DE10342828A1 - High purity pyrogenic silica - Google Patents

High purity pyrogenic silica Download PDF

Info

Publication number
DE10342828A1
DE10342828A1 DE10342828A DE10342828A DE10342828A1 DE 10342828 A1 DE10342828 A1 DE 10342828A1 DE 10342828 A DE10342828 A DE 10342828A DE 10342828 A DE10342828 A DE 10342828A DE 10342828 A1 DE10342828 A1 DE 10342828A1
Authority
DE
Germany
Prior art keywords
silica
high purity
silicon tetrachloride
purity
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10342828A
Other languages
German (de)
Inventor
Hauke Dr. Mobile Jacobsen
Monika Dr. Oswald
Kai Dr. Schumacher
Martin Dr. Mörters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Priority to DE10342828A priority Critical patent/DE10342828A1/en
Priority to JP2006526581A priority patent/JP4903045B2/en
Priority to PCT/EP2004/010335 priority patent/WO2005026068A2/en
Priority to CNA2004800268452A priority patent/CN1863733A/en
Priority to KR1020067005468A priority patent/KR100789124B1/en
Priority to EP04786950A priority patent/EP1663888A2/en
Priority to US10/571,332 priority patent/US20070003770A1/en
Publication of DE10342828A1 publication Critical patent/DE10342828A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • C01B33/183Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process by oxidation or hydrolysis in the vapour phase of silicon compounds such as halides, trichlorosilane, monosilane
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/02Pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

Hochreines, pyrogen hergestelltes Siliciumdioxid mit Metallgehalten von kleiner 0,2 mug/g wird hergestellt, indem man ein Siliciumtetrachlorid mit Metallgehalten kleiner 30 ppb mittels Flammenhydrolyse umsetzt. DOLLAR A Das Siliziumdioxid kann zur Herstellung von hochreinen Gläsern mittels des Sol-Gel-Verfahrens eingesetzt werden.High purity fumed silica with metal contents of less than 0.2 mug / g is prepared by reacting a silicon tetrachloride with metal contents below 30 ppb by flame hydrolysis. DOLLAR A The silica can be used to produce high purity glasses by the sol-gel method.

Description

Die Erfindung betrifft ein hochreines, pyrogen hergestelltes Siliciumdioxid, ein Verfahren zu seiner Herstellung sowie seine Verwendung.The This invention relates to a high purity pyrogenic silica, a method for its production and its use.

Kieselglas kann vorteilhaft für viele Einsatzzwecke, wie Crucibles, Boards und Quarzröhren zur Herstellung von Halbleitern eingesetzt werden, seitdem es möglich ist, dieses Kieselglas in hoher Reinheit herzustellen.silica glass can be beneficial for many uses, such as crucibles, boards and quartz tubes for Manufacture of semiconductors since it is possible to to produce this silica glass in high purity.

Weiterhin wird das Siliciumdioxidglas für die Glasgeräte in der Chemie oder für die Photozelle verwendet. Es kann zur Herstellung von Lichtleitfasern verwendet werden.Farther is the silica glass for the glassware in chemistry or for the photocell used. It can be used to manufacture optical fibers be used.

Es ist bekannt Siliciumdioxidglas zum Beispiel in Form eines Monolithen herzustellen, indem man Siliciumalkoxid hydrolysiert, pyrogene Kieselsäure zu der hydrolysierten Lösung hinzugibt, die Mischung zu einem Gel gellieren läßt, das Gel trocknet und das erhaltene trockne Gel sintert ( US 4,681,615 , US 4,801,318 ).It is known to prepare silica glass, for example in the form of a monolith, by hydrolyzing silicon alkoxide, adding fumed silica to the hydrolyzed solution, gelling the mixture to a gel, drying the gel and sintering the resultant dry gel ( US 4,681,615 . US 4,801,318 ).

Bei dem bekannten Verfahren können bekannte pyrogen hergestellte Siliciumdioxide eingesetzt werden.at the known method can known pyrogenic silicas are used.

Die bekannten pyrogenen Kieselsäuren weisen den Nachteil auf, daß sie für die besonders hohen Ansprüche an die Reinheit des Glases noch zu viele Fremdelemente enthalten.The known fumed silicas have the disadvantage that they for the particularly high standards to the purity of the glass still contain too many foreign elements.

Gegenstand der Erfindung ist ein hochreines, pyrogen hergestelltes Siliciumdioxid, welches gekennzeichnet ist durch einen Gehalt an Metallen von kleiner 9 ppm.object the invention is a high-purity, pyrogenic silica, which is characterized by a content of metals of smaller 9 ppm.

In einer bevorzugten Ausführungsform der Erfindung kann das hochreine pyrogen hergestellte Siliciumdioxid gekennzeichnet sein durch den folgenden Gehalt an Metallen:

Figure 00020001
In a preferred embodiment of the invention, the high purity pyrogenic silica may be characterized by the following metals content:
Figure 00020001

Der Gesamtmetallgehalt kann dann 3252 ppb (~ 3,2 ppm) oder kleiner betragen.Of the Total metal content may then be 3252 ppb (~ 3.2 ppm) or less.

In einer weiter bevorzugten Ausführungsform der Erfindung kann das hochreine pyrogen hergestellte Siliciumdioxid gekennzeichnet sein durch den folgenden Gehalt an Metallen:

Figure 00030001
In a further preferred embodiment of the invention, the high-purity pyrogenically prepared silicon dioxide may be characterized by the following content of metals:
Figure 00030001

Der Gesamtmetallgehalt kann dann 1033 ppb (~ 1,03 ppm) oder kleiner betragen.Of the Total metal content can then be 1033 ppb (~ 1.03 ppm) or less be.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung des hochreinen, pyrogen hergestellten Siliciumdioxides, welches dadurch gekennzeichnet ist, daß man Siliciumtetrachlorid auf bekannte Weise mittels Hochtemperaturhydrolyse zu Siliciumdioxid in der Flamme umsetzt und dabei ein Siliciumtetrachlorid verwendet, welches einen Metallgehalt von kleiner 30 ppb aufweist.One Another object of the invention is a process for the preparation of the highly pure, pyrogenically produced silicon dioxide, which characterized in that one Silicon tetrachloride in a known manner by means of high temperature hydrolysis converts to silica in the flame and thereby a silicon tetrachloride used, which has a metal content of less than 30 ppb.

In einer bevorzugten Ausführungsform der Erfindung kann man ein Siliciumtetrachlorid verwenden, welches neben Siliciumtetrachlorid den folgenden Gehalt an Metallen aufweist:

Figure 00040001
In a preferred embodiment of the invention, it is possible to use a silicon tetrachloride which, in addition to silicon tetrachloride, has the following content of metals:
Figure 00040001

Siliciumtetrachlorid mit diesem niedrigen Metallgehalt kann gemäß DE 100 30 251 oder gemäß DE 100 30 252 hergestellt werden.Silicon tetrachloride with this low metal content can be prepared according to DE 100 30 251 or according to DE 100 30 252 getting produced.

Das prinzipielle Verfahren zur Herstellung von pyrogenem Siliciumdioxid, ausgehend von Siliciumtetrachlorid, das im Gemisch mit Wasserstoff und Sauerstoff umgesetzt wird, ist bekannt aus Ullmanns Enzyklopädie der technischen Chemie, 4. Auflage, Band 21, Seite 464 ff. (1982).The Principal processes for the preparation of fumed silica, starting from silicon tetrachloride mixed with hydrogen and oxygen is converted, is known from Ullmanns encyclopedia of Technical Chemistry, 4th Edition, Volume 21, page 464 ff. (1982).

Metallgehalt des erfindungsgemäßen Siliciumdioxides liegt im ppm-Bereich und darunter (ppb-Bereich).metal content of the silicon dioxide according to the invention is in the ppm range and below (ppb range).

Das erfindungsgemäße pyrogen hergestellte Siliciumdioxid kann bei den verschiedensten Glasherstellungsmethoden, wie zum Beispiel dem Sol-Gel-Verfahren eingesetzt werden. Derartige Sol-Gel-Verfahren sind bekannt aus US 4,681,615 oder US 4,801,318 .The pyrogenically prepared silicon dioxide according to the invention can be used in a wide variety of glass production methods, for example the sol-gel method. Such sol-gel methods are known from US 4,681,615 or US 4,801,318 ,

Das erfindungsgemäße pyrogen hergestellte Siliciumdioxid eignet sich vorteilhaft zur Herstellung von Spezialgläsern mit hervorragenden optischen Eigenschaften.The pyrogen according to the invention produced silica is advantageously suitable for the preparation of special glasses with excellent optical properties.

Die mittels dem erfindungsgemäßen Siliciumdioxid hergestellten Gläser weisen eine besonders geringe Adsorption im tiefen UV-Bereich auf.The by means of the silica according to the invention produced glasses have a particularly low adsorption in the deep UV range.

Beispiel 1 (Vergleichsbeispiel) Example 1 (comparative example)

500 kg/h SiCl4 einer Zusammensetzung gemäß Tabelle 1 werden bei ca. 90 °C verdampft und in das Zentralrohr eines Brenners bekannter Bauart überführt. In dieses Rohr werden zusätzlich 190 Nm3/h Wasserstoff sowie 326 Nm3/h Luft mit einem Sauerstoffanteil von 35 Vol% gegeben. Dieses Gasgemisch wird entzündet und brennt im Flammrohr des wassergekühlten Brenners. In eine die Zentraldüse umgebende Manteldüse werden zur Vermeidung von Anbackungen zusätzlich 15 Nm3/h Wasserstoff gegeben. In das Flammrohr wird außerdem zusätzlich 250 Nm3/h Luft normaler Zusammensetzung gegeben. Nach der Abkühlung der Reaktionsgase wird das pyrogene Siliciumdioxidpulver von den salzsäurehaltigen Gasen mittels eines Filters und/oder eines Zyklons abgetrennt. In einer Entsäuerungseinheit wird das pyrogene Siliciumdioxidpulver mit Wasserdampf und Luft behandelt, um es von anhaftender Salzsäure zu befreien. Die Metallgehalte sind in der Tabelle 3 wiedergegeben.500 kg / h SiCl 4 of a composition shown in Table 1 are evaporated at about 90 ° C and transferred to the central tube of a burner of known design. In addition, 190 Nm 3 / h of hydrogen and 326 Nm 3 / h of air with an oxygen content of 35% by volume are added to this tube. This gas mixture is ignited and burns in the flame tube of the water-cooled burner. In a surrounding the central nozzle jacket nozzle to prevent caking additionally 15 Nm 3 / h of hydrogen. In addition, 250 Nm 3 / h of air of normal composition are added to the flame tube. After cooling of the reaction gases, the fumed silica powder is separated from the hydrochloric acid-containing gases by means of a filter and / or a cyclone. In a deacidification unit, the fumed silica powder is treated with water vapor and air to remove adherent hydrochloric acid. The metal contents are shown in Table 3.

Beispiel 2 (Ausführungsbeispiel)Example 2 (embodiment)

500 kg/h SiCl4 einer Zusammensetzung gemäß Tabelle 2 werden bei ca. 90 °C verdampft und in das Zentralrohr eines Brenners bekannter Bauart überführt. In dieses Rohr werden zusätzlich 190 Nm3/h Wasserstoff sowie 326 Nm3/h Luft mit einem Sauerstoffanteil von 35 Vol% gegeben. Dieses Gasgemisch wird entzündet und brennt im Flammrohr des wassergekühlten Brenners. In eine die Zentraldüse umgebende Manteldüse werden zur Vermeidung von Anbackungen zusätzlich 15 Nm3/h Wasserstoff gegeben. In das Flammrohr wird außerdem zusätzlich 250 Nm3/h Luft normaler Zusammensetzung gegeben. Nach der Abkühlung der Reaktionsgase wird das pyrogene Siliciumdioxidpulver von den salzsäurehaltigen Gasen mittels eines Filters und/oder eines Zyklons abgetrennt. In einer Entsäuerungseinheit wird das pyrogene Siliciumdioxidpulver mit Wasserdampf und Luft behandelt, um es von anhaftender Salzsäure zu befreien.500 kg / h SiCl 4 of a composition according to Table 2 are evaporated at about 90 ° C and transferred to the central tube of a burner of known design. In addition, 190 Nm 3 / h of hydrogen and 326 Nm 3 / h of air with an oxygen content of 35% by volume are added to this tube. This gas mixture is ignited and burns in the flame tube of the water-cooled burner. In a surrounding the central nozzle jacket nozzle to prevent caking additionally 15 Nm 3 / h of hydrogen. In addition, 250 Nm 3 / h of air of normal composition are added to the flame tube. After cooling of the reaction gases, the fumed silica powder is separated from the hydrochloric acid-containing gases by means of a filter and / or a cyclone. In a deacidification unit, the fumed silica powder is treated with water vapor and air to remove adherent hydrochloric acid.

Die Metallgehalte sind in der Tabelle 3 wiedergegeben.The Metal contents are given in Table 3.

Tabelle 1: Zusammensetzung SiCl4, Beispiel 1

Figure 00070001
Table 1: Composition SiCl 4 , Example 1
Figure 00070001

Tabelle 2: Zusammensetzung SiCl4, Beispiel 2

Figure 00070002
Table 2: Composition SiCl 4 , Example 2
Figure 00070002

Figure 00080001
Figure 00080001

MeßmethodeMeasurement Method

Die erhaltenen pyrogen hergestellten Siliciumdioxide werden in Bezug auf ihren Metallgehalt analysiert. Die Proben werden in einer Säurelösung, die hauptsächlich aus HF besteht, gelöst.The obtained pyrogenic silicas are obtained in relation analyzed for their metal content. The samples are dissolved in an acid solution, the mainly consists of HF, solved.

Das SiO2 reagiert mit dem HF und bildet SiF4 + H2O. Das SiF4 verdampft und läßt die zu bestimmenden Metalle vollständig in der Säure zurück. Die einzelnen Proben werden mit destilliertem Wasser verdünnt und mittels der Perkin Elmer Optima 3000 DV Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) gegen einen internen Standard analysiert. Die Ungenauigkeit der Werte rührt von Proben-Affekten, Spektral Interferencen und der Begrenztheit der Meßmethode her. Größere Elemente haben eine relative Ungenauigkeit von ± 5 %, während die kleineren Elemente eine relative Ungenauigkeit von ± 15 % aufweisen.The SiO 2 reacts with the HF and forms SiF 4 + H 2 O. The SiF 4 evaporates and leaves the metals to be determined completely in the acid. The individual samples are diluted with distilled water and analyzed against an internal standard using the Perkin Elmer Optima 3000 DV Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). The inaccuracy of the values is due to sample affects, spectral interferences, and the limitations of the method of measurement. Larger elements have a relative inaccuracy of ± 5%, while the smaller elements have a relative inaccuracy of ± 15%.

Claims (6)

Hochreines, pyrogen hergestelltes Siliciumdioxid, gekennzeichnet durch einen Gehalt an Metallen von kleiner 9 ppm.High purity fumed silica, characterized by a content of metals of less than 9 ppm. Hochreines, pyrogen hergestelltes Siliciumdioxid gemäß Anspruch 1, gekennzeichnet durch den folgenden Gehalt der Metalle:
Figure 00100001
High-purity, pyrogenically produced silicon dioxide according to claim 1, characterized by the following content of the metals:
Figure 00100001
Verfahren zur Herstellung des hochreinen, pyrogen hergestellten Siliciumdioxides gemäß den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß man Siliciumtetrachlorid auf bekannte Weise mittels Hochtemperaturhydrolyse zu Siliciumdioxid in der Flamme umsetzt und dabei ein Siliciumtetrachlorid verwendet, welches einen Metallgehalt von kleiner 30 ppb aufweist.Process for the preparation of high purity, pyrogenic produced silicon dioxide according to claims 1 or 2, characterized in that that is silicon tetrachloride in a known manner by means of high-temperature hydrolysis to silica reacted in the flame using a silicon tetrachloride, which has a metal content of less than 30 ppb. Verfahren zur Herstellung des hochreinen, pyrogen hergestellten Siliciumdioxides gemäß Anspruch 3, dadurch gekennzeichnet, daß man Siliciumtetrachlorid auf bekannter Waise mittels Hochtemperaturhydrolyse zu Siliciumdioxid in der Flamme umsetzt und dabei ein Siliciumtetrachlorid verwendet, welches neben Siliciumtetrachlorid den folgenden Gehalt an Metallen aufweist:
Figure 00110001
Process for the preparation of the high-purity pyrogenically prepared silicon dioxide according to Claim 3, characterized in that silicon tetrachloride is known on orphan by means of high-temperature hydrolysis converts to silica in the flame and thereby uses a silicon tetrachloride, which in addition to silicon tetrachloride has the following content of metals:
Figure 00110001
Verwendung des hochreinen, pyrogen hergestellten Siliciumdioxides gemäß Anspruch 1 zur Herstellung von Gläsern.Use of high purity, pyrogenic Silica according to claim 1 for the production of glasses. Verwendung des hochreinen, pyrogen hergestellten Siliciumdioxides gemäß Anspruch 5 zur Herstellung von Gläsern mittels dem Sol-Gel-Verfahren.Use of high purity, pyrogenic Silica according to claim 5 for the production of glasses by the sol-gel method.
DE10342828A 2003-09-17 2003-09-17 High purity pyrogenic silica Withdrawn DE10342828A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE10342828A DE10342828A1 (en) 2003-09-17 2003-09-17 High purity pyrogenic silica
JP2006526581A JP4903045B2 (en) 2003-09-17 2004-09-16 High purity silicon dioxide produced by pyrolysis
PCT/EP2004/010335 WO2005026068A2 (en) 2003-09-17 2004-09-16 High-purity pyrogenically prepared silicon dioxide
CNA2004800268452A CN1863733A (en) 2003-09-17 2004-09-16 High-purity pyrogenically prepared silicon dioxide
KR1020067005468A KR100789124B1 (en) 2003-09-17 2004-09-16 A high-purity pyrogenically prepared silicon dioxide, a process for the preparation of the same, and a silica glass and articles obtained by using the same
EP04786950A EP1663888A2 (en) 2003-09-17 2004-09-16 High-purity pyrogenically prepared silicon dioxide
US10/571,332 US20070003770A1 (en) 2003-09-17 2004-09-16 High-purity pyrogenically prepared silicon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10342828A DE10342828A1 (en) 2003-09-17 2003-09-17 High purity pyrogenic silica

Publications (1)

Publication Number Publication Date
DE10342828A1 true DE10342828A1 (en) 2005-04-14

Family

ID=34305816

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10342828A Withdrawn DE10342828A1 (en) 2003-09-17 2003-09-17 High purity pyrogenic silica

Country Status (7)

Country Link
US (1) US20070003770A1 (en)
EP (1) EP1663888A2 (en)
JP (1) JP4903045B2 (en)
KR (1) KR100789124B1 (en)
CN (1) CN1863733A (en)
DE (1) DE10342828A1 (en)
WO (1) WO2005026068A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1700830A1 (en) 2005-03-09 2006-09-13 Novara Technology S.R.L. Process for the production of monoliths by means of the invert sol-gel process
EP1700831A1 (en) 2005-03-09 2006-09-13 Novara Technology S.R.L. Process for the production of monoliths by means of the sol-gel process
EP1700829A1 (en) 2005-03-09 2006-09-13 Degussa AG Process for the production of glass-monoliths by means of the sol-gel process

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090076198A1 (en) 2004-10-25 2009-03-19 Thomas Giesenberg Functionalized nanoparticles
EP1700824A1 (en) * 2005-03-09 2006-09-13 Degussa AG Granules based on pyrogenically prepared silicon dioxide, method for their preparation and use thereof
EP1717202A1 (en) * 2005-04-29 2006-11-02 Degussa AG Sintered silicon dioxide materials
CN102167334A (en) * 2011-03-18 2011-08-31 中国恩菲工程技术有限公司 Method for treating silicon tetrachloride (byproduct of polycrystalline silicon)
JP5737265B2 (en) * 2012-10-23 2015-06-17 信越化学工業株式会社 Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
JP6355729B2 (en) * 2013-07-11 2018-07-11 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Method for producing silicic acid with variable viscosity
CN104568535A (en) * 2013-10-29 2015-04-29 中芯国际集成电路制造(上海)有限公司 VPD sample collection method
FR3097802B1 (en) 2019-06-27 2021-07-02 Qwarzo MACHINE AND PROCESS FOR THE PRODUCTION OF TOUILLETTES OR MIXING STICKS FOR BEVERAGES
CN110790489A (en) * 2019-11-28 2020-02-14 福建工程学院 Preparation method of low-dimensional material doped non-hydrolytic gel glass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681615A (en) * 1982-12-23 1987-07-21 Seiko Epson Kabushiki Kaisha Silica glass formation process
DE3703079A1 (en) * 1987-02-03 1988-08-11 Rolf Dipl Chem Dr Rer Bruening Process for the preparation of anhydrous synthetic silicon dioxide
DE10211958A1 (en) * 2002-03-18 2003-10-16 Wacker Chemie Gmbh High-purity silica powder, process and device for its production

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2898391A (en) * 1953-12-15 1959-08-04 Degussa Natural rubber composition containing a pyrogenically formed mixture of silica and another metal oxide and process of preparation
US3391997A (en) 1964-12-21 1968-07-09 Cabot Corp Pyrogenic silica production
US4282196A (en) * 1979-10-12 1981-08-04 Bell Telephone Laboratories, Incorporated Method of preparing optical fibers of silica
US4372834A (en) * 1981-06-19 1983-02-08 Bell Telephone Laboratories, Incorporated Purification process for compounds useful in optical fiber manufacture
CS223494B1 (en) * 1982-02-09 1983-10-28 Jaromir Plesek Method of cleaning the covalent anorganic halogenides for optical fibres
US4789389A (en) * 1987-05-20 1988-12-06 Corning Glass Works Method for producing ultra-high purity, optical quality, glass articles
US4961767A (en) * 1987-05-20 1990-10-09 Corning Incorporated Method for producing ultra-high purity, optical quality, glass articles
US5165907A (en) * 1988-04-14 1992-11-24 Imcera Group Inc. Method of production of high purity silica and ammonium fluoride
DD298493A5 (en) * 1989-01-02 1992-02-27 Chemiewerk Bad Koestritz Gmbh,De PROCESS FOR PREPARING SILKY ACIDS HIGH PURITY
JPH0717370B2 (en) * 1989-11-30 1995-03-01 イー・アイ・デュポン・ドゥ・メムール・アンド・カンパニー Method for producing high-purity silicic acid aqueous solution
US5063179A (en) * 1990-03-02 1991-11-05 Cabot Corporation Process for making non-porous micron-sized high purity silica
JPH0431334A (en) * 1990-05-25 1992-02-03 Tosoh Corp Far ultraviolet ray-transmitting quartz glass and production thereof
JP2980510B2 (en) * 1994-01-28 1999-11-22 信越石英株式会社 High purity silica glass for ultraviolet lamp and method for producing the same
DE4419234A1 (en) * 1994-06-01 1995-12-07 Wacker Chemie Gmbh Process for the silylation of inorganic oxides
JP2542797B2 (en) * 1994-09-29 1996-10-09 日本化学工業株式会社 Method for producing high-purity silica
US6071838A (en) * 1995-01-12 2000-06-06 Mitsubishi Chemical Corporation Silica gel, synthetic quartz glass powder, quartz glass shaped product molding, and processes for producing these
DE19855816A1 (en) * 1998-12-03 2000-06-08 Heraeus Quarzglas Process for cleaning Si0¶2¶ grain and device for carrying out the process
DE10030251A1 (en) * 2000-06-20 2002-01-03 Degussa Separation of metal chlorides from gaseous reaction mixtures from chlorosilane synthesis
WO2003008332A1 (en) * 2001-07-19 2003-01-30 Mitsubishi Chemical Corporation High purity quartz powder and method for production thereof, and formed glass article from the powder
JP3970692B2 (en) * 2002-05-31 2007-09-05 信越化学工業株式会社 Preform manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681615A (en) * 1982-12-23 1987-07-21 Seiko Epson Kabushiki Kaisha Silica glass formation process
DE3703079A1 (en) * 1987-02-03 1988-08-11 Rolf Dipl Chem Dr Rer Bruening Process for the preparation of anhydrous synthetic silicon dioxide
DE10211958A1 (en) * 2002-03-18 2003-10-16 Wacker Chemie Gmbh High-purity silica powder, process and device for its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1700830A1 (en) 2005-03-09 2006-09-13 Novara Technology S.R.L. Process for the production of monoliths by means of the invert sol-gel process
EP1700831A1 (en) 2005-03-09 2006-09-13 Novara Technology S.R.L. Process for the production of monoliths by means of the sol-gel process
EP1700829A1 (en) 2005-03-09 2006-09-13 Degussa AG Process for the production of glass-monoliths by means of the sol-gel process

Also Published As

Publication number Publication date
KR100789124B1 (en) 2007-12-28
WO2005026068A2 (en) 2005-03-24
CN1863733A (en) 2006-11-15
KR20060087570A (en) 2006-08-02
EP1663888A2 (en) 2006-06-07
JP4903045B2 (en) 2012-03-21
JP2007505808A (en) 2007-03-15
WO2005026068A3 (en) 2006-04-06
US20070003770A1 (en) 2007-01-04

Similar Documents

Publication Publication Date Title
EP3390303B1 (en) Production of quartz glass bodies with dewpoint control in a melting furnace
EP3390305B1 (en) Production of quartz glass bodies from silicon dioxide granulate
DE10342828A1 (en) High purity pyrogenic silica
EP1686093B1 (en) Pyrogenically produced silicium dioxide
DE602005003198T2 (en) Process for the preparation of monoliths by a sol-gel method
DE602005002265T2 (en) SILICON TITANIUM MIXED OXIDE POWDER PRODUCED BY FLAME HYDROLYSIS
WO2017103156A2 (en) Production of silica glass articles from silica powder
WO2017103168A1 (en) Gas purging for melting furnace and production method for quartz glass
WO2017103131A1 (en) Reduction of the alkaline earth metal content of silica granulate by treating carbon-doped silica granulate at an elevated temperature
WO2017103133A9 (en) Production and aftertreatment of a silica glass article
EP3390296A2 (en) Production of a silica glass article in a multichamber furnace
EP3390293A2 (en) Increasing the silicon content during the production of silica glass
EP3390300A1 (en) Production of a silica glass article in an upright sintered crucible
WO2017103114A2 (en) Production of a silica glass article in a suspended sintered crucible
WO2017103167A2 (en) Reduction of the carbon content of silica granulate, and production of a silica glass article
EP3390299A1 (en) Production of a silica glass article in a suspended sheet metal crucible
EP3390308A1 (en) Glass fibers and preforms made of quartz glass having low oh, cl, and al content
WO2017103155A9 (en) Quartz glass made from pyrogenic silicon dioxide granulate having low oh, cl, and al content
EP3390304A1 (en) Spray granulation of silica during the production of silica glass
WO2017103171A9 (en) Ammonia treatment of silica powder during the production of silica glass
EP1083146A1 (en) Bactericide silver doped silica
EP1991502B1 (en) Process for recycling high-boiling compounds within an integrated chlorosilane system
EP0855368A1 (en) Pyrogenic oxides and process for the preparation thereof
CH493610A (en) Process for the production of finely divided oxides of metals or metalloids
DE10134382B4 (en) Erbium oxide doped fumed oxides

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: DEGUSSA GMBH, 40474 DUESSELDORF, DE

8127 New person/name/address of the applicant

Owner name: EVONIK DEGUSSA GMBH, 40474 DUESSELDORF, DE

8130 Withdrawal