DE10123414A1 - Static converter as 3-phase current converter controlled using vector modulation and fixed step control method - Google Patents

Static converter as 3-phase current converter controlled using vector modulation and fixed step control method

Info

Publication number
DE10123414A1
DE10123414A1 DE10123414A DE10123414A DE10123414A1 DE 10123414 A1 DE10123414 A1 DE 10123414A1 DE 10123414 A DE10123414 A DE 10123414A DE 10123414 A DE10123414 A DE 10123414A DE 10123414 A1 DE10123414 A1 DE 10123414A1
Authority
DE
Germany
Prior art keywords
voltage
phase
synchronous machine
converter
static
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10123414A
Other languages
German (de)
Inventor
Baohua Yu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE10123414A priority Critical patent/DE10123414A1/en
Publication of DE10123414A1 publication Critical patent/DE10123414A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Abstract

The static converter is a 3-phase current converter controlled using vector modulation and the fixed step control method so that a synchronous machine can be implemented with very low software costs. Integrated time errors are compensated for and the amplitude and phase angle of the current converter voltage are variable so that the static converter is operated in motor or generator mode and can provide or take reactive power. It automatically provides sinusoidal currents during conversion between direct voltage and three phase voltage. The static synchronous machine is a 3-phase current converter controlled using vector modulation and the fixed step control method so that a synchronous machine can be implemented with very low software costs. Integrated time errors are compensated for and the amplitude and phase of the current converter voltage are variable so that the machine can be operated in motor or generator mode.

Description

Bei dieser Erfindung handelt es sich um die Energiewandlung zwischen Gleichspannungs­ quelle und sinusförmigen Dreiphasenspannungensquelle mit einer festen Netzfrequenz. Zwi­ schen den beiden Quellen wird ein dreiphasiger Stromrichter geschaltet, der Stromrichter wird dabei mittels der Raumzeigermodulation kontrolliert. Der Phasenwinkel und die Am­ plitude der Stromrichterspannung können variabel eingestellt werden, solche Stromrichter nennt man statische Synchronmaschine, da sie dem Netz sowohl induktive als auch kapazitive Sinusströme entnehmen oder zuliefern können. Durch Einsatz des sogenannten Festschritt­ steurungsverfahrens wird der Wandlungsvorgang stark vereinfacht.This invention is the energy conversion between DC voltage source and sinusoidal three-phase voltage source with a fixed mains frequency. Zwi A three-phase converter is switched between the two sources, the converter is controlled by means of space vector modulation. The phase angle and the Am Plitude of the converter voltage can be set variably, such converters is called a static synchronous machine because it connects the network with both inductive and capacitive Can extract or supply sinus currents. By using the so-called ceremony control process, the conversion process is greatly simplified.

Für die folgende Beschreibung wird vorausgesetzt, daß die Netzfrequenz der sinusförmigen Dreiphasenspannungsquelle konstant bleibt.The following description assumes that the line frequency is sinusoidal Three-phase voltage source remains constant.

Beschreibungdescription

Durch den Einsatz der Raumzeigermodulation wird das Verfahren vereinfacht, so daß aus einer Gleichspannung am Eingang eines dreiphasigen Umrichters Drehspannung und -strom am Ausgang erzeugt wird. Hier wird die dreiphasige Ausgangsspannung Stromrichterspan­ nung genannt; deren Phasenwinkel und Amplitude können variabel eingestellt werden.The use of space vector modulation simplifies the process, so that a DC voltage at the input of a three-phase converter three-phase voltage and current is generated at the output. Here the three-phase output voltage is converter voltage called; their phase angle and amplitude can be set variably.

Wenn ein solcher dreiphasiger Stromrichter zwischen einem dreiphasigen Netz und einer Gleichspannungsquelle eingeschaltet wird, verhält sich der dreiphasige Stromrichter wie eine Synchronmaschine.If such a three-phase converter between a three-phase network and a If the DC voltage source is switched on, the three-phase converter behaves like one Synchronous machine.

Nehmen wir an:
Stromrichterspannung um wird in Raumzeigerform dargestellt als:
Let's assume:
Converter voltage u m is shown in the form of a room pointer as:

um = Umem
u m = U m e m

γm: Phasenwinkel der Stromrichterspannung
Um: Amplitude der Stromrichterspannung;
γ m : phase angle of the converter voltage
U m : amplitude of the converter voltage;

Dreiphasige Netzspannung un in Raumzeigerform kann wie folgt beschrieben werden:
Three-phase mains voltage u n in the form of a room pointer can be described as follows:

un = Une,
u n = U n e ,

γ: Phasenwinkel der Netzspannung
Un: Amplitude der Netzspannung.
γ: phase angle of the mains voltage
U n : amplitude of the mains voltage.

Es gilt außerdem folgende Beziehung:
The following relationship also applies:

γm = γ + θ (1)
γ m = γ + θ (1)

θ: Winkel zwischen der Netzspannung und der Stromrichterspannung.θ: angle between the mains voltage and the converter voltage.

Wenn in (in Raumzeigerform) den dreiphasigen Netzstrom und R + jωL = R + jX die Netzim­ pendenz darstellt, ergibt sich für einen solchen dreiphasigen Stromrichter ein äquivalentes Zeigerdiagramm (siehe Bild 1), wie bei einer Synchronmaschine in einem Drehspannungs­ netz.:
Aus dem Zeigerdiagramm ist nachfolgendes zu erkennen:
If i n (in the form of a space vector) represents the three-phase line current and R + jωL = R + jX the line impedance, the result for such a three-phase converter is an equivalent vector diagram (see Figure 1), as for a synchronous machine in a three-phase network:
The following can be seen from the pointer diagram:

  • 1. un = um + (R + jωL).in.
    Da un, um sinusförmig und R, L lineare Parameter sind, ist der Verlauf von in automa­ tisch auch sinusförmig. Das bedeutet; setzt man einen solchen Stromrichter als drei­ phasigen netzfreundlichen Stromrichter ein, so ist die Vorgabe des sinusförmigen Stromsollwerts überflüssig geworden. Die Erfassung des sinusförmigen Istwertes und der Vergleich mit dem sinusförmigen Sollwert entfallen damit auch automatisch.
    1. u n = u m + (R + jωL) .i n .
    Since u n , u m are sinusoidal and R, L are linear parameters, the course of i n is also automatically sinusoidal. That means; If you use such a converter as a three-phase, grid-friendly converter, the specification of the sinusoidal current setpoint has become superfluous. The acquisition of the sinusoidal actual value and the comparison with the sinusoidal setpoint are therefore also automatically eliminated.
  • 2. Durch Einstellung des Winkels θ und der Amplitude Um kann das Betriebsverhalten des Stromrichters wie eine Synchronmaschine in drei verschiedene Betriebsarten ein­ gestellt werden:
    θ < 0 Motorbetrieb;
    θ < 0 Generatorbetrieb;
    θ = 0 Kompensatorbetrieb.
    Diese Eigenschaft entspricht einer Synchronmaschine. Je nach der Betriebsart des Stromrichters können Energie in beiden Richtungen zwischen den beiden Quellen ab­ gegeben und aufgenommen werden. Deshalb wird dieser Stromrichter, welcher mittels der Raumzeigermodulation kontrolliert wird, als Statische Synchronmaschine be­ zeichnet.
    2. By adjusting the angle θ and the amplitude U m , the operating behavior of the converter can be set in three different operating modes like a synchronous machine:
    θ <0 engine operation;
    θ <0 generator operation;
    θ = 0 compensator operation.
    This property corresponds to a synchronous machine. Depending on the operating mode of the converter, energy can be emitted and absorbed in both directions between the two sources. Therefore, this converter, which is controlled by means of space vector modulation, is referred to as a static synchronous machine.

Es ist außerdem bekannt (siehe Gerkeler M. W. Raumzeigermodulation bei Frequenzum­ richtern. Antriebstechnik 27(1988) H.4, 9.39-42):
It is also known (see Gerkeler MW space vector modulation for frequency converters. Drive technology 27 (1988) H.4, 9.39-42):

Umem = λkZk + λk+1Zk+1 + λ0Z0 (2)
U m e m = λ k Z k + λ k + 1 Z k + 1 + λ 0 Z 0 (2)

λk: Verhältnis der Einschaltzeitdauer Tk des Zustandes Zk bezogen auf die Pulspe­ riodendauer T
λk+1: Verhältnis der Einschaltzeitdauer Tk+1 des Zustandes Zk+1 bezogen auf die Pul­ speriodendauer T
λ0: Verhältnis der Einschaltzeitdauer T0 des Zustandes Z0 bezogen auf die Pulspe­ riodendauer T.
λ k : ratio of the switch-on period T k of the state Z k with respect to the pulse period T
λ k + 1 : ratio of the switch-on time T k + 1 of the state Z k + 1 based on the pulse period T
λ 0 : ratio of the on time T 0 of the state Z 0 based on the pulse period T.

Es ergibt sich folgende Beziehung:
The relationship is as follows:

λk + λk+1 + λ0 = 1 (3)
λ k + λ k + 1 + λ 0 = 1 (3)

λk und λk+1 sind trigonometrische Funktionen in Abhängigkeit von γm, γk, γk+1, Un und Um.
γk bzw γk+1 sind die jeweiligen Raumwinkel des Zustandes Zk bzw. Zk+1.
λ k and λ k + 1 are trigonometric functions depending on γ m , γ k , γ k + 1 , U n and U m .
γ k and γ k + 1 are the respective solid angles of the state Z k and Z k + 1 .

Wenn man die Stromrichterspannung nach der trigonometrischen Formel (2), (3) im realen Betrieb berechnen will, ist der Berechnungsalgorithmus in der Praxis kaum umsetzbar. Um diese Hürde zu überwinden, wird in dieser Erfindung das sogenannte Festschrittsteuerungs­ verfahren eingeführt. Aus Gerkeler M. W. Raumzeigermodulation bei Frequenzumrichtern. Antriebstechnik 27 (1988) H.4, 9.39-42 ist es zu erkennen, daß die 6 Zustandszonen nur um π/3 (60 Grad) gegeneinander verschoben sind. Teilt man die Zustandszone gleichmäßig in P Teile:
γm = γ1 = 0,
γm = γ2 = π/3/p,
γm = γ3 = 2.π/3/p,
γm = γ4 = 3.π/3/p,
. . .
γm = γp = (p-1).π/3/p,
und hält sich der Raumzeiger Umem nur in solchen Punkten auf, wird der Raumzeiger Umem dann in den 6 Zustandszonen diese Schritte nur sechs mal wiederholen. (siehe Bild 2, hier ist P = 4.). Bei einer festen Netzfrequenz ist nicht nur jeder Schritt in Winkelanzahl sondern auch im Zeitabstand konstant. Es ist deshalb möglich, vorher mit festen Winkeln γm = γ1, γ2, γ3, γ4 . . . γp zu berechnen, und die Werte in einer Tabelle abzuspeichern. Da jeder Schritt vorher festgelegt wird, wird solches Verfahren deshalb als Festschrittsteuerungsverfahren be­ zeichnet.
If you want to calculate the converter voltage using the trigonometric formula (2), (3) in real operation, the calculation algorithm can hardly be implemented in practice. To overcome this hurdle, the so-called fixed-step control method is introduced in this invention. From Gerkeler MW space vector modulation for frequency inverters. Antriebstechnik 27 (1988) H.4, 9.39-42 it can be seen that the 6 status zones are only shifted by π / 3 (60 degrees) from each other. If the state zone is divided equally into P parts:
γ m = γ 1 = 0,
γ m = γ 2 = π / 3 / p,
γ m = γ 3 = 2.π / 3 / p,
γ m = γ 4 = 3.π / 3 / p,
, , ,
γ m = γ p = (p-1) .π / 3 / p,
and if the space pointer U m e m is only in such points, the space pointer U m e m will then only repeat these steps six times in the 6 status zones . (see picture 2, here P = 4.). With a fixed network frequency, not only is every step constant in the number of angles, but also in time interval. It is therefore possible beforehand with fixed angles γ m = γ 1 , γ 2 , γ 3 , γ 4 . , , Calculate γ p and save the values in a table. Since each step is determined beforehand, such a method is therefore referred to as a fixed-step control method.

Da der Zeitfehler durch das Festschrittsteuerungsverfahren immer fortlaufend integriert wird, wird die im Bild 3 dargestellte Struktur eingeführt, um die Zeitfehler zu beseitigen. Hier wird eine Abtastregelung benutzt. Die Abtastzeit beträgt 20 ms; ist also synchron mit der Netzperiode. Aus dem Zeigerdiagramm ist zu erkennen, daß der Winkel θ den Betriebszu­ stand des Stromrichters darstellt. Deshalb wird der Winkel θ als Ausgangsparameter des Gleichspannungsreglers und gleichzeitig als Kompensator des integrierten Zeitfehlers ausge­ wählt. Der Gleichspannungsregler stellt einen neuen Winkel θ in jeder Periode ein, damit der integrierte Zeitfehler rechtzeitig im neuen Winkel θ kompensiert wird. Will man zusätzlich die Amplitude einstellen, muß man noch einen zusätzlichen Regler vor dem Gleichspan­ nungsregler anordnen.Since the time error is always continuously integrated through the fixed-step control method, the structure shown in Figure 3 is introduced to eliminate the time errors. A sampling control is used here. The sampling time is 20 ms; is therefore in sync with the grid period. From the vector diagram it can be seen that the angle θ represents the operating state of the converter. Therefore, the angle θ is selected as the output parameter of the DC voltage regulator and at the same time as a compensator for the integrated time error. The DC voltage regulator sets a new angle θ in each period so that the integrated time error is compensated for in time in the new angle θ. If you also want to set the amplitude, you have to arrange an additional regulator before the DC voltage regulator.

Bild 4 und 5 zeigen das Testergebnis, welches unter folgenden Bedingungen durchgeführt wurde:
Stromrichter mit einer Taktfrequenz von ca. 5000 Hz,
Als Rechner diente ein selbstgebauter 68000 Ein-Karte-Rechner mit einer Taktfre­ quenz von 10 MHz; der Speicher beträgt insgesamt 16 k Byte.
Figures 4 and 5 show the test result, which was carried out under the following conditions:
Converter with a clock frequency of approx. 5000 Hz,
A self-built 68000 one-card computer with a clock frequency of 10 MHz served as the computer; the total memory is 16 k bytes.

Anwendungsgebietfield of use

Die Erfindung wird dort eingesetzt, wo eine Umwandlung zwischen Dreiphasenspannungs- und Gleichspannungsquelle benötigt wird, z. B.:
The invention is used where a conversion between three-phase voltage and DC voltage source is required, e.g. B .:

  • 1. Dreiphasiger netzfreundlicher Stromrichter;1. Three-phase grid-friendly converter;
  • 2. Leistungsfaktorkompensator;2. Leistungsfaktorkompensator;
  • 3. Umwandeln einer Gleichspannung, z. B. bei Solargeneratoren und Zellengeneratoren in eine sinusförmige Dreiphasenspannung, usw.3. converting a DC voltage, e.g. B. in solar generators and cell generators into a sinusoidal three-phase voltage, etc.

Claims (4)

1. Statische Synchronmaschine, die zur Wandlung zwischen Gleichspannung und sinusför­ migen Dreiphasen Spannung mit fester Netzrequenz benutzt wird, ist ein mit Raumzei­ germodulation kontrollierter Dreiphasenstromrichter dadurch gekennzeichnet, daß das Festschrittsteuerungsverfahren eingesetzt wird, damit eine Statische Synchronmaschi­ ne mit sehr geringem Softwareaufwand realisiert wird.1. Static synchronous machine, which is used to convert between DC voltage and sinusoidal three-phase voltage with a fixed network frequency, is a three-phase converter controlled with space modulation, characterized in that the fixed-step control method is used so that a static synchronous machine is implemented with very little software effort. 2. Statische Synchronmaschine nach Anspruch 1 dadurch gekennzeichnet, daß der Fehler der integrierten Zeit mit dem Strukturbild (siehe Bild 3) kompensiert wird.2. Static synchronous machine according to claim 1, characterized in that the error of the integrated time with the structure image (see Figure 3) is compensated. 3. Statische Synchronmaschine nach Anspruch 1 und 2 dadurch gekennzeichnet, daß die Amplitude und der Phasenwinkel θ der Stromrichterspannung variabel verstellbar sind, damit eine Statische Synchronmaschine in Motor- oder in Generatormodus betrieben werden, und Blindleistung aufnehmen oder abgeben kann.3. Static synchronous machine according to claim 1 and 2, characterized in that the The amplitude and the phase angle θ of the converter voltage are variably adjustable, so that a static synchronous machine is operated in motor or generator mode and can absorb or deliver reactive power. 4. Statische Synchronmaschine nach Anspruch 1 bis 2 dadurch gekennzeichnet, daß eine- Statische Synchronmaschine bei der Umwandlung zwischen Gleichspannung und Drei­ phasenspannung automatisch sinusförmige Ströme erzeugen kann.4. Static synchronous machine according to claim 1 to 2, characterized in that a Static synchronous machine in the conversion between DC voltage and three phase voltage can automatically generate sinusoidal currents.
DE10123414A 2001-05-14 2001-05-14 Static converter as 3-phase current converter controlled using vector modulation and fixed step control method Withdrawn DE10123414A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10123414A DE10123414A1 (en) 2001-05-14 2001-05-14 Static converter as 3-phase current converter controlled using vector modulation and fixed step control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10123414A DE10123414A1 (en) 2001-05-14 2001-05-14 Static converter as 3-phase current converter controlled using vector modulation and fixed step control method

Publications (1)

Publication Number Publication Date
DE10123414A1 true DE10123414A1 (en) 2002-11-21

Family

ID=7684738

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10123414A Withdrawn DE10123414A1 (en) 2001-05-14 2001-05-14 Static converter as 3-phase current converter controlled using vector modulation and fixed step control method

Country Status (1)

Country Link
DE (1) DE10123414A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110084642A1 (en) * 2009-10-10 2011-04-14 Sick Ag Method and apparatus for failsafe monitoring an electromotive drive
US20110084643A1 (en) * 2009-10-10 2011-04-14 Sick Ag Method and apparatus for failsafe monitoring an electromotive drive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720777A (en) * 1985-11-18 1988-01-19 Kabushiki Kaisha Toshiba Pulse width modulation system for AC motor drive inverters
DE10042879A1 (en) * 1999-09-01 2001-08-09 Toshiba Kawasaki Kk Control device for a power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720777A (en) * 1985-11-18 1988-01-19 Kabushiki Kaisha Toshiba Pulse width modulation system for AC motor drive inverters
DE10042879A1 (en) * 1999-09-01 2001-08-09 Toshiba Kawasaki Kk Control device for a power converter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LUCANU,M.,NEACSU,D.: Optimal Voltage/Frequency Control for Space-Vector PWM Three-Phase Inver- ters. In: ETEP, Vol.5,No.2, March/April, 1995 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110084642A1 (en) * 2009-10-10 2011-04-14 Sick Ag Method and apparatus for failsafe monitoring an electromotive drive
US20110084643A1 (en) * 2009-10-10 2011-04-14 Sick Ag Method and apparatus for failsafe monitoring an electromotive drive
US8294410B2 (en) * 2009-10-10 2012-10-23 Sick Ag Method and apparatus for failsafe monitoring an electromotive drive
US8310196B2 (en) * 2009-10-10 2012-11-13 Sick Ag Method and apparatus for failsafe monitoring an electromotive drive

Similar Documents

Publication Publication Date Title
EP1642383A2 (en) Frequency converter for high-speed generators
EP1027767B2 (en) Pulse-controlled inverter with variable operating sequence and wind power plant having such an inverter
CH697550B1 (en) Method for controlling a frequency converter.
EP0144556B1 (en) Reactive power compensator for compensating a reactive current component in an ac network
CN109217366A (en) Total power Wind turbines control method and system
EP1864371A1 (en) Matrix converter
DE2225609A1 (en) Multi-phase AC motor drive with adjustable speed
Roy et al. Direct frequency changer operation under a new scalar control algorithm
Moriano et al. A novel multifrequency current reference calculation to mitigate active power fluctuations
EP2421135B1 (en) Transformerless inverter with step-down-converter
DE102021133236A1 (en) METHOD AND DEVICE FOR GENERATION OF A THREE-PHASE VOLTAGE
EP0508110B1 (en) Control method for an electric valve of a converter
DE10123414A1 (en) Static converter as 3-phase current converter controlled using vector modulation and fixed step control method
EP2918009A2 (en) System with a first electric motor and a second electric motor for driving a line section
Stan et al. Control strategies for VSC-based HVDC transmission system
WO2022013200A1 (en) Generation unit having integrated power electronics for meeting feed-in demands of public electricity grids
DE2247819A1 (en) BALANCING DEVICE FOR A THREE-PHASE MAINS
DE102013106006A1 (en) Synchronization of three-phase inverters
WO2005114830A1 (en) Frequency converter device for a wind energy park and method of operation of such a device
DD209706A5 (en) DEVICE FOR REPLACING ELECTRICAL ENERGY
WO2010088979A1 (en) Method for regulating a self-commutated mains power converter of an intermediate voltage circuit converter
DE3150385A1 (en) Static network coupling for high power for coupling a three-phase network at a higher frequency and a single-phase network at a lower frequency
Tabatabaei et al. MULTIPULSE AC-DC CONVERTERS FOR HARMONIC REDUCTION
Dwivedi et al. Simulation and analysis of unified power flow controller using SIMULINK
Umathe et al. STATCOM: theoretical aspects & experimental study

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8139 Disposal/non-payment of the annual fee