DE10018943A1 - Photovoltaic energy converter for independent photovoltaic installation has universal DC bus coupling installation components with evaluation of bus voltage for energy management - Google Patents

Photovoltaic energy converter for independent photovoltaic installation has universal DC bus coupling installation components with evaluation of bus voltage for energy management

Info

Publication number
DE10018943A1
DE10018943A1 DE10018943A DE10018943A DE10018943A1 DE 10018943 A1 DE10018943 A1 DE 10018943A1 DE 10018943 A DE10018943 A DE 10018943A DE 10018943 A DE10018943 A DE 10018943A DE 10018943 A1 DE10018943 A1 DE 10018943A1
Authority
DE
Germany
Prior art keywords
bus
photovoltaic
energy
voltage
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10018943A
Other languages
German (de)
Inventor
Wolfgang Hernschier
Rainer Rudischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Luft und Kaeltetechnik Gemeinnuetzige GmbH
Original Assignee
Institut fuer Luft und Kaeltetechnik Gemeinnuetzige GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Luft und Kaeltetechnik Gemeinnuetzige GmbH filed Critical Institut fuer Luft und Kaeltetechnik Gemeinnuetzige GmbH
Priority to DE10018943A priority Critical patent/DE10018943A1/en
Publication of DE10018943A1 publication Critical patent/DE10018943A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/51Photovoltaic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/57Charging stations without connection to power networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The photovoltaic energy converter has all the photovoltaic sources and energy drains coupled via converters to a universal DC bus (1), with evaluation of the bus voltage level via a control and regulation device (8) for energy management of the installation.

Description

Die Erfindung betrifft einen Photovoltaik-Wechselrichter zum energieoptimierten Betrei­ ben von Photovoltaikanlagen, die als Inselsysteme ausgeführt sind, wie z. B. autarke Kühlcontainer oder Brauchwasserkühler, aber auch Inselnetzsysteme.The invention relates to a photovoltaic inverter for energy-optimized operation ben of photovoltaic systems that are designed as island systems, such. B. self-sufficient Refrigerated containers or process water coolers, but also off-grid systems.

Für die Energieversorgung mit Photovoltaikanlagen ist eine Anpassung zwischen dem Photovoltaikgenerator und den unterschiedlichen Verbrauchern erforderlich. Der Photo­ voltaikgenerator soll möglichst in jedem Betriebszustand der Anlage so betrieben wer­ den, daß er in dem Punkt seiner maximalen Leistungsabgabe (MPP) arbeitet. Der Ar­ beitspunkt des für Inselsysteme meistens erforderlichen Elektroenergiespeichers stimmt nur in wenigen Fällen mit dem MPP überein, so daß in jedem Betriebszustand eine An­ passung erforderlich ist.For the energy supply with photovoltaic systems there is an adjustment between the Photovoltaic generator and the different consumers required. The photo voltaic generator should be operated as possible in every operating state of the system that it works at the point of its maximum power output (MPP). The Ar The point of the electrical energy storage that is usually required for stand-alone systems is correct only in a few cases with the MPP, so that an An fit is required.

Bei herkömmlichen Anlagen wird die Nennspannung des Elektroenergiespeichers durch die Nennspannung des Photovoltaikgenerators bestimmt, was einen erhöhten Aufwand bei der Installation des Gesamtsystems erfordert. Bei niedrigen Systemspannungen und Leistungen im Kilowattbereich ergeben sich hohe Ansprüche an die Strombelastbarkeit der verwendeten Kabel. Die Verwendung einer hohen Systemspannung ist beim Einsatz eines Elektroenergiespeichers nur durch das Zusammenschalten mehrerer Speicher und den damit verbundenen Problemen bei der Ladung möglich.In conventional systems, the nominal voltage of the electrical energy store is determined by the nominal voltage of the photovoltaic generator determines what an increased effort required when installing the entire system. At low system voltages and Outputs in the kilowatt range result in high demands on the current carrying capacity of the cables used. The use of a high system voltage is in use of an electrical energy store only by interconnecting several stores and the associated problems with loading possible.

Aufgabe der Erfindung ist es, die unterschiedlichen Energiequellen und Energiesenken einer Photovoltaikanlage so zu verbinden, daß eine ständige Anpassung der einzelnen Komponenten gewährleistet ist.The object of the invention is the different energy sources and energy sinks to connect a photovoltaic system so that a constant adjustment of the individual Components is guaranteed.

Erfindungsgemäß wird die Aufgabe durch die Merkmale des 1. Patentanspruchs gelöst, indem eine Photovoltaik-Wechselrichter mit Gleichspannungsbus eingesetzt wird. Der Photovoltaik-Wechselrichter wird zweistufig ausgeführt. Im ersten Teil, einem Gleich­ spannungswandler, erfolgt die Anpassung der Spannung des Photovoltaikgenerators an das für den jeweiligen Anwendungsfall erforderliche Spannungsniveau. Der so entstan­ dene Spannungszwischenkreis dient als Schnittstelle (Gleichspannungsbus) für weitere Komponenten. wie Batterie, Gleich- und Wechselspannungslasten und andere Energie­ quellen, die über geeignete Wandler angekoppelt werden können.According to the invention the object is achieved by the features of the first claim, by using a photovoltaic inverter with DC bus. The Photovoltaic inverters are designed in two stages. In the first part, an equal voltage converter, the voltage of the photovoltaic generator is adjusted the voltage level required for the respective application. That is how it came about The DC link serves as an interface (DC bus) for others  Components. such as battery, DC and AC loads and other energy sources that can be coupled using suitable converters.

Durch einen Gleichspannungsbus an den alle Energiequellen und Energiesenken über separate Wandler gekoppelt werden, wird eine große Unabhängigkeit bezüglich der Auswahl des Nennspannungsniveaus dieser Komponenten erreicht, d. h. eine Batterie mit einer Nennspannung von 48 V kann zum Beispiel durch einen bidirektionalen Lade­ regler mit einem Photovoltaikgenerator mit einer Nennspannung von 150 V über den Gleichspannungsbus verbunden werden.Through a DC bus to which all energy sources and energy sinks pass separate converters will be coupled with a great deal of independence regarding the Selection of the nominal voltage level of these components reached, d. H. a battery with a nominal voltage of 48 V, for example, through a bidirectional charging regulator with a photovoltaic generator with a nominal voltage of 150 V over the DC bus can be connected.

Erfindungsgemäß wird eine Steuer- und Regeleinrichtung für das Energiemanagement über die Auswertung des Spannungsniveaus des Gleichspannungsbusses eingesetzt. Ein Energieüberschuß im Gleichspannungsbus führt zu einer Erhöhung der Busspan­ nung, ein Energiedefizit zu einer Verringerung der Busspannung. Die Busspannung ist die Regelgröße und die Änderung dieser Spannung die Regelabweichung. Die Re­ gelabweichung wird über die Änderung der Sollwerte für die einzelnen an den Gleich­ spannungsbus angeschlossenen Wandler minimiert.According to the invention, a control and regulating device for energy management used to evaluate the voltage level of the DC bus. An excess of energy in the DC bus leads to an increase in the bus voltage voltage, an energy deficit to reduce the bus voltage. The bus voltage is the controlled variable and the change in this voltage the control deviation. The Re Gel deviation is determined by changing the setpoints for the individual to the same voltage converter connected minimized.

An folgenden Ausführungsbeispiel soll die Erfindung näher erläutert werden:The invention will be explained in more detail using the following exemplary embodiment:

In Fig. 1 ist das Prinzip des Spannungszwischenkreises als universeller Gleichspan­ nungsbus 1 dargestellt. An den Gleichspannungsbus 1 werden ein Anpaßwandler 3, ein bidirektionaler Laderegler 5 und ein Inselwechselrichter 7 angeschlossen. Mit 2 ist der Photovoltaikgenerator und mit 6 ein Verbraucher bezeichnet. Der Betrieb dieser Wandler wird durch eine Steuer- und Regeleinrichtung 8, wie in Fig. 3 dargestellt, in Abhängigkeit des Spannungsniveaus des Gleichspannungbusses 1 koordiniert.In Fig. 1, the principle of the voltage intermediate circuit as a universal DC voltage bus 1 is shown. A matching converter 3 , a bidirectional charge controller 5 and an island inverter 7 are connected to the DC bus 1 . 2 is the photovoltaic generator and 6 is a consumer. The operation of these converters is coordinated by a control and regulating device 8 , as shown in FIG. 3, as a function of the voltage level of the DC bus 1 .

Der bidirektionale Laderegler 5 regelt das Laden und Entladen der Batterie 4. Im Lade­ betrieb arbeitet der bidirektionale Laderegler 5 als Tiefsetzsteller mit der Spannung des Gleichspannungsbusses 1 am Eingang und der Batterie 4 am Ausgang.The bidirectional charge controller 5 regulates the charging and discharging of the battery 4 . In charging mode, the bidirectional charge controller 5 works as a buck converter with the voltage of the DC bus 1 at the input and the battery 4 at the output.

Bei Energieüberschuß im Gleichspannungsbus arbeitet dieser Wandler als Tiefsetzstel­ ler und regelt die Batterieladung. Bei Energiedefizit im Gleichspannungsbus wird in den Hochsetzstellermodus gewechselt und die Batterie unter Überwachung der zulässigen Grenzwerte entladen. If there is excess energy in the DC bus, this converter works as a buck and regulates the battery charge. If there is an energy deficit in the DC bus, the Boost mode changed and the battery under supervision of the allowable Unload limit values.  

In Fig. 2 ist das Schaltschema des bidirektionalen Ladereglers 5 dargestellt. Im Ladebe­ trieb bleibt der Schalter S2 geöffnet und der Schalter S1 wird mit einem pulsweitenmo­ dulierten Signal angesteuert. Beim Entladen der Batterie 4 bleibt der Schalter S1 geöff­ net und der Schalter S2 wird geschaltet und damit ein Hochsetzstellerbetrieb mit der Batteriespannung am Eingang und dem Gleichspannungsbus 1 am Ausgang realisiert.In FIG. 2, the circuit diagram of the bidirectional charge controller 5 is shown. In charging mode, switch S2 remains open and switch S1 is activated with a pulse width modulated signal. When the battery 4 is discharged, the switch S1 remains open and the switch S2 is switched, thus implementing a step-up converter operation with the battery voltage at the input and the DC bus 1 at the output.

Durch den Anpaßwandler 3 wird die Leistungsanpassung realisiert. Dazu wird über die Änderung der Einschaltdauer der Halbleiterschalter der Innenwiderstand des Gleich­ spannungswandlers so eingestellt, daß der Arbeitspunkt mit dem aktuellen MPP des Photovoltaikgenerators 2 übereinstimmt.The power matching is implemented by the matching converter 3 . For this purpose, the internal resistance of the DC converter is adjusted so that the operating point coincides with the current MPP of the photovoltaic generator 2 via the change in the duty cycle of the semiconductor switch.

Die Spannung des Gleichspannungsbusses 1 wird durch den Inselwechselrichter 7 in eine Wechselspannung konvertiert.The voltage of the DC bus 1 is converted into an AC voltage by the island inverter 7 .

Der Energiefluß zwischen den einzelnen Komponenten wird über das Spannungsniveau des Gleichspannungsbusses 1 geregelt, da sich dieses proportional zu dem Verhältnis von Energieangebot und Energieverbrauch einstellt. Bei der Kopplung mehrerer Kompo­ nenten werden diesen verschiedene Prioritäten über das Spannungsniveau zugeordnet.The energy flow between the individual components is regulated via the voltage level of the DC bus 1 , since this is proportional to the ratio of energy supply and energy consumption. When several components are coupled, different priorities are assigned to them via the voltage level.

Bei einem System bestehend aus Photovoltaikgenerator 2 mit Anpaßwandler 3, Batterie 4 mit bidirektionalem Laderegler 5, Motor mit Frequenzumrichter 7 und hier nicht darge­ stellten Dieselgenerator mit aktiven Gleichrichter können zum Beispiel gemäß Fig. 3 fol­ gende Spannungsniveaus für den Gleichspannungsbus 1 festgelegt werden:
In a system consisting of a photovoltaic generator 2 with a matching converter 3 , a battery 4 with a bidirectional charge controller 5 , a motor with a frequency converter 7 and a diesel generator with an active rectifier (not shown here), the following voltage levels for the DC bus 1 can be defined, for example, according to FIG. 3:

  • 1. Batterie laden bei 305 V bis 320 V (ULaden)1.Charge the battery at 305 V to 320 V (U charging )
  • 2. Batterie entladen bei Unterschreiten von 300 V (UEntladen)2.Battery discharged when the voltage falls below 300 V (U discharge )
  • 3. Start des Dieselgenerators bei Unterschreiten von 280 V (UDiesel)3. Start of the diesel generator when the temperature falls below 280 V (U Diesel )
  • 4. Betrieb des Motors von 270 V (Umin) bis 330 V (Umax)4. Operation of the motor from 270 V (U min ) to 330 V (U max )

Claims (5)

1. Photovoltaik-Wechselrichter bei dem alle für ein Photovoltaikinselsystem erforderli­ chen Energiequellen und Energiesenken über Wandler ausschließlich an einen Gleichspannungsbus (1) mit frei wählbarem Spannungsniveau gekoppelt sind und ei­ ne Regelung bzw. Steuerung dieser Komponenten über die Auswertung des Span­ nungsniveaus des Gleichspannungsbusses (1) erfolgt. Dazu werden ein Photovoltaik­ generator (2) über einen Anpaßwandler (3), ein bidirektionaler Laderegler (5) mit einer Batterie (4) und ein Inselwechselrichter (7) mit dem Verbraucher (6) über einen Gleichspannungsbus (1) verbunden und eine Steuer- und Regeleinrichtung (8) für das Energiemanagement über die Auswertung des Spannungsniveaus des Gleichspan­ nungsbusses (1) angeschlossen.1.Photovoltaic inverters in which all energy sources and energy sinks required for a photovoltaic island system are coupled via converters exclusively to a DC bus ( 1 ) with a freely selectable voltage level and a regulation or control of these components via the evaluation of the voltage level of the DC bus ( 1 ) he follows. For this purpose, a photovoltaic generator ( 2 ) is connected via a matching converter ( 3 ), a bidirectional charge controller ( 5 ) with a battery ( 4 ) and an island inverter ( 7 ) to the consumer ( 6 ) via a DC bus ( 1 ) and a control and control device ( 8 ) for energy management via the evaluation of the voltage level of the DC voltage bus ( 1 ). 2. Photovoltaik-Wechselrichter nach Anspruch 1, bei dem die Steuer- und Regelein­ richtung dergestalt ausgeführt ist, daß jeder Komponente ein Gleichspannungsniveau innerhalb des Arbeitsspannungsbereiches des Gleichspannungsbusses zugeordnet wird und der Betrieb dieser Komponenten abhängig von den Abweichungen eines Nennenergieniveaus gesteuert wird, d. h. die Arbeitspunkte der einzelnen Kompo­ nenten durch die Steuer- und Regeleinrichtung beeinflußt werden.2. Photovoltaic inverter according to claim 1, wherein the Steuerein and Regelein direction is such that each component has a DC voltage level assigned within the working voltage range of the DC bus and the operation of these components depends on the deviations of one Nominal energy levels are controlled, d. H. the working points of the individual compos nenten be influenced by the control and regulation device. 3. Photovoltaik-Wechselrichter nach Anspruch 1, bei dem die Steuer- und Regelein­ richtung dezentral für jede Komponente ausgeführt ist.3. Photovoltaic inverter according to claim 1, in which the Steuerein and Regelein direction is decentralized for each component. 4. Photovoltaik-Wechselrichter nach Anspruch 1, bei dem der Inselwechselrichter (7) über einen dreiphasigen, frequenzgeregelten Ausgang für den direkten Anschluß von Asynchronmotoren verfügt.4. Photovoltaic inverter according to claim 1, wherein the island inverter ( 7 ) has a three-phase, frequency-controlled output for the direct connection of asynchronous motors. 5. Photovoltaik-Wechselrichter nach Anspruch 1, bei dem zusätzlich eine externe Elek­ troenergiequelle über einen Wandler an den Gleichspannungsbus (1) angeschlossen ist.5. Photovoltaic inverter according to claim 1, in which an external electrical energy source is additionally connected via a converter to the DC bus ( 1 ).
DE10018943A 2000-04-17 2000-04-17 Photovoltaic energy converter for independent photovoltaic installation has universal DC bus coupling installation components with evaluation of bus voltage for energy management Withdrawn DE10018943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10018943A DE10018943A1 (en) 2000-04-17 2000-04-17 Photovoltaic energy converter for independent photovoltaic installation has universal DC bus coupling installation components with evaluation of bus voltage for energy management

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10018943A DE10018943A1 (en) 2000-04-17 2000-04-17 Photovoltaic energy converter for independent photovoltaic installation has universal DC bus coupling installation components with evaluation of bus voltage for energy management

Publications (1)

Publication Number Publication Date
DE10018943A1 true DE10018943A1 (en) 2001-10-31

Family

ID=7639017

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10018943A Withdrawn DE10018943A1 (en) 2000-04-17 2000-04-17 Photovoltaic energy converter for independent photovoltaic installation has universal DC bus coupling installation components with evaluation of bus voltage for energy management

Country Status (1)

Country Link
DE (1) DE10018943A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10136147A1 (en) * 2001-07-25 2003-02-20 Hendrik Kolm Photovoltaic alternating current generator has solar modules, each electrically connected to individual D.C. voltage converter that transforms to intermediate D.C. voltage and decouples module
WO2004001942A1 (en) * 2002-06-23 2003-12-31 Powerlynx A/S Power converter
DE10301878A1 (en) * 2003-01-17 2004-08-05 Institut für Luft- und Kältetechnik gGmbH Compact solar ice making unit
DE102004037330A1 (en) * 2004-07-28 2006-03-23 Solarc Innovative Solarprodukte Gmbh Self-sustaining electrical power supply device, e.g. for mobile phones, has electronic circuit with DC converter to adjust consumer's output power, where consumer is supplied with necessary output by interpretation of circuit on generator
US7514808B2 (en) 2004-09-24 2009-04-07 Aloys Wobben Regenerative energy system
DE102009016306A1 (en) 2009-04-06 2010-10-21 Institut für Luft- und Kältetechnik gemeinnützige Gesellschaft mbH Arrangement for power supply system for self-sufficient operation of main drive motor, has frequency converter with control unit connected with direct current converter and drive auxiliary equipment by communication lines
EP2293410A2 (en) 2009-09-04 2011-03-09 voltwerk electronics GmbH Energy control device for an energy network with a control unit for controlling an energy flow between the energy generator, the energy storage unit, the load unit and/or the energy network
DE102010016138A1 (en) * 2010-03-25 2011-09-29 Refu Elektronik Gmbh Solar inverter for extended irradiation value range and operating method
DE102011056135A1 (en) 2011-12-07 2013-06-13 Refusol Gmbh Power generation system e.g. photovoltaic system for supplying electric power to e.g. public supply network, has control device that is provided to control switch device based on direct voltage power supplied by power generator
DE102012002599A1 (en) 2012-02-13 2013-08-14 Refusol Gmbh Power generation plant with inverter and energy storage system
DE102012002601A1 (en) 2012-02-13 2013-08-14 Refusol Gmbh Power generation plant has switchable connecting unit that selectively connects electrical storage device and generator in series with positive and negative poles
DE102012102754A1 (en) * 2012-03-30 2013-10-02 Mack Electronic Systems GmbH & Co. KG Energy storage device for power generator e.g. photovoltaic system installed on roof of e.g. residential building, has voltage measuring device which is connected to control unit such that the voltage across storage device is adjusted
DE102013104380A1 (en) * 2013-04-30 2014-10-30 Phoenix Contact Gmbh & Co. Kg Circuit arrangement and method for providing the desired value of a current control in order to limit the current
DE102013211951A1 (en) 2013-06-24 2014-12-24 Younicos Ag Method and device for storing electrical energy in electrochemical energy storage
WO2017059855A1 (en) * 2015-10-07 2017-04-13 Schaeffler Technologies AG & Co. KG Dc-to-dc converter and method for operating a dc-to-dc converter
DE102011110197B4 (en) * 2010-09-10 2018-04-12 Sew-Eurodrive Gmbh & Co Kg System with a DC link as common rail and method of operating a system with arranged in different housings actuators
CN111262326A (en) * 2020-03-18 2020-06-09 重庆工业职业技术学院 Centralized direct-current charging device for pure electric vehicle and control method

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10136147A1 (en) * 2001-07-25 2003-02-20 Hendrik Kolm Photovoltaic alternating current generator has solar modules, each electrically connected to individual D.C. voltage converter that transforms to intermediate D.C. voltage and decouples module
DE10136147B4 (en) * 2001-07-25 2004-11-04 Kolm, Hendrik, Dipl.-Ing. Photovoltaic alternator
WO2004001942A1 (en) * 2002-06-23 2003-12-31 Powerlynx A/S Power converter
DE10301878A1 (en) * 2003-01-17 2004-08-05 Institut für Luft- und Kältetechnik gGmbH Compact solar ice making unit
DE10301878B4 (en) * 2003-01-17 2005-08-11 Institut für Luft- und Kältetechnik gGmbH Solar compact ice making unit
DE102004037330A1 (en) * 2004-07-28 2006-03-23 Solarc Innovative Solarprodukte Gmbh Self-sustaining electrical power supply device, e.g. for mobile phones, has electronic circuit with DC converter to adjust consumer's output power, where consumer is supplied with necessary output by interpretation of circuit on generator
DE102004037330B4 (en) * 2004-07-28 2007-06-14 Solarc Innovative Solarprodukte Gmbh Self-sufficient power supply device
US7514808B2 (en) 2004-09-24 2009-04-07 Aloys Wobben Regenerative energy system
DE102009016306A1 (en) 2009-04-06 2010-10-21 Institut für Luft- und Kältetechnik gemeinnützige Gesellschaft mbH Arrangement for power supply system for self-sufficient operation of main drive motor, has frequency converter with control unit connected with direct current converter and drive auxiliary equipment by communication lines
EP2293410B1 (en) 2009-09-04 2017-02-22 Robert Bosch GmbH Energy control device for an energy network with a control unit for controlling an energy flow between the energy generator, the energy storage unit, the load unit and/or the energy network
DE102009040090A1 (en) 2009-09-04 2011-03-10 Voltwerk Electronics Gmbh Island unit for a power grid with a control unit for controlling an energy flow between the power generation unit, the energy storage unit, the load unit and / or the power grid
EP3182549A1 (en) 2009-09-04 2017-06-21 Robert Bosch GmbH Sol-ion i: single system
EP2293410A2 (en) 2009-09-04 2011-03-09 voltwerk electronics GmbH Energy control device for an energy network with a control unit for controlling an energy flow between the energy generator, the energy storage unit, the load unit and/or the energy network
AU2011231612B2 (en) * 2010-03-25 2015-01-22 Refusol Gmbh Solar inverter for an extended insolation value range and operating method
DE102010016138A1 (en) * 2010-03-25 2011-09-29 Refu Elektronik Gmbh Solar inverter for extended irradiation value range and operating method
WO2011117361A3 (en) * 2010-03-25 2012-04-12 Refu Elektronik Gmbh Solar inverter for an extended insolation value range and operating method
CN103038978A (en) * 2010-03-25 2013-04-10 瑞富太阳能有限责任公司 Solar inverter for an extended insolation value range and operating method
US9118212B2 (en) 2010-03-25 2015-08-25 Refusol Gmbh Solar inverter for an extended insolation range and operating method
DE102011110197B4 (en) * 2010-09-10 2018-04-12 Sew-Eurodrive Gmbh & Co Kg System with a DC link as common rail and method of operating a system with arranged in different housings actuators
DE102011056135A1 (en) 2011-12-07 2013-06-13 Refusol Gmbh Power generation system e.g. photovoltaic system for supplying electric power to e.g. public supply network, has control device that is provided to control switch device based on direct voltage power supplied by power generator
DE102011056135B4 (en) * 2011-12-07 2015-05-13 Refusol Gmbh Power generation plant with an energy storage system and associated operating method
DE102012002601A1 (en) 2012-02-13 2013-08-14 Refusol Gmbh Power generation plant has switchable connecting unit that selectively connects electrical storage device and generator in series with positive and negative poles
DE102012002599A1 (en) 2012-02-13 2013-08-14 Refusol Gmbh Power generation plant with inverter and energy storage system
EP2626969A3 (en) * 2012-02-13 2016-03-30 Refusol GmbH Power generation plant with inverter and energy storage system
DE102012002599B4 (en) * 2012-02-13 2016-03-03 Refusol Gmbh Power generation plant with inverter and energy storage system
DE102012102754A1 (en) * 2012-03-30 2013-10-02 Mack Electronic Systems GmbH & Co. KG Energy storage device for power generator e.g. photovoltaic system installed on roof of e.g. residential building, has voltage measuring device which is connected to control unit such that the voltage across storage device is adjusted
DE102013104380B4 (en) * 2013-04-30 2014-12-04 Phoenix Contact Gmbh & Co. Kg Circuit arrangement and method for providing the desired value of a current control in order to limit the current
DE102013104380A1 (en) * 2013-04-30 2014-10-30 Phoenix Contact Gmbh & Co. Kg Circuit arrangement and method for providing the desired value of a current control in order to limit the current
US9806603B2 (en) 2013-04-30 2017-10-31 Phoenix Contact Gmbh & Co Kg Circuit with comparison of input voltage to upper and lower thresholds
DE102013211951A1 (en) 2013-06-24 2014-12-24 Younicos Ag Method and device for storing electrical energy in electrochemical energy storage
WO2014206983A1 (en) 2013-06-24 2014-12-31 Younicos Ag Method and device for storing electrical energy in electrochemical energy accumulators
WO2017059855A1 (en) * 2015-10-07 2017-04-13 Schaeffler Technologies AG & Co. KG Dc-to-dc converter and method for operating a dc-to-dc converter
CN108141137A (en) * 2015-10-07 2018-06-08 舍弗勒技术股份两合公司 Direct current transducer and the method for running direct current transducer
US10886848B2 (en) 2015-10-07 2021-01-05 Schaeffler Technologies AG & Co. KG DC-to-DC converter and method for operating a DC-to-DC converter
CN108141137B (en) * 2015-10-07 2021-05-28 舍弗勒技术股份两合公司 DC converter and method for operating a DC converter
CN111262326A (en) * 2020-03-18 2020-06-09 重庆工业职业技术学院 Centralized direct-current charging device for pure electric vehicle and control method

Similar Documents

Publication Publication Date Title
DE10018943A1 (en) Photovoltaic energy converter for independent photovoltaic installation has universal DC bus coupling installation components with evaluation of bus voltage for energy management
EP1463188B1 (en) Circuit arrangement, accessory module and photovoltaic system
DE69738593T2 (en) Power supply system with system connection
EP2385909B1 (en) Method for controlling a power supply device having a power inverter
EP1784910B1 (en) Voltage regulator with over-voltage protection
EP3014725B1 (en) Energy storage device having a dc voltage supply circuit and method for providing a dc voltage from an energy storage device
DE102013212682B4 (en) Energy storage device with DC power supply circuit and method for providing a DC voltage from an energy storage device
EP0535382B1 (en) Procedure for economical operation of an island network with renewable sources of energy and a circuit for execution of the procedure
DE102011107737A1 (en) Method for controlling a direct converter, electronic control device therefor, direct converter and computer program
DE202016107082U1 (en) Redundant power sources in the household
DE19526836C2 (en) Charge balancing device between at least two energy stores or converters
DE102013212692A1 (en) Energy storage device with DC power supply circuit
EP3176937A1 (en) Power converter assembly
DE102012002599B4 (en) Power generation plant with inverter and energy storage system
DE3118909C2 (en) Uninterruptible power supply for direct current consumers
EP4070444B1 (en) Method for operating an inverter and inverter for executing the method
DE10319203A1 (en) Hybrid power supply unit for e.g. electrical vehicle, includes control system measuring and controlling voltage to enable connection to lines carrying inverter current
WO2018233882A1 (en) Photovoltaic module, control circuit for a photovoltaic module and method for controlling a photovoltaic module
DE102012002601A1 (en) Power generation plant has switchable connecting unit that selectively connects electrical storage device and generator in series with positive and negative poles
EP3472909A1 (en) Energy management unit, energy supply system and energy management method
WO2023021156A1 (en) Circuit arrangement and method for supplying electric power
DE4308686C2 (en) Circuit arrangement for balancing active and reactive power between a low-frequency AC network and a DC network
DE102023112571A1 (en) Method for generating a multi-phase alternating current, circuit arrangement and energy supply system
EP0539774B1 (en) Device for charging a battery
DE4124777C2 (en) Voltage converter for solar energy systems

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8130 Withdrawal