DE102006023563A1 - Photovoltaic system for transforming of solar power into electricity, has strings with solar modules attached with transducers, where one of transducers is charged with output voltage of series connection of strings by using switching units - Google Patents

Photovoltaic system for transforming of solar power into electricity, has strings with solar modules attached with transducers, where one of transducers is charged with output voltage of series connection of strings by using switching units Download PDF

Info

Publication number
DE102006023563A1
DE102006023563A1 DE102006023563A DE102006023563A DE102006023563A1 DE 102006023563 A1 DE102006023563 A1 DE 102006023563A1 DE 102006023563 A DE102006023563 A DE 102006023563A DE 102006023563 A DE102006023563 A DE 102006023563A DE 102006023563 A1 DE102006023563 A1 DE 102006023563A1
Authority
DE
Germany
Prior art keywords
photovoltaic system
strings
converter
dcw1
switching elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102006023563A
Other languages
German (de)
Other versions
DE102006023563B4 (en
Inventor
Marwin Kinzl
Eduard Bergmann
Dieter Röttger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOSTAL INDUSTRIE ELEKTRIK GMBH & CO. KG, DE
Original Assignee
Kostal Industrie Elektrik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kostal Industrie Elektrik GmbH filed Critical Kostal Industrie Elektrik GmbH
Priority to DE102006023563.0A priority Critical patent/DE102006023563B4/en
Publication of DE102006023563A1 publication Critical patent/DE102006023563A1/en
Application granted granted Critical
Publication of DE102006023563B4 publication Critical patent/DE102006023563B4/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

The system has strings (ST1-ST3) with solar cell modules attached with DC/DC transducers (DCW1-DCW3). The direct current/direct current (DC/DC) transducers are attached to a common inverter bridge at an output side. One of the DC/DC transducers at an input side is charged with a total output voltage of a series connection of the strings by using switching units. A current and voltage control is provided at each DC/DC transducer. A part of the switching units is designed as diodes (D1-D3).

Description

Die vorliegende Erfindung betrifft eine Photovoltaik-Anlage mit mehreren jeweils mehrere Solarzellmodule umfassenden Strings, denen jeweils ein DC/DC-Wandler zugeordnet ist, wobei die DC/DC-Wandler ausgangsseitig an eine gemeinsame Wechselrichterbrücke angeschlossen sind.The The present invention relates to a photovoltaic system with several in each case several solar cell modules comprising strings, which each a DC / DC converter is assigned, wherein the DC / DC converter on the output side are connected to a common inverter bridge.

Photovoltaik-Anlagen dienen zur Umwandlung von Sonnenenergie in elektrische Energie, die beispielsweise zur autonomen Versorgung eines Hauses oder zur Einspeisung in ein öffentliches Stromnetz vorgesehen sein kann. Als Ausgangsspannung einer Photovoltaik-Anlage ist daher zumeist eine Wechselspannung in Höhe der üblichen Netzspannung und mit der üblichen Netzfrequenz erwünscht.Photovoltaic systems serve to convert solar energy into electrical energy, for example, for the autonomous supply of a house or to Feed into a public power grid can be provided. As output voltage of a photovoltaic system is therefore usually an AC voltage in the amount of the usual mains voltage and with the usual Mains frequency desired.

Die Solarzellenmodule zum Betrieb einer Photovoltaik-Anlage sind üblicherweise miteinander in Reihe zu mehreren sogenannten Strings verschaltet. Diese Strings liefern jeweils eine Gleichspannung, die durch Gleichspannungs-/Gleichspannungswandler, im folgenden kurz als DC/DC-Wandler bezeichnet, in ihrer Spannungshöhe angepaßt und durch einen Wechselrichter in eine Wechselspannung umgesetzt wird.The Solar cell modules for operating a photovoltaic system are common interconnected in series with several so-called strings. Each of these strings supplies a DC voltage which is supplied by DC / DC converters, in the following briefly as a DC / DC converter referred to, in their voltage level adapted and is converted by an inverter into an AC voltage.

In der deutschen Offenlegungsschrift DE 199 19 766 A1 ist eine Photovoltaik-Anlage beschrieben, bei der Photovoltaikelemente zu Strings verschaltet sind und jedem String ein DC/DC-Wandler zugeordnet ist. Die DC/DC-Wandler sind zueinander parallel geschaltet und mit einer gemeinsamen Wechselrichterbrücke verbunden.In the German Offenlegungsschrift DE 199 19 766 A1 is described a photovoltaic system in which photovoltaic elements are connected in strings and each string is associated with a DC / DC converter. The DC / DC converters are connected in parallel with each other and connected to a common inverter bridge.

Vorteilhaft daran ist, daß jeder String einzeln geregelt werden kann. Dagegen ist nachteilig, daß die Spannungen an den einzelnen Eingängen der DC/DC-Wandler je nach Beschaltung oft zu gering sind und teilweise stark hochgesetzt werden müssen. Ein solcher Betrieb ist für den Wirkungsgrad ungünstig.Advantageous It is because everyone String can be regulated individually. In contrast, it is disadvantageous that the voltages at the individual entrances the DC / DC converter Depending on the wiring, they are often too low and sometimes high Need to become. One such operation is for the efficiency unfavorable.

Problematisch ist zudem, daß die von den Strings erzeugte Spannung von der Sonneneinstrahlung und Umgebungstemperatur abhängen und daher zeitlich nicht konstant ist. Darüber hinaus können sich zu einem gegebenen Zeitpunkt die elektrischen Ausgangsgrößen von Strings auch aufgrund unterschiedlicher Anordnung, beispielsweise an verschiedenen Seiten eines Hauses, voneinander unterscheiden.Problematic is also that the voltage generated by the strings from solar radiation and Depend on ambient temperature and therefore not constant over time. In addition, can themselves at a given time the electrical outputs of Strings also due to different arrangement, for example on different sides of a house, different from each other.

Wünschenswert wäre daher eine Photovoltaikanlage, die die variierenden Spannungs- und Leistungsabgaben der Strings automatisch berücksichtigt. Zu vielen Zeitpunkten könnte man die einzelnen Strings in Reihe schalten, da die angeschalteten Strings häufig etwa gleichgroße Ströme liefern. Bei stark unterschiedlichen Strömen sollte auf eine Reihenschaltung verzichtet werden. Ein weiterer Grund, auf die Reihenschaltung zu verzichten, sind sehr hohe Spannungen im Leerlauf, die einen Wechselrichter zerstören können.Desirable would be therefore a photovoltaic system that provides varying voltage and power outputs the strings are automatically taken into account. At many times could you put the individual strings in series, because the strings are switched on often about the same size streams deliver. For very different currents should be connected in series be waived. Another reason to go to the series connection dispense with very high voltages at idle, which is an inverter to destroy can.

Es stellt sich daher die Aufgabe, eine Schaltung zu entwickeln, die sich flexibel und automatisch an die anliegenden Stringspannungen anpaßt und einen besonders günstigen Betrieb einer Photovoltaik-Anlage ermöglicht.It Therefore, the task is to develop a circuit that flexible and automatic to the applied string voltages adapts and a particularly favorable one Operation of a photovoltaic system allows.

Die Aufgabe wird dadurch gelöst, daß über Schaltelemente beeinflußt, zumindest ein DC/DC-Wandler eingangsseitig mit der Summenausgangsspannung einer Reihenschaltung des ihm zugeordneten Strings sowie zumindest eines weiteren Strings beaufschlagbar ist.The Task is solved by that over switching elements affected at least one DC / DC converter on the input side with the sum output voltage a series circuit of its associated string and at least another string can be acted upon.

Im Detail besteht die Lösung darin, daß einerseits zwischen den verschiedenen DC/DC-Wandlern Schaltelemente zur Kopplung angeordnet sind, andererseits in die DC/DC-Wandler Schaltelemente eingebaut sind, die es ermöglichen, den einzelne DC/DC-Wandler mit der Masse vom Zwischenkreis des Wechselrichters zu trennen.in the Detail is the solution in that on the one hand between the various DC / DC converters switching elements for coupling are arranged, on the other hand built into the DC / DC converter switching elements are that make it possible the single DC / DC converter with the ground of the DC link of the inverter to separate.

Eine solche Schaltung kann den Wirkungsgrad einer Photovoltaik-Anlage unter vielen Betriebsbedingungen deutlich erhöhen und die Verlustleistung verringern. Vorteilhafterweise ist es damit auch möglich, die Kühlkörper der Wechselrichter und damit die zur Photovoltaik-Anlage gehörende Wandleranlage erheblich kleiner zu dimensionieren und so erhebliche Kosten einzusparen.A Such a circuit can increase the efficiency of a photovoltaic system significantly increase under many operating conditions and the power loss reduce. Advantageously, it is thus possible, the Heat sink of Inverter and thus the transformer system belonging to the photovoltaic system To dimension considerably smaller and thus to save considerable costs.

Weitere vorteilhafte Ausgestaltungen und Weiterbildungen einer erfindungsgemäßen Photovoltaik-Anlage sind in den abhängigen Ansprüchen aufgeführt.Further advantageous embodiments and further developments of a photovoltaic system according to the invention are in the dependent claims listed.

Im folgenden wird die Erfindung anhand einiger schematischer Schaltbilder dargestellt und näher erläutert.in the The following is the invention with reference to some schematic diagrams illustrated and explained in more detail.

Es zeigenIt demonstrate

1 ein Prinzipschaltbild einer erfindungsgemäßen Photovoltaik-Anlage, 1 a schematic diagram of a photovoltaic system according to the invention,

2 einige vorteilhafte Ausführungsvarianten der in der 1 dargestellten Schaltelemente. 2 some advantageous embodiments of the in the 1 illustrated switching elements.

Das Schaltungsprinzip einer erfindungsgemäßen Photovoltaik-Anlage zeigt die 1. Die Photovoltaik-Anlage besteht aus mehreren, hier beispielhaft drei DC/DC-Wandlern (DCW1, DCW2, DCW3), deren zusammengeschaltete Ausgangsspannungen als sogenannte Zwischenkreisspannung (UZK) am Eingang einer Wechselrichterbrücke (WR) anliegt. Die Wechselrichterbrücke (WR) erzeugt ausgangsseitig vorzugsweise eine mehrphasige Wechselspannung, die in Spannungshöhe und Frequenz mit der üblichen Netzwechselspannung übereinstimmt und daher zur Einspeisung in ein öffentliches Stromnetz geeignet ist.The circuit principle of a photovoltaic system according to the invention shows the 1 , The photovoltaic system consists of several, here exemplified three DC / DC converters (DCW1, DCW2, DCW3), the interconnected output voltages as so-called intermediate circuit voltage (UZK) am Input of an inverter bridge (WR). The inverter bridge (WR) generates on the output side preferably a multi-phase AC voltage, which coincides in voltage level and frequency with the usual mains AC voltage and is therefore suitable for feeding into a public power grid.

Die DC/DC-Wandler (DCW1, DCW2, DCW3) sind eingangsseitig jeweils mit einem, aus mehreren in Reihe geschalteten Photovoltaikelementen bestehenden String (ST1, ST2, ST3) verbunden. Die einzelnen DC/DC-Wandler (DCW1, DCW2, DCW3) sind hier als einfache Aufwärts-Schaltwandler ausgeführt, die nach einen bekannten Funktionsprinzip arbeiten. Durch eine getaktete Ansteuerung eines Leistungsschalters (LS1, LS2, LS2) liegt die Eingangsspannung des Schaltwandlers periodisch an einer Speicherdrossel (L1, L2, L3) an. Die in den Einschaltphasen des Leistungsschalters (LS1, LS2, LS2) in der Speicherdrossel (L1, L2, L3) gespeicherte elektrische Energie wird in den Sperrphasen des Leistungsschalters (LS1, LS2, LS2) über eine Diode (D1, D2, D3) auf einen Ausgangskondensator (C) übertragen. Die Ausgangsspannung des Schaltwandlers steigt dabei in Abhängigkeit vom Tastverhältnis bei der Ansteuerung des Leistungsschalters (LS1, LS2, LS2) auf einen Wert an, der höher als der Wert der Eingangsspannung ist.The DC / DC converters (DCW1, DCW2, DCW3) are on the input side each with one of several series-connected photovoltaic elements existing string (ST1, ST2, ST3) connected. The individual DC / DC converters (DCW1, DCW2, DC DCW3) are designed here as simple up-switching converter, which according to a known Working principle. By a clocked activation of a Circuit breaker (LS1, LS2, LS2) is the input voltage of the Switching converter periodically at a storage choke (L1, L2, L3) at. In the switch-on phases of the circuit breaker (LS1, LS2, LS2) stored in the storage inductor (L1, L2, L3) electrical Energy is generated in the blocking phases of the circuit breaker (LS1, LS2, LS2) over a diode (D1, D2, D3) transferred to an output capacitor (C). The Output voltage of the switching converter increases depending on from the duty cycle when controlling the circuit breaker (LS1, LS2, LS2) to one Value, the higher than the value of the input voltage.

Die Ansteuerung der Leistungsschalter (LS1, LS2, LS2) erfolgt durch eine hier nicht dargestellte Steuereinrichtung, die in Abhängigkeit von elektrischen Größen, und zwar insbesondere den an den DC/DC-Wandlern (DCW1, DCW2, DCW3) anliegenden Eingangsspannungen, die Leistungsschalter steuert. Die Steuereinrichtung dient darüber hinaus zur Erfassung der Eingangsströme der DC/DC-Wandler (DCW1, DCW2, DCW3), sowie zur Ansteuerung der nachfolgend beschriebenen Schaltelemente. Besonders einfach und vorteilhaft kann eine solche Steuereinrichtung durch eine einen Microcontroller beinhaltende Schaltungsanordnung ausgeführt sein.The Control of the circuit breaker (LS1, LS2, LS2) is carried out by a control device not shown here, depending on of electrical quantities, and Although in particular the voltage applied to the DC / DC converters (DCW1, DCW2, DCW3) Input voltages, which controls circuit breakers. The control device serves over it in addition to detecting the input currents of the DC / DC converters (DCW1, DCW2, DCW3), as well as to control the following Switching elements. Particularly simple and advantageous, such Control device by a microcontroller-containing Circuit arrangement executed be.

Die erwähnten Schaltelemente (S11, S12, S21, S22), die durch die Steuereinrichtung betätigt werden können, sind in der 1 ersichtlich und haben die Funktion, die Strings (ST1, ST2, ST3) der drei DC/DC-Wandler (DCW1, DCW2, DCW3) in Abhängigkeit von den von den Strings (ST1, ST2, ST3) erzeugten Eingangsspannungen entweder einzeln oder in einer Reihenschaltung zu betreiben.The mentioned switching elements (S11, S12, S21, S22), which can be actuated by the control device, are in the 1 can be seen and have the function, the strings (ST1, ST2, ST3) of the three DC / DC converters (DCW1, DCW2, DCW3) depending on the input voltages generated by the strings (ST1, ST2, ST3) either individually or in one Series connection to operate.

Es sei zunächst angenommen, die Schaltelemente S11 und S21 seien geschlossen und die Schaltelemente S12 und S22 seien geöffnet. In diesem Fall arbeiten die drei DC/DC-Wandler (DCW1, DCW2, DCW3) unabhängig voneinander, wobei deren Ausgangsspannungen parallel an den Zwischenkreisleitungen (ZK+, ZK–) anliegen. Diese Betriebsart ist besonders vorteilhaft, wenn alle drei Strings (ST1, ST2, ST3) Spannungswerte liefern, die sich mit einem guten Wirkungsgrad durch die DC/DC-Wandler (DCW1, DCW2, DCW3) bis auf den Wert der Zwischenkreisspannung (UZK) erhöhen lassen.It be first assume that the switching elements S11 and S21 are closed and the switching elements S12 and S22 are open. In this case work the three DC / DC converters (DCW1, DCW2, DCW3) independently of each other, with their Output voltages parallel to the DC link lines (ZK +, ZK-) abut. This mode is especially advantageous if all three strings (ST1, ST2, ST3) provide voltage values that are consistent with a good Efficiency through the DC / DC converters (DCW1, DCW2, DCW3) up to increase the value of the DC link voltage (UZK).

Ist dies nicht der Fall, so ist es vorteilhafter, einen Betrieb mit mindestens zwei in Reihe geschalteten Strings (ST1, ST2, ST3) vorzusehen. Angenommen der erste und der zweite String (ST1, ST2) liefert jeweils eine Spannung, die sich nicht mit einem guten Wirkungsgrad in die Zwischenkreisspannung (UZK) wandeln läßt, während die Summe der beiden Spannungen einen diesbezüglich ausreichenden Wert ergäbe. In diesem Fall ist es günstig, die beiden String (ST1, ST2) zueinander in Reihe zu schalten und mit deren Ausgangsspannung eingangsseitig einen der DC/DC-Wandler (DCW1) zu beaufschlagen.is this is not the case, so it is more advantageous to operate with at least two series-connected strings (ST1, ST2, ST3) provide. Suppose the first and the second string (ST1, ST2) returns respectively a tension that does not interfere with good efficiency in the DC link voltage (UCC) while the sum of the two voltages one in this regard would give sufficient value. In this case, it is convenient to connect the two strings (ST1, ST2) to each other in series and with its output voltage on the input side of the DC / DC converter (DCW1).

Dies wird dadurch erreicht, daß die Steuereinrichtung das Schaltelement S11 öffnet und das Schaltelement S12 schließt. Dadurch sind die an den DC/DC-Wandlern DCW1 und DCW2 anliegenden Strings ST1 und ST2 in Reihe geschaltet, wobei deren positives Potential über die Plusleitung des DC/DC-Wandlers DCW1, also die Speicherdrossel L1 und die Diode D1 an die Plusleitung (ZK+) des Zwischenkreises geführt ist, während der DC/DC-Wandler DCW2 über den geschlossenen Schalter S21 das gemeinsame Massepotential an die Masseleitung (ZK–) des Zwischenkreises führt.This is achieved by the Control device, the switching element S11 opens and the switching element S12 closes. As a result, those on the DC / DC converters DCW1 and DCW2 adjacent strings ST1 and ST2 connected in series, whose positive potential is over the positive line of the DC / DC converter DCW1, ie the storage inductor L1 and the diode D1 to the positive line (ZK +) of the DC link out is while the DC / DC converter DCW2 over the closed switch S21 to the common ground potential the ground line (ZK-) of the DC link leads.

Da der Leistungsschalter LS1 des DC/DC-Wandlers DCW1 ebenfalls mit der Masseleitung (ZK–) des Zwischenkreises verbunden ist, taktet dieser nun die volle anliegende Summenspannung der Strings ST1 und ST2. Die Plusleitung des zweiten DC/DC-Wandlers (DCW2) ist hierbei durch die Diode D2 entkoppelt.There the circuit breaker LS1 of the DC / DC converter DCW1 also with the ground line (ZK-) the DC link is connected, this now clocks the full-fitting Total voltage of strings ST1 and ST2. The plus line of the second DC / DC converter (DCW2) is decoupled by the diode D2.

Diese Betriebsart ist vorteilhaft, wenn die an den DC/DC-Wandlern anliegende Stringspannungen gering sind und daher nur mit einen relativ schlechten Wirkungsgrad in die Zwischenkreisspannung (UZK) gewandelt werden können. Durch diese Schaltung müssen die Spannungen der einzelnen Strings weniger hoch gesetzt werden als ohne Reihenschaltung. Der Wechselrichter arbeitet mit deutlich besserem Wirkungsgrad, erzeugt weniger Wärme, regelt daher weniger häufig ab, und kann so wirtschaftlicher arbeiten.These Operating mode is advantageous if the voltage applied to the DC / DC converters String voltages are low and therefore only with a relatively poor efficiency can be converted into the DC link voltage (UZK). By need this circuit the tensions of the individual strings are set lower as without series connection. The inverter works well better efficiency, generates less heat, therefore regulates less frequently, and can work more economically.

Entsprechend können auch die Strings (ST2, ST3) der DC/DC-Wandler DCW2 und DCW3 zeitweise in Reihe geschaltet werden oder auch alle drei Strings (ST1, ST2, ST3) gemeinsam.Corresponding can also the strings (ST2, ST3) of the DC / DC converters DCW2 and DCW3 temporarily be connected in series or all three strings (ST1, ST2, ST3) in common.

Der Vorgang zum Umschalten kann so ausgeführt werden, daß der Wechselrichter jeweils mit den einzelnen DC/DC-Wandlern (DCW1, DCW2, DCW3) getrennt anläuft. Nachdem die Leerlaufspannung verlassen wurde und eine niedrigere Spannung an jedem DC/DC-Wandlern (DCW1, DCW2, DCW3) erreicht wurde, kann umgeschaltet werden. Bei Umschalten während des Betriebs ist darauf zu achten, daß zunächst der „untere", d. h. näher an Masse liegende DC/DC-Wandler nicht mehr getaktet wird und anschließend schnell umgeschaltet wird.The process for switching can be carried out so that the inverter with The individual DC / DC converters (DCW1, DCW2, DCW3) start separately. After the open circuit voltage has been released and a lower voltage has been reached on each DC / DC converter (DCW1, DCW2, DCW3), it is possible to switch over. When switching during operation, make sure that the "lower", ie closer to ground DC / DC converter is no longer clocked and then quickly switched.

Ein sinnvolles Kriterium für das Umschalten von Einzelbetrieb auf Reihenschaltung ist, daß etwa gleichgroße Ströme durch die zu schaltenden Strings (ST1, ST2, ST3) fließen und daß die Summe der einzelnen Spannungen kleiner ist als die maximal zulässige Spannung.One reasonable criterion for the switching from single operation to series connection is that approximately equal currents through the strings to be switched (ST1, ST2, ST3) flow and that the sum of the individual voltages is less than the maximum allowable Tension.

Besonders vorteilhaft ist, wenn für jeden String (ST1, ST2, ST3) die Betriebsdaten, wie Eingangsspannung, Ausgangsstrom bzw. Ausgangsleistung, einzeln abgetastet werden können, insbesondere auch bei Reihenschaltung der Strings. Dazu können die Stromwerte direkt, die Spannungswerte durch einfache Subtraktion der einzelnen Spannungswerte ermittelt werden. Außerdem ist es dadurch möglich, den optimalen Arbeitspunkt jedes String auch in einer Reihenschaltung einzeln zu überwachen. Somit kann bei Reihenschaltung auf einfache Weise präzise erkannt werden, ob Einzelbetrieb sinnvoller und wirtschaftlicher ist. Bei Bedarf kann also schnell reagiert werden. Solche Situationen treten in der Regel bei einer Teilverschattung der Photovoltaik-Strings auf.Especially is advantageous if for each string (ST1, ST2, ST3) the operating data, such as input voltage, Output current or output power, can be sampled individually, in particular also with series connection of the strings. For this, the current values can be directly, the voltage values by simple subtraction of the individual voltage values be determined. Furthermore is it possible the optimal operating point of each string also in a series connection to monitor individually. Thus, when connected in series easily detected in a simple manner be whether individual operation makes more sense and is more economical. at Demand can therefore be reacted quickly. Such situations occur usually with partial shading of the photovoltaic strings on.

Kriterium für das Aufheben der Reihenschaltung ist also, daß bei Einzelbetrieb je String mehr Energie erwirtschaftet werden kann. Dieses kann z. B. durch geeignete Algorithmen ermittelt werden. Die hier beschriebene Schaltung kann damit die Wirtschaftlichkeit von Photovoltaik-Anlagen deutlich erhöhen.criteria for the Canceling the series circuit is so that in single operation per string more energy can be generated. This can be z. B. by suitable algorithms are determined. The circuit described here This makes the cost-effectiveness of photovoltaic systems clear increase.

Die in der 1 schematisch als einfache Schalter dargestellten Schaltelemente sind in der Praxis als elektronische oder elektromechanische Bauelemente ausgeführt.The in the 1 schematically illustrated as a simple switch switching elements are designed in practice as electronic or electromechanical components.

Mögliche vorteilhafte Ausgestaltungen der Schaltelemente sind in der 2 schematisch dargestellt. Hierbei stellt das Schaltelement S1 jeweils ein Schaltelement in der Masseleitung eines DC/DC-Wandlers (DCW1, DCW2, DCW3) dar, entsprechend beispielsweise dem Schaltelement S11 in der 1, während das Schaltelement S2 für ein Schaltelement steht, welches zwei DC/DC-Wandler (DCW1, DCW2, DCW3), entsprechend beispielsweise dem Schalter S12 in der 1, miteinander verbinden kann.Possible advantageous embodiments of the switching elements are in the 2 shown schematically. Here, the switching element S1 each represents a switching element in the ground line of a DC / DC converter (DCW1, DCW2, DCW3), corresponding to, for example, the switching element S11 in the 1 while the switching element S2 stands for a switching element which comprises two DC / DC converters (DCW1, DCW2, DCW3) corresponding, for example, to the switch S12 in FIG 1 , can connect with each other.

Eine besonders einfache Möglichkeit zur Realisierung der Schaltelemente zeigt die 2a. Das erste Schaltelement (S1) ist hier als Diode ausgebildet während das zweite Schaltelement (S2) ein Relaiskontakt ist. Bei Betätigung des Relaiskontakts (S2) sperrt die Diode (S1) und hebt die Verbindung des Minuspotentials des zugehörigen Strings mit der Minusleitung (ZK–) des Zwischenkreises auf.A particularly simple way to realize the switching elements shows the 2a , The first switching element (S1) is designed here as a diode while the second switching element (S2) is a relay contact. Upon actuation of the relay contact (S2), the diode blocks (S1) and removes the connection of the negative potential of the associated string with the negative line (ZK-) of the intermediate circuit.

Mit einem Schaltelement S2, welches einen zusätzlichen Umschaltkontakt aufweist (2b) können die Diodenverluste, die auftreten, wenn die Eingänge einzeln geregelt werden, durch eine Überbrückung der Diode (S1) minimiert werden.With a switching element S2, which has an additional switching contact ( 2 B ), the diode losses that occur when the inputs are individually controlled can be minimized by bridging the diode (S1).

Eine besonders vorteilhafte Ausführung besteht darin, die Schaltelemente (S1, S2) als Feldeffekttransistoren auszuführen (2c). Diese erlauben ein kontaktloses und besonders schnelles Schalten der Eingänge.A particularly advantageous embodiment consists in designing the switching elements (S1, S2) as field-effect transistors ( 2c ). These allow contactless and particularly fast switching of the inputs.

Eine ausschließliche Verwendung von Relaiskontakten als Schaltelemente (S1, S2) sei ebenfalls erwähnt (2d). Diese Möglichkeit ist die kostengünstigste, erfordert allerdings ein besonders gutes Timing beim der Ansteuerung.An exclusive use of relay contacts as switching elements (S1, S2) is also mentioned ( 2d ). This option is the most cost-effective, but requires a particularly good timing in the control.

Zur Ausbildung der Schaltelemente kann auch eine Kombination eines Feldeffekttransistors und eines Relais vorgesehen werden, wobei der Feldeffekttransistor lediglich eine hohe Spannungsfestigkeit besitzen muß und den Strom nur für eine sehr kurze Zeit, typischerweise einige Millisekunden, führt. Umgekehrt muß das Relais nicht für hohe Schaltspannungen ausgelegt werden, sondern lediglich für die entsprechenden Ströme, da der Schaltvorgang selbst durch den Feldeffekttransistor oder durch eine Diode bewirkt wird. Damit wird zusätzlich das kostenintensive Schalten von Gleichspannungen über Relais stark vereinfacht.to Formation of the switching elements may also be a combination of a field effect transistor and a relay can be provided, wherein the field effect transistor only must have a high dielectric strength and the current only for a very short time, typically a few milliseconds. Vice versa that must be Relay not for high switching voltages are designed, but only for the corresponding currents since the switching process itself by the field effect transistor or is effected by a diode. This is additionally the costly Switching DC voltages over Relay greatly simplified.

Zum Umschalten ist es besonders vorteilhaft, wenn der Leistungsschalter des unteren DC/DC-Wandlers zunächst so getaktet wird, daß die Spannung des Strings gegen Null läuft. In diesem Fall sind die Schalter während des Schaltvorganges nur geringen Spannungen ausgesetzt.To the Switching it is particularly advantageous when the circuit breaker of the lower DC / DC converter first is clocked so that the voltage of the string approaches zero. In this case, the switches are only during the switching process exposed to low voltages.

CC
Ausgangskondensatoroutput capacitor
D1, D2, D3D1, D2, D3
Diodendiodes
L1, L2, L3L1, L2, L3
Speicherdrosselnchokes
ST1, ST2, ST3ST1, ST2, ST3
Stringsstrings
DCW1, DCW2, DCW3DCW1, DCW2, DCW3
DC/DC-WandlerDC / DC converter
LS1, LS2, LS3LS1, LS2, LS3
Leistungsschalterbreakers
WRWR
WechselrichterbrückeInverter bridge
S1, S11, S21S1, S11, S21
(erste) Schaltelemente(first) switching elements
S2, S12, S22S2, S12, S22
(zweite) Schaltelemente(second) switching elements
UZKUDC
ZwischenkreisspannungIntermediate circuit voltage
ZK–ZK
Zwischenkreisleitung (Masse)DC link line (ground)
ZK+ZK +
Zwischenkreisleitung (Plus)DC link (plus)

Claims (11)

Photovoltaik-Anlage mit mehreren jeweils mehrere Solarzellmodule umfassenden Strings, denen jeweils ein DC/DC-Wandler zugeordnet ist, wobei die DC/DC-Wandler ausgangsseitig an eine gemeinsame Wechselrichterbrücke angeschlossen sind, dadurch gekennzeichnet, daß über Schaltelemente (S1, S2, S11, S12, S21, S22) beeinflußt, zumindest ein DC/DC-Wandler (DCW1, DCW2, DCW3) eingangsseitig mit der Summenausgangsspannung einer Reihenschaltung des ihm zugeordneten Strings (ST1, ST2, ST3) sowie zumindest eines weiteren Strings (ST1, ST2, ST3) beaufschlagbar ist.Photovoltaic system with several each comprising a plurality of solar cell modules strings, each associated with a DC / DC converter, the DC / DC converter are the output side connected to a common inverter bridge, characterized in that via switching elements (S1, S2, S11, S12, S21, S22), at least one DC / DC converter (DCW1, DCW2, DCW3) on the input side with the sum output voltage of a series circuit of its associated string (ST1, ST2, ST3) and at least one further string (ST1, ST2, ST3 ) can be acted upon. Photovoltaik-Anlage nach Anspruch 1, dadurch gekennzeichnet, daß an jedem DC/DC-Wandler (DCW1, DCW2, DCW3) eine Strom- und Spannungsüberwachung vorgesehen ist.Photovoltaic system according to claim 1, characterized in that that on each DC / DC converter (DCW1, DCW2, DCW3) current and voltage monitoring is provided. Photovoltaik-Anlage nach Anspruch 2, dadurch gekennzeichnet, daß über Schaltelemente (S1, S2, S11, S12, S21, S22) beeinflußt, zumindest ein DC/DC-Wandler (DCW1, DCW2, DCW3) eingangsseitig mit der Summenausgangsspannung einer Reihenschaltung des ihm zugeordneten Strings (ST1, ST2, ST3) sowie zumindest eines weiteren Strings (ST1, ST2, ST3) beaufschlagt wird, wenn sich die erfaßten Ausgangsströme der jeweiligen DC/DC-Wandler (DCW1, DCW2, DCW3) um nicht mehr als einen vorgegebenen Maximalbetrag unterscheiden und gleichzeitig die Summe der Ausgangsspannungen der jeweiligen DC/DC-Wandler (DCW1, DCW2, DCW3) unterhalb eines vorgegebenen Maximalbetrags liegt.Photovoltaic system according to claim 2, characterized that via switching elements (S1, S2, S11, S12, S21, S22), at least one DC / DC converter (DCW1, DCW2, DCW3) on the input side with the total output voltage a series circuit of its associated string (ST1, ST2, ST3) and at least one further string (ST1, ST2, ST3) acted upon becomes when the seized output currents the respective DC / DC converter (DCW1, DCW2, DCW3) by no more than differentiate a given maximum amount and at the same time the sum of the output voltages of the respective DC / DC converters (DCW1, DCW2, DCW3) is below a predetermined maximum amount. Photovoltaik-Anlage nach Anspruch 1, dadurch gekennzeichnet, daß zumindest ein Teil der Schaltelemente (S1) als Dioden ausgebildet sind.Photovoltaic system according to claim 1, characterized in that that at least a part of the switching elements (S1) are formed as diodes. Photovoltaik-Anlage nach Anspruch 1, dadurch gekennzeichnet, dadurch gekennzeichnet, daß zumindest ein Teil der Schaltelemente (S1, S2, S11, S12, S21, S22) als Relais ausgebildet sind.Photovoltaic system according to claim 1, characterized in that characterized in that at least a part of the switching elements (S1, S2, S11, S12, S21, S22) as a relay are formed. Photovoltaik-Anlage nach Anspruch 1, dadurch gekennzeichnet, daß zumindest ein Teil der Schaltelemente (S1, S2) als steuerbare Halbleiterschalter ausgebildet sind.Photovoltaic system according to claim 1, characterized in that that at least a part of the switching elements (S1, S2) as a controllable semiconductor switch are formed. Photovoltaik-Anlage nach Anspruch 6, dadurch gekennzeichnet, daß die steuerbaren Halbleiterschalter als Feldeffekttransistoren ausgeführt sind.Photovoltaic system according to claim 6, characterized in that that the controllable semiconductor switches are designed as field effect transistors. Photovoltaik-Anlage nach Anspruch 1, dadurch gekennzeichnet, daß die Photovoltaik-Anlage wenigstens einen Microcontroller aufweist.Photovoltaic system according to claim 1, characterized in that that the Photovoltaic system has at least one microcontroller. Photovoltaik-Anlage nach den Ansprüchen 2 und 8, dadurch gekennzeichnet, daß die Strom- und/oder Spannungsauswertung direkt oder indirekt durch den Microcontroller erfolgt.Photovoltaic system according to claims 2 and 8, characterized in that the Current and / or voltage evaluation directly or indirectly through the Microcontroller takes place. Photovoltaik-Anlage nach Anspruch 8, dadurch gekennzeichnet, dadurch gekennzeichnet, daß der Microcontroller zumindest einen Teil der Schaltelemente (S1, S2, S11, S12, S21, S22) steuert.Photovoltaic system according to claim 8, characterized in that characterized in that the Microcontroller at least part of the switching elements (S1, S2, S11, S12, S21, S22). Photovoltaik-Anlage nach Anspruch 1, dadurch gekennzeichnet, daß die Photovoltaik-Anlage zur Einspeisung von elektrischer Energie in das öffentliche Stromnetz vorgesehen ist.Photovoltaic system according to claim 1, characterized in that that the Photovoltaic system for the supply of electrical energy in the public Power grid is provided.
DE102006023563.0A 2006-05-19 2006-05-19 Photovoltaic system Active DE102006023563B4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102006023563.0A DE102006023563B4 (en) 2006-05-19 2006-05-19 Photovoltaic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006023563.0A DE102006023563B4 (en) 2006-05-19 2006-05-19 Photovoltaic system

Publications (2)

Publication Number Publication Date
DE102006023563A1 true DE102006023563A1 (en) 2007-11-22
DE102006023563B4 DE102006023563B4 (en) 2020-09-10

Family

ID=38608005

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102006023563.0A Active DE102006023563B4 (en) 2006-05-19 2006-05-19 Photovoltaic system

Country Status (1)

Country Link
DE (1) DE102006023563B4 (en)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007032605A1 (en) * 2007-07-11 2009-02-05 Robert Maier Fotovoltaikanlage
DE102008004675B3 (en) * 2007-10-12 2009-03-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Controllable switching device for solar module, has control provided to control controllable switching unit to switch switching unit in one of switch conditions using output of solar module or input at output terminal
WO2010003941A2 (en) * 2008-07-11 2010-01-14 Siemens Aktiengesellschaft Network connection of solar cells
WO2010034413A1 (en) * 2008-09-25 2010-04-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Separating circuit for inverters
DE102009025363A1 (en) * 2009-06-18 2011-02-03 Adensis Gmbh Starting source inverter
EP2317623A1 (en) * 2009-10-30 2011-05-04 General Electric Company Hybrid wind-solar inverters
DE102010017747A1 (en) * 2010-05-03 2011-11-03 Sma Solar Technology Ag Method for limiting the generator voltage of a photovoltaic system in case of danger and photovoltaic system
DE102010026778A1 (en) * 2010-07-09 2012-01-12 Refu Elektronik Gmbh Device for providing a DC input voltage for a Photovol taikkehrichter and photovoltaic system with this
WO2012024538A2 (en) 2010-08-18 2012-02-23 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods
DE202011002935U1 (en) * 2011-02-18 2012-05-21 Steca Elektronik Gmbh circuitry
DE102011011973A1 (en) * 2011-02-22 2012-08-23 Michael Klemt Circuit arrangement for increasing solar generator voltage of direct current (DC)-DC converter , has inductance capacitance filter for smoothing transformer alternating voltage rectified by rectifier
EP2276137A3 (en) * 2009-07-09 2014-03-05 Kostal Industrie Elektrik GmbH Photovoltaic device
CN104092437A (en) * 2014-05-22 2014-10-08 中国科学院广州能源研究所 Photovoltaic module adjusting circuit and remote monitoring system
WO2015007872A1 (en) * 2013-07-19 2015-01-22 Sma Solar Technology Ag Inverter comprising at least two direct current inputs, a photovoltaic installation comprising such an inverter, and a method for actuating an inverter
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
CN110048671A (en) * 2014-03-03 2019-07-23 太阳能技术有限公司 For applying the method and system of electric field to multiple solar panels
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
DE102018127132A1 (en) * 2018-10-30 2020-04-30 Sma Solar Technology Ag Inverter with at least two DC / DC converters and use of such an inverter in a photovoltaic system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
CN111869086A (en) * 2018-12-29 2020-10-30 华为技术有限公司 Inverter
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
CN113258773A (en) * 2021-05-18 2021-08-13 阳光电源股份有限公司 Power conversion system, power conversion device and control method thereof
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
WO2024026590A1 (en) * 2022-07-30 2024-02-08 华为数字能源技术有限公司 Power conversion device, control method, and power supply system
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19919766A1 (en) * 1999-04-29 2000-11-02 Sma Regelsysteme Gmbh Inverter for a photovoltaic unit for use in a solar generator to maximize the power/performance output, the so-called maximum power point tracking
DE10136147B4 (en) * 2001-07-25 2004-11-04 Kolm, Hendrik, Dipl.-Ing. Photovoltaic alternator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19919766A1 (en) * 1999-04-29 2000-11-02 Sma Regelsysteme Gmbh Inverter for a photovoltaic unit for use in a solar generator to maximize the power/performance output, the so-called maximum power point tracking
DE10136147B4 (en) * 2001-07-25 2004-11-04 Kolm, Hendrik, Dipl.-Ing. Photovoltaic alternator

Cited By (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
DE102007032605A1 (en) * 2007-07-11 2009-02-05 Robert Maier Fotovoltaikanlage
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US8178999B2 (en) 2007-10-12 2012-05-15 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Controllable change-over apparatus for a solar module
DE102008004675B3 (en) * 2007-10-12 2009-03-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Controllable switching device for solar module, has control provided to control controllable switching unit to switch switching unit in one of switch conditions using output of solar module or input at output terminal
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
WO2010003941A2 (en) * 2008-07-11 2010-01-14 Siemens Aktiengesellschaft Network connection of solar cells
WO2010003941A3 (en) * 2008-07-11 2010-03-18 Siemens Aktiengesellschaft Network connection of solar cells
WO2010034413A1 (en) * 2008-09-25 2010-04-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Separating circuit for inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
DE102009025363B4 (en) * 2009-06-18 2012-03-08 Adensis Gmbh Starting source inverter
DE102009025363A1 (en) * 2009-06-18 2011-02-03 Adensis Gmbh Starting source inverter
DE102009025363B9 (en) * 2009-06-18 2012-06-21 Adensis Gmbh Starting source inverter
EP2276137A3 (en) * 2009-07-09 2014-03-05 Kostal Industrie Elektrik GmbH Photovoltaic device
EP2317623A1 (en) * 2009-10-30 2011-05-04 General Electric Company Hybrid wind-solar inverters
US8232681B2 (en) 2009-10-30 2012-07-31 General Electric Company Hybrid wind-solar inverters
US8837098B2 (en) 2010-05-03 2014-09-16 Sma Solar Technology Ag Method for limiting the generator voltage of a photovoltaic installation in case of danger and photovoltaic installation
DE102010017747A1 (en) * 2010-05-03 2011-11-03 Sma Solar Technology Ag Method for limiting the generator voltage of a photovoltaic system in case of danger and photovoltaic system
DE102010026778A1 (en) * 2010-07-09 2012-01-12 Refu Elektronik Gmbh Device for providing a DC input voltage for a Photovol taikkehrichter and photovoltaic system with this
DE102010026778B4 (en) * 2010-07-09 2015-02-26 Refu Elektronik Gmbh Device and method for providing a DC input voltage for a photovoltaic inverter and photovoltaic system with this device
US9577426B2 (en) 2010-08-18 2017-02-21 Volterra Semiconductor LLC Switching circuits for extracting power from an electric power source and associated methods
WO2012024538A2 (en) 2010-08-18 2012-02-23 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods
US8946937B2 (en) 2010-08-18 2015-02-03 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods
US9312769B2 (en) 2010-08-18 2016-04-12 Volterra Semiconductor LLC Switching circuits for extracting power from an electric power source and associated methods
US9806523B2 (en) 2010-08-18 2017-10-31 Volterra Semiconductor LLC Switching circuits for extracting power from an electric power source and associated methods
US9698599B2 (en) 2010-08-18 2017-07-04 Volterra Semiconductor LLC Switching circuits for extracting power from an electric power source and associated methods
EP2606550A2 (en) * 2010-08-18 2013-06-26 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods
US9035626B2 (en) 2010-08-18 2015-05-19 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods
EP2606550A4 (en) * 2010-08-18 2014-09-10 Volterra Semiconductor Corp Switching circuits for extracting power from an electric power source and associated methods
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
DE202011002935U1 (en) * 2011-02-18 2012-05-21 Steca Elektronik Gmbh circuitry
DE102011011973B4 (en) * 2011-02-22 2013-01-17 Michael Klemt Circuit arrangement for increasing a solar generator voltage and method for operating such a circuit arrangement
DE102011011973A1 (en) * 2011-02-22 2012-08-23 Michael Klemt Circuit arrangement for increasing solar generator voltage of direct current (DC)-DC converter , has inductance capacitance filter for smoothing transformer alternating voltage rectified by rectifier
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
CN105324922A (en) * 2013-07-19 2016-02-10 艾思玛太阳能技术股份公司 Inverter comprising at least two direct current inputs, a photovoltaic installation comprising such an inverter, and a method for actuating an inverter
CN105324922B (en) * 2013-07-19 2019-02-26 艾思玛太阳能技术股份公司 Inverter at least two direct-flow input ends, the method for photovoltaic apparatus and control inverter with inverter
WO2015007872A1 (en) * 2013-07-19 2015-01-22 Sma Solar Technology Ag Inverter comprising at least two direct current inputs, a photovoltaic installation comprising such an inverter, and a method for actuating an inverter
US10033190B2 (en) 2013-07-19 2018-07-24 Sma Solar Technology Ag Inverter with at least two DC inputs, photovoltaic system comprising such an inverter and method for controlling an inverter
CN110048671B (en) * 2014-03-03 2021-08-10 太阳能技术有限公司 Method and system for applying an electric field to a plurality of solar panels
CN110048671A (en) * 2014-03-03 2019-07-23 太阳能技术有限公司 For applying the method and system of electric field to multiple solar panels
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
CN104092437A (en) * 2014-05-22 2014-10-08 中国科学院广州能源研究所 Photovoltaic module adjusting circuit and remote monitoring system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
DE102018127132A1 (en) * 2018-10-30 2020-04-30 Sma Solar Technology Ag Inverter with at least two DC / DC converters and use of such an inverter in a photovoltaic system
US11146072B2 (en) 2018-10-30 2021-10-12 Sma Solar Technology Ag Inverter with at least two DC/DC converters and use of such an inverter in a photovoltaic installation
US11637431B2 (en) * 2018-12-29 2023-04-25 Huawei Digital Power Technologies Co., Ltd. Inverter
CN111869086A (en) * 2018-12-29 2020-10-30 华为技术有限公司 Inverter
EP3893380A4 (en) * 2018-12-29 2021-11-24 Huawei Technologies Co., Ltd. Inverter
WO2022242135A1 (en) * 2021-05-18 2022-11-24 阳光电源股份有限公司 Power conversion system, power conversion apparatus, and control method therefor
CN113258773A (en) * 2021-05-18 2021-08-13 阳光电源股份有限公司 Power conversion system, power conversion device and control method thereof
WO2024026590A1 (en) * 2022-07-30 2024-02-08 华为数字能源技术有限公司 Power conversion device, control method, and power supply system

Also Published As

Publication number Publication date
DE102006023563B4 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
DE102006023563B4 (en) Photovoltaic system
EP1914857B1 (en) Circuit apparatus and method, in particular for photovoltaic generators
DE102008032990B4 (en) Solar module system and bypass component
EP3022835B1 (en) Inverter comprising at least two direct current inputs, a photovoltaic installation comprising such an inverter, and a method for actuating an inverter
EP2104200B1 (en) Method for controlling a multi-string inverter for photovoltaic systems
EP1851846B1 (en) Inverter
AT503542B1 (en) METHOD AND INVERTER FOR CONVERTING AN EQUIVALENT VOLTAGE INTO AN ALTERNATING VOLTAGE
EP3014725B1 (en) Energy storage device having a dc voltage supply circuit and method for providing a dc voltage from an energy storage device
DE102011089297B4 (en) Energy storage device, system with energy storage device and method for controlling an energy storage device
EP2109021A1 (en) Machine from automation technology and production system
DE102013212682B4 (en) Energy storage device with DC power supply circuit and method for providing a DC voltage from an energy storage device
DE102009052461A1 (en) Inverter circuitry
EP2355325A2 (en) Switching device with a boost converter and inverter switch with such a switching device
EP2911284B1 (en) Switch assemblies and method for picking up electric power from multiple module strands
DE112009004627T5 (en) Power conversion device
DE102012216691A1 (en) Converter circuit and method for controlling the converter circuit
DE112017005404T5 (en) DC-DC converter
DE102005021152B4 (en) solar cell device
EP2369733B1 (en) Circuit assembly and method for generating alternating current from a number of power supply units with output DC voltage which varies over time
DE102018216236A1 (en) Charging circuit for a vehicle-side electrical energy store
DE102014016076A1 (en) DC / DC converter for a motor vehicle
DE102017115000A1 (en) Photovoltaic unit, photovoltaic system, method for operating a photovoltaic unit and method for operating a photovoltaic system
DE102013212692A1 (en) Energy storage device with DC power supply circuit
DE112019005634T5 (en) Driving device and driving method for semiconductor switch, power conversion device and vehicle
DE102017005966A1 (en) Photovoltaic module, control circuit for a photovoltaic module and method for controlling a photovoltaic module

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
R012 Request for examination validly filed

Effective date: 20121221

R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H02N0006000000

Ipc: H02S0040300000

R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H02N0006000000

Ipc: H02S0040300000

Effective date: 20140205

R084 Declaration of willingness to licence
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R081 Change of applicant/patentee

Owner name: KOSTAL INDUSTRIE ELEKTRIK GMBH & CO. KG, DE

Free format text: FORMER OWNER: KOSTAL INDUSTRIE ELEKTRIK GMBH, 58507 LUEDENSCHEID, DE