-impregnated material
CN111164062A (en) * 2017-08-03 2020-05-15 派特欧赛拉米克斯股份公司 Prepreg fiber-reinforced composite material and fiber-reinforced composite ceramic material obtained by molding and subsequent pyrolysis of the prepreg material
JP2020529962A (en) * 2017-08-03 2020-10-15 ペトロセラミクス・エス.ピー.エー.Petroceramics S.P.A. Pre-impregnated fiber-reinforced composite material, and fiber-reinforced composite ceramic material obtained by molding and subsequent thermal decomposition of the pre-impregnated material.
US11577477B2 (en) 2017-08-03 2023-02-14 Petroceramics S.P.A. Pre-impregnated fibre-reinforced composite material and manufactured article obtained by forming and complete curing of said pre-impregnated fibre-reinforced composite material
US11655191B2 (en) * 2017-08-03 2023-05-23 Petroceramics S.P.A. Pre-impregnated fibre-reinforced composite material and fibre-reinforced composite ceramic material, obtained by forming and subsequent pyrolysis of said pre-impregnated material

Also Published As

Publication number Publication date
DE4016052C2 (en) 1992-08-06

Similar Documents

Publication Publication Date Title
EP0913373B1 (en) Ceramic composite reinforced with carbon fibers
DE4030529C2 (en)
DE2903492C2 (en)
DE69728060T2 (en) SILICON CARBIDE REINFORCED COMPOSITE
DE60307254T2 (en) PROTECTION OF COMPOSITE MATERIALS AGAINST OXIDATION
DE4016052A1 (en) Ceramic-fibre composite hot gas tube - with ceramic matrix formed from silicon polymer and fibres of inorganic materials or mixts., used for e.g. vehicle exhaust tube
US20020079623A1 (en) Method of forming a fiber-reinforced ceramic matrix composite
EP0467686A2 (en) Oxidation resistant ceramic matrix composites
CN102659441B (en) Composite structure prestressed tendon reinforced ceramic matrix composite and producing method thereof
DE60130688T2 (en) METHOD FOR THE PRODUCTION OF SIC FIBER REINFORCED SIC COMPOUND MATERIAL USING A HOT PRESSURE
DE2648459A1 (en) METHOD FOR MANUFACTURING SILICON CARBIDE FIBER-REINFORCED COMPOSITE MATERIAL
US6743393B1 (en) Method for producing ceramic matrix composites
DE2206700A1 (en) METHOD FOR MANUFACTURING FIBER-REINFORCED COMPOSITE BODIES
DE69909950T2 (en) Composite with a ceramic matrix and method for changing the dielectric properties of a composite with a ceramic matrix
Jamet et al. Ceramic‐Fiber Composite Processing via Polymer‐Filler Matrices
DE3922539A1 (en) Carbon fibre-reinforced carbon heating element prodn. - involves chemical gas phase infiltration with pyrolytic carbon
DE3741059A1 (en) POLYSILAZANES, METHOD FOR THE PRODUCTION THEREOF, CERAMIC MATERIALS CONTAINING THEIR PRODUCTABLE SILICON NITRIDE, AND THEIR PRODUCTION
EP0678083B1 (en) Thermostructural composite articles and method for making same
DE102015201119B4 (en) Production process of ceramic matrix semi-finished products
KR20000009035A (en) Ceramic-contained carbon-carbon composite material and process for producing the same
DE4012229A1 (en) FIBER-REINFORCED CERAMIC BASE MATERIAL COMPONENT COMPONENT AND METHOD FOR THE PRODUCTION THEREOF
EP0672637B1 (en) Fibre composite material having a ceramic matrix and method of making it
Morozumi et al. Preparation of high strength ceramic fibre reinforced silicon nitride composites by a preceramic polymer impregnation method
DE4023849A1 (en) Ceramic material contg. pre-ceramic silicon polymers - and metallic powder with equivalent of organo:metallic cpd., useful as matrix in ceramic fibres
ZHENG et al. Preparation and fracture behavior of carbon fiber/SiC composites by multiple impregnation and pyrolysis of polycarbosilane

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: DORNIER GMBH, 88090 IMMENSTAAD, DE

8339 Ceased/non-payment of the annual fee