CN113139291A - Method and device for obtaining optimal sliding window filtering model of controlled process - Google Patents

Method and device for obtaining optimal sliding window filtering model of controlled process Download PDF

Info

Publication number
CN113139291A
CN113139291A CN202110447241.0A CN202110447241A CN113139291A CN 113139291 A CN113139291 A CN 113139291A CN 202110447241 A CN202110447241 A CN 202110447241A CN 113139291 A CN113139291 A CN 113139291A
Authority
CN
China
Prior art keywords
controlled process
sliding window
response data
step input
steady
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110447241.0A
Other languages
Chinese (zh)
Other versions
CN113139291B (en
Inventor
李军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of Guangdong Power Grid Co Ltd
Original Assignee
Electric Power Research Institute of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of Guangdong Power Grid Co Ltd filed Critical Electric Power Research Institute of Guangdong Power Grid Co Ltd
Priority to CN202110447241.0A priority Critical patent/CN113139291B/en
Publication of CN113139291A publication Critical patent/CN113139291A/en
Application granted granted Critical
Publication of CN113139291B publication Critical patent/CN113139291B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

The invention discloses a method and a device for obtaining an optimal sliding window filtering model in a controlled process, wherein the method comprises the following steps: acquiring the steady-state time and the steady-state gain of the controlled process response data input by unit step of the controlled process, and setting the gain of the sliding window filter according to the steady-state gain; acquiring unit step input process response data of the sliding window filter; and in the steady-state time, judging the error between the unit step input process response data of the sliding window filter and the unit step input controlled process response data of the controlled process, and when the error is minimum, taking the current sliding window filtering model as the optimal sliding window filtering model of the controlled process. By obtaining the optimal sliding window filter model, the accuracy of expressing the controlled process model by adopting 1 sliding window filter is improved.

Description

Method and device for obtaining optimal sliding window filtering model of controlled process
Technical Field
The invention relates to the technical field of process control of thermal power generating units, in particular to a method, a device and terminal equipment for obtaining an optimal sliding window filtering model of a controlled process.
Background
From the perspective of thermal power unit process control, obtaining a controlled process model is of great significance. From a theoretical point of view, obtaining an accurate model of the process being controlled may not be a simple problem. However, from an engineering point of view, the controlled process model needs to be simple.
If SWF is used as a standard model of a feedback system, the process is simply considered a SWF, a "simple modeling" of the process. The SWF is an english abbreviation of a Sliding window filter (Sliding window filter), and 1 SWF is adopted to express a controlled process model, which is relatively simple.
However, in terms of the problem of obtaining the controlled process model, the method is simple and not enough, and certain accuracy is required, and no technology is provided at present for improving the accuracy of 1 sliding window filter.
Disclosure of Invention
The invention aims to provide a method and a device for obtaining an optimal sliding window filtering model of a controlled process, so as to solve the problem that the process control of a thermal power generating unit is not accurate enough by adopting a sliding window filter.
In order to achieve the above object, the present invention provides a method for obtaining an optimal sliding window filtering model in a controlled process, including:
acquiring the steady-state time and the steady-state gain of the controlled process response data input by unit step of the controlled process, and setting the gain of the sliding window filter according to the steady-state gain;
acquiring unit step input process response data of the sliding window filter;
and in the steady-state time, judging the error between the unit step input process response data of the sliding window filter and the unit step input controlled process response data of the controlled process, and when the error is minimum, taking the current sliding window filtering model as the optimal sliding window filtering model of the controlled process.
Preferably, before the obtaining the steady-state time and the steady-state gain of the controlled process response data of the unit step input of the controlled process, the method further includes obtaining actual controlled process response data of the controlled process at the actual step input, and converting the actual controlled process response data of the actual step input into controlled process response data of the unit step input.
Preferably, the actual controlled process response data of the actual step input is converted into controlled process response data of unit step input, and the calculation formula is as follows:
Figure BDA0003036275220000021
wherein PVCP(t) controlled process response data for said unit step input, PVACP(t) is the actual controlled process response data for the actual step input, and ASI is the actual step input.
Preferably, the steady-state time and the steady-state gain of the response data of the controlled process, which is input in unit step of the controlled process, are obtained by the following calculation formula:
Figure BDA0003036275220000022
SG=SV
wherein SV is PVCP(t) steady state value in dimensionless units, ST being the steady state time, i.e. PVCP(t) time to 0.99SV, SG is the steady state gain in dimensionless units, and in number SG is SV.
Preferably, the transfer function of the sliding window filter is:
Figure BDA0003036275220000023
wherein s is Laplace operator, KSWFIs the gain, K, of the sliding window filterSWFSG is the steady state gain, TSWFIs the time constant of the sliding window filter.
Preferably, the determining an error between the process response data of the unit step input of the sliding window filter and the controlled process response data of the unit step input of the controlled process includes calculating a square integral of the error, and a calculation formula is as follows:
Figure BDA0003036275220000024
wherein ESI is the square integral of the error, t is the current time, ST is the steady state time, PVCP(t) controlled process response data for said unit step input, PVSWF(t) is process response data for the sliding window filter at a unit step input.
Preferably, the calculation formula of the optimal sliding window filtering model is as follows:
Figure BDA0003036275220000025
OSWFM(s) is the optimal sliding window filtering model of the controlled process, s is a Laplace operator, and SG is the steady gain of the controlled process.
The invention also provides a device for obtaining the optimal sliding window filtering model of the controlled process, which is applied to the method for obtaining the optimal sliding window filtering model of the controlled process and comprises the following steps:
the gain setting module is used for acquiring the steady-state time and the steady-state gain of the controlled process response data input by unit step of the controlled process and setting the gain of the sliding window filter according to the steady-state gain;
the process response data acquisition module is used for acquiring the process response data of unit step input of the sliding window filter;
and the optimal sliding window filtering model obtaining module is used for judging the error between the unit step input process response data of the sliding window filter and the controlled process response data of the unit step input of the controlled process within the steady-state time, and when the error is minimum, taking the current sliding window filtering model as the optimal sliding window filtering model of the controlled process.
Preferably, the device further comprises an actual controlled process response data acquiring module, which acquires actual controlled process response data of the controlled process at the actual step input, and converts the actual controlled process response data of the actual step input into controlled process response data of the unit step input.
The invention also provides a computer terminal device comprising one or more processors and a memory. A memory coupled to the processor for storing one or more programs; when the one or more programs are executed by the one or more processors, the one or more processors implement the method for obtaining the optimal sliding window filtering model of the controlled process according to any of the embodiments.
The embodiment of the present invention further provides a computer-readable storage medium, on which a computer program is stored, where the computer program, when executed by a processor, implements the method for obtaining the optimal sliding window filtering model of the controlled process as described above.
According to the method and the device for obtaining the optimal sliding window filtering model in the controlled process, the optimal sliding window filtering model is obtained and used for parameter setting of the high-performance proportional-integral controller, and better control characteristics can be obtained. The effect of long-term application of the high-performance proportional-integral controller shows that the high-performance proportional-integral controller can effectively suppress disturbance, and the output of the high-performance proportional-integral controller is stable.
Drawings
In order to more clearly illustrate the technical solution of the present invention, the drawings needed to be used in the embodiments will be briefly described below, and it is obvious that the drawings in the following description are only some embodiments of the present invention, and it is obvious for those skilled in the art that other drawings can be obtained according to the drawings without creative efforts.
Fig. 1 is a schematic flow chart of a method for obtaining an optimal sliding window filtering model of a controlled process according to an embodiment of the present invention;
FIG. 2 is a schematic structural diagram of a thermal power generating unit heating control system provided by the invention;
FIG. 3 is a diagram illustrating the results of the process response of the controlled process and the optimal sliding window filtering model of the controlled process at a unit step input according to the present invention;
FIG. 4 is a diagram illustrating the results of a controlled process given as a unit step according to the present invention;
FIG. 5 is a schematic diagram illustrating the operation of a thermal power generating unit heating control system provided by the present invention;
FIG. 6 is a graphical illustration of controlled process response data per unit step input for a controlled process provided by the present invention;
fig. 7 is a schematic structural diagram of a computer terminal device according to an embodiment of the present invention.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
It should be understood that the step numbers used herein are for convenience of description only and are not intended as limitations on the order in which the steps are performed.
It is to be understood that the terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used in the specification of the present invention and the appended claims, the singular forms "a," "an," and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise.
The terms "comprises" and "comprising" indicate the presence of the described features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The term "and/or" refers to and includes any and all possible combinations of one or more of the associated listed items.
Referring to fig. 1, an embodiment of the present invention provides a method for obtaining an optimal sliding window filtering model of a controlled process, including:
s10, acquiring the steady-state time and the steady-state gain of the unit step input controlled process response data of the controlled process, and setting the gain of the sliding window filter according to the steady-state gain;
s20, acquiring unit step input process response data of the sliding window filter;
and S30, in the steady state time, judging the error between the unit step input process response data of the sliding window filter and the unit step input controlled process response data of the controlled process, and when the error is minimum, taking the current sliding window filtering model as the optimal sliding window filtering model of the controlled process.
In this embodiment, referring to fig. 2, in the thermal power unit heat supply control system, the transfer function of the controlled process is:
Figure BDA0003036275220000041
obtaining a steady state gain SG of the controlled process response data of the unit step input of the controlled process as 1.2, and a steady state time ST of the controlled process response data of the unit step input of the controlled process as 760s, wherein the steady state time is PVCP(t) time to reach said steady state value of 0.99. Wherein the Steady state value SV represents the Steady state gain (Steady gain) of the controlled process in dimensionless units.
Adjusting the time constant T of the sliding window filter at intervals of 1s during 760sSWFWherein the time constant T is set in the sliding window filterSWFAnd obtaining the minimum ESI of the ESI, min is 1.7744, and the transfer function of the optimal sliding window filter model of the controlled process is obtained as follows:
Figure BDA0003036275220000051
referring to FIG. 3, the controlled process and the unit step input of the optimal sliding window filtering model of the controlled process are obtainedExperimental results of Range response, PVCP(t) controlled process response at unit step input, PV, for said controlled processCP:OSWFMAnd (t) is the process response of the optimal sliding window filtering model of the controlled process at unit step input.
The formula for calculating the transfer function of the high-performance proportional-integral controller is as follows:
HPPI(s)=KHPPI[1+HEI(s)],
Figure BDA0003036275220000052
Figure BDA0003036275220000053
wherein HPPI(s) is the high performance proportional-integral controller transfer function. KHPPIIs the proportional gain of the high performance proportional-integral controller in dimensionless units. HEI(s) is the high efficiency integrator transfer function. Aswf(s) is (16 th order) approximated sliding window filter transfer function. T isHEIIs the time constant of the high efficiency integrator in s.
Using the optimal sliding window filter model for parameter tuning of the high-performance proportional-integral controller to
Figure BDA0003036275220000054
THEI=TSWF=410s
Wherein, KHPPIIs the proportional gain of the high performance proportional-integral controller in dimensionless units. KSWFAnd obtaining the gain of the sliding window filter in the optimal sliding window filtering model in a dimensionless unit. T isHEIIs the time constant of the high efficiency integrator in s. T isSWFAnd the time constant of the sliding window filter in the optimal sliding window filtering model is represented by s.
The controlled process was given as unit step and the experimental results obtained are shown in fig. 4. In an actual thermal power generating unit heat supply control system, the temperature of heat supply steam is set to be increased by 10 ℃, the obtained process control characteristic is shown in fig. 5, and the optimal sliding window filtering model is used for parameter setting of the high-performance proportional-integral controller, so that better control characteristic can be obtained. The effect of long-term application of the high-performance proportional-integral controller shows that the high-performance proportional-integral controller can effectively suppress disturbance, and the output of the high-performance proportional-integral controller is stable.
In a certain embodiment, before the obtaining the steady-state time and the steady-state gain of the controlled process response data of the unit step input of the controlled process, the method further includes obtaining actual controlled process response data of the controlled process at the actual step input, and converting the actual controlled process response data of the actual step input into controlled process response data of the unit step input.
In the embodiment, actual controlled process response data of a controlled process at an actual step input is obtained, wherein the actual step input is specifically the actual (open-loop) step input of the controlled process of the thermal power unit heat supply control system; and converting the actual controlled process response data of the actual step input into controlled process response data of unit step input.
In a certain embodiment, the step of converting the actual controlled process response data of the actual step input into the controlled process response data of the unit step input is as follows:
Figure BDA0003036275220000061
wherein PVCP(t) controlled process response data for said unit step input, PVACP(t) is the actual controlled process response data for the actual step input, and ASI is the actual step input.
In this embodiment, the calculation formula for converting the actual controlled process response data of the actual step input into the controlled process response data of the unit step input is as follows:
SI=1,
Figure BDA0003036275220000062
wherein, SI is the unit step input, and the unit is dimensionless. PV (photovoltaic)CPAnd (t) the unit step input controlled process response data, and the unit is dimensionless. PV (photovoltaic)ACP(t) Actual controlled process response data, ASI Actual step input (PV)ACPThe units of (t) and ASI are determined by the physical quantities of the actual controlled process.
PVACP(t) with actual physical quantities, inconvenient control, and the need for PV in generalACP(t) performing per unit treatment, and subjecting the PVACP(t) controlled process response data PV converted to unit step inputCP(t), i.e. independent of the actual physical quantity.
In a certain embodiment, the calculation formula for obtaining the steady-state time and the steady-state gain of the controlled process response data of the unit step input of the controlled process is as follows:
Figure BDA0003036275220000063
SG=SV
wherein SV is PVCP(t) steady state value in dimensionless units, ST being the steady state time, i.e. PVCP(t) time to 0.99SV, SG is the steady state gain in dimensionless units, and in number SG is SV.
In the present embodiment, the process response data PV of the unit step input is acquiredCP(t) Steady time (Steady time) and Steady value (Steady value), referring to FIG. 6, the Steady time refers to PVCP(t) time to reach said steady state value of 0.99, as follows:
Figure BDA0003036275220000064
SG=SV
wherein SV represents the Steady state gain (Steady gain) of the controlled process in dimensionless units.
In one embodiment, the transfer function of the sliding window filter is:
Figure BDA0003036275220000065
wherein s is Laplace operator, KSWFIs the gain, K, of the sliding window filterSWFSG is the steady state gain, TSWFIs the time constant of the sliding window filter.
In this embodiment, the equation for calculating the transfer function of the sliding window filter is:
Figure BDA0003036275220000071
KSWF=SG
wherein SWF(s) is the sliding window filter transfer function. KSWFThe unit is dimensionless for the sliding window filter gain. T isSWFIs the sliding window filter time constant in units of s. SG is the Steady state gain (Steady gain) in dimensionless units.
In one embodiment, the determining an error between the unit step input process response data of the sliding window filter and the unit step input controlled process response data of the controlled process includes calculating a square integral of the error, and a calculation formula is as follows:
Figure BDA0003036275220000072
wherein ESI is the square integral of the error, t is the current time, ST is the steady state time, PVCP(t) controlled process response data for said unit step input, PVSWF(t) is process response data for the sliding window filter at a unit step input.
In this embodiment, a calculation formula of an error between a process response of the sliding window filter at the unit step input and a process response of the controlled process at the unit step input is:
ESI is
Figure BDA0003036275220000073
Where ESI is the square integral of the error in dimensionless units. ST is the steady state time in units of s. PV (photovoltaic)CPAnd (t) is the response data of the controlled process at the unit step input of the controlled process, and the unit is dimensionless. PV (photovoltaic)SWFAnd (t) is the process response data of the sliding window filter at unit step input, and the unit is dimensionless.
In a certain embodiment, the calculation formula of the optimal sliding window filtering model is as follows:
Figure BDA0003036275220000074
OSWFM(s) is the optimal sliding window filtering model of the controlled process, s is a Laplace operator, and SG is the steady gain of the controlled process.
In this embodiment, the calculation formula of the optimal sliding window filtering model in the controlled process is as follows:
Figure BDA0003036275220000075
ESI=ESI:min
OSWFM(s) is the transfer function of the controlled process Optimal sliding window filter model (Optimal SWF model). SG is the steady state gain of the controlled process in dimensionless units. And ESI: min is the minimum value of the square integral of the error ESI, and the unit is dimensionless.
Obtaining the unitsControlled process response data PV of step inputCP(t) steady state value SV, obtaining controlled process response data PV of said unit step inputCP(t) steady state value SV, see FIG. 6.
The invention also provides a device for obtaining the optimal sliding window filtering model of the controlled process, which is applied to the method for obtaining the optimal sliding window filtering model of the controlled process and comprises the following steps:
the gain setting module is used for acquiring the steady-state time and the steady-state gain of the controlled process response data input by unit step of the controlled process and setting the gain of the sliding window filter according to the steady-state gain;
the process response data acquisition module is used for acquiring the process response data of unit step input of the sliding window filter;
and the optimal sliding window filtering model obtaining module is used for judging the error between the unit step input process response data of the sliding window filter and the controlled process response data of the unit step input of the controlled process within the steady-state time, and when the error is minimum, taking the current sliding window filtering model as the optimal sliding window filtering model of the controlled process.
In one embodiment, the system further comprises an actual controlled process response data acquisition module, which acquires actual controlled process response data of the controlled process at an actual step input, and converts the actual controlled process response data of the actual step input into controlled process response data of a unit step input.
For specific definition of the device for obtaining the optimal sliding window filtering model of the controlled process, reference may be made to the above definition, which is not described herein again. All modules in the device for obtaining the optimal sliding window filtering model of the controlled process can be completely or partially realized by software, hardware and a combination thereof. The modules can be embedded in a hardware form or independent from a processor in the computer device, and can also be stored in a memory in the computer device in a software form, so that the processor can call and execute operations corresponding to the modules.
Referring to fig. 7, an embodiment of the invention provides a computer terminal device, which includes one or more processors and a memory. The memory is coupled to the processor and configured to store one or more programs, which when executed by the one or more processors, cause the one or more processors to implement the method for obtaining an optimal sliding window filtering model for a controlled process as described in any of the above embodiments.
The processor is used for controlling the overall operation of the computer terminal equipment so as to complete all or part of the steps of the method for obtaining the optimal sliding window filtering model of the controlled process. The memory is used to store various types of data to support the operation at the computer terminal device, which data may include, for example, instructions for any application or method operating on the computer terminal device, as well as application-related data. The Memory may be implemented by any type of volatile or non-volatile Memory device or combination thereof, such as Static Random Access Memory (SRAM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Erasable Programmable Read-Only Memory (EPROM), Programmable Read-Only Memory (PROM), Read-Only Memory (ROM), magnetic Memory, flash Memory, magnetic disk, or optical disk.
In an exemplary embodiment, the computer terminal Device may be implemented by one or more Application Specific 1 integrated circuits (AS 1C), a Digital Signal Processor (DSP), a Digital Signal Processing Device (DSPD), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), a controller, a microcontroller, a microprocessor or other electronic components, and is configured to perform the above method for obtaining the optimal sliding window filter model of the controlled process, and achieve technical effects consistent with the above method.
In another exemplary embodiment, a computer readable storage medium is further provided, which includes program instructions, which when executed by a processor, implement the steps of the method for obtaining an optimal sliding window filtering model of a controlled process in any of the above embodiments. For example, the computer readable storage medium may be the above-mentioned memory including program instructions, which are executable by the processor of the computer terminal device to perform the above-mentioned method for obtaining the optimal sliding window filtering model of the controlled process, and achieve the technical effects consistent with the above-mentioned method.
According to the method and the device for obtaining the optimal sliding window filtering model in the controlled process, the optimal sliding window filtering model is obtained and used for parameter setting of the high-performance proportional-integral controller, and better control characteristics can be obtained. The effect of long-term application of the high-performance proportional-integral controller shows that the high-performance proportional-integral controller can effectively suppress disturbance, and the output of the high-performance proportional-integral controller is stable.
While the foregoing is directed to the preferred embodiment of the present invention, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention.

Claims (10)

1. A method for obtaining an optimal sliding window filtering model of a controlled process is characterized by comprising the following steps:
acquiring the steady-state time and the steady-state gain of the controlled process response data input by unit step of the controlled process, and setting the gain of the sliding window filter according to the steady-state gain;
acquiring unit step input process response data of the sliding window filter;
and in the steady-state time, judging the error between the unit step input process response data of the sliding window filter and the unit step input controlled process response data of the controlled process, and when the error is minimum, taking the current sliding window filtering model as the optimal sliding window filtering model of the controlled process.
2. The method of claim 1, wherein the obtaining the steady-state time and the steady-state gain of the controlled process response data per unit step input of the controlled process further comprises obtaining actual controlled process response data per unit step input of the controlled process, and converting the actual controlled process response data per unit step input into the controlled process response data per unit step input.
3. The method of claim 2, wherein the step of converting the actual controlled process response data of the actual step input into the controlled process response data of the unit step input is represented by the following formula:
Figure FDA0003036275210000011
wherein PVCP(t) controlled process response data for said unit step input, PVACP(t) is the actual controlled process response data for the actual step input, and ASI is the actual step input.
4. The method for obtaining the optimal sliding window filtering model of the controlled process according to claim 1, wherein the steady-state time and the steady-state gain of the response data of the controlled process of the unit step input of the controlled process are obtained by the following calculation formula:
Figure FDA0003036275210000012
SG=SV
wherein SV is PVCP(t) steady state value in dimensionless units, ST being the steady state time, i.e. PVCP(t) time to 0.99SV, SG being said steady state gainIn dimensionless units, the number SG is SV.
5. The method for obtaining the optimal sliding window filtering model of the controlled process according to claim 1, wherein the transfer function of the sliding window filter is:
Figure FDA0003036275210000013
wherein s is Laplace operator, KSWFIs the gain, K, of the sliding window filterSWFSG is the steady state gain, TSWFIs the time constant of the sliding window filter.
6. The method of claim 1, wherein the determining an error between the process response data per unit step input of the sliding window filter and the controlled process response data per unit step input of the controlled process comprises calculating a square integral of the error, and the calculation formula is as follows:
Figure FDA0003036275210000021
wherein ESI is the square integral of the error, t is the current time, ST is the steady state time, PVCP(t) controlled process response data for said unit step input, PVSWF(t) is process response data for the sliding window filter at a unit step input.
7. The method for obtaining the optimal sliding window filtering model of the controlled process according to claim 1, wherein the optimal sliding window filtering model is calculated as follows:
Figure FDA0003036275210000022
OSWFM(s) is the optimal sliding window filtering model of the controlled process, s is a Laplace operator, and SG is the steady gain of the controlled process.
8. An apparatus for obtaining an optimal sliding window filtering model of a controlled process, comprising:
the gain setting module is used for acquiring the steady-state time and the steady-state gain of the controlled process response data input by unit step of the controlled process and setting the gain of the sliding window filter according to the steady-state gain;
the process response data acquisition module is used for acquiring the process response data of unit step input of the sliding window filter;
and the optimal sliding window filtering model obtaining module is used for judging the error between the unit step input process response data of the sliding window filter and the controlled process response data of the unit step input of the controlled process within the steady-state time, and when the error is minimum, taking the current sliding window filtering model as the optimal sliding window filtering model of the controlled process.
9. The apparatus for obtaining the optimal sliding window filtering model of the controlled process according to claim 8, further comprising an actual controlled process response data obtaining module, which obtains actual controlled process response data of the controlled process at an actual step input, and converts the actual controlled process response data of the actual step input into controlled process response data of a unit step input.
10. A computer terminal device, comprising:
one or more processors;
a memory coupled to the processor for storing one or more programs;
when executed by the one or more processors, cause the one or more processors to implement the method of obtaining a controlled process optimal sliding window filtering model according to any one of claims 1 to 7.
CN202110447241.0A 2021-04-23 2021-04-23 Method and device for obtaining optimal sliding window filtering model of controlled process Active CN113139291B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110447241.0A CN113139291B (en) 2021-04-23 2021-04-23 Method and device for obtaining optimal sliding window filtering model of controlled process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110447241.0A CN113139291B (en) 2021-04-23 2021-04-23 Method and device for obtaining optimal sliding window filtering model of controlled process

Publications (2)

Publication Number Publication Date
CN113139291A true CN113139291A (en) 2021-07-20
CN113139291B CN113139291B (en) 2022-09-16

Family

ID=76811977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110447241.0A Active CN113139291B (en) 2021-04-23 2021-04-23 Method and device for obtaining optimal sliding window filtering model of controlled process

Country Status (1)

Country Link
CN (1) CN113139291B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113485094A (en) * 2021-08-02 2021-10-08 中北大学 Method and device for obtaining process optimal ZN model

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5579243A (en) * 1994-09-20 1996-11-26 Lucent Technologies Inc. Modal parameter estimation for stable filters
JP2000148209A (en) * 1998-11-11 2000-05-26 Hitachi Ltd Method for structuring model to be controlled, and method for displaying response range to be controlled
US20040117766A1 (en) * 2002-09-11 2004-06-17 Fisher-Rosemount Systems, Inc. Integrated model predictive control and optimization within a process control system
US20050010309A1 (en) * 2003-07-10 2005-01-13 Kabushiki Kaisha Toshiba Method of adjusting a process control device, adjustment tool therefor and process control device thereof
CN101859099A (en) * 2010-06-29 2010-10-13 上海大学 Obtaining method of control object complete phase step response signals
CN102025344A (en) * 2009-09-11 2011-04-20 上海贝尔股份有限公司 FIR (Finite Impulse Response) filter design method and equipment thereof
CN102393628A (en) * 2011-09-14 2012-03-28 哈尔滨工业大学 Dynamic matrix control (DMC) engineering method based on model simplification and prediction error correction
CN102419785A (en) * 2011-09-29 2012-04-18 湖南大学 Method for designing wavelet filter
EP2860594A1 (en) * 2013-10-14 2015-04-15 Siemens Aktiengesellschaft PID control system tuning based on relay-feedback test data
CN105045233A (en) * 2015-07-10 2015-11-11 国电科学技术研究院 Optimum design method for PID (Proportion Integration Differentiation) controller based on time dimension in heat-engine plant thermal system
CN105955030A (en) * 2016-06-08 2016-09-21 江苏南热发电有限责任公司 Turbine and boiler coordination control method based on improved input weighted prediction controller
US9805151B1 (en) * 2013-02-11 2017-10-31 Cadence Design Systems, Inc. Method and apparatus for Laplace transform system simulation
CN109856978A (en) * 2019-03-26 2019-06-07 广东电网有限责任公司 A kind of method and device obtaining plant model
CN110069013A (en) * 2019-03-19 2019-07-30 广东电网有限责任公司 A kind of Advanced Process control method and device
CN110231772A (en) * 2019-07-22 2019-09-13 广东电网有限责任公司 A kind of method, device and equipment of acquisition process model
US10915677B1 (en) * 2020-07-22 2021-02-09 North China Electric Power University General design method for phasor estimation in different applications
CN112666821A (en) * 2020-11-25 2021-04-16 中国核电工程有限公司 Design method for optimal PID (proportion integration differentiation) parameter of closed-loop control system of nuclear power plant

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5579243A (en) * 1994-09-20 1996-11-26 Lucent Technologies Inc. Modal parameter estimation for stable filters
JP2000148209A (en) * 1998-11-11 2000-05-26 Hitachi Ltd Method for structuring model to be controlled, and method for displaying response range to be controlled
US20040117766A1 (en) * 2002-09-11 2004-06-17 Fisher-Rosemount Systems, Inc. Integrated model predictive control and optimization within a process control system
US20050010309A1 (en) * 2003-07-10 2005-01-13 Kabushiki Kaisha Toshiba Method of adjusting a process control device, adjustment tool therefor and process control device thereof
CN102025344A (en) * 2009-09-11 2011-04-20 上海贝尔股份有限公司 FIR (Finite Impulse Response) filter design method and equipment thereof
CN101859099A (en) * 2010-06-29 2010-10-13 上海大学 Obtaining method of control object complete phase step response signals
CN102393628A (en) * 2011-09-14 2012-03-28 哈尔滨工业大学 Dynamic matrix control (DMC) engineering method based on model simplification and prediction error correction
CN102419785A (en) * 2011-09-29 2012-04-18 湖南大学 Method for designing wavelet filter
US9805151B1 (en) * 2013-02-11 2017-10-31 Cadence Design Systems, Inc. Method and apparatus for Laplace transform system simulation
EP2860594A1 (en) * 2013-10-14 2015-04-15 Siemens Aktiengesellschaft PID control system tuning based on relay-feedback test data
CN105045233A (en) * 2015-07-10 2015-11-11 国电科学技术研究院 Optimum design method for PID (Proportion Integration Differentiation) controller based on time dimension in heat-engine plant thermal system
CN105955030A (en) * 2016-06-08 2016-09-21 江苏南热发电有限责任公司 Turbine and boiler coordination control method based on improved input weighted prediction controller
CN110069013A (en) * 2019-03-19 2019-07-30 广东电网有限责任公司 A kind of Advanced Process control method and device
CN109856978A (en) * 2019-03-26 2019-06-07 广东电网有限责任公司 A kind of method and device obtaining plant model
CN110231772A (en) * 2019-07-22 2019-09-13 广东电网有限责任公司 A kind of method, device and equipment of acquisition process model
US10915677B1 (en) * 2020-07-22 2021-02-09 North China Electric Power University General design method for phasor estimation in different applications
CN112666821A (en) * 2020-11-25 2021-04-16 中国核电工程有限公司 Design method for optimal PID (proportion integration differentiation) parameter of closed-loop control system of nuclear power plant

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. GRANDVALLET ET AL: "A sliding window filter for real-time attitude independent TAM calibration", 《49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC)》 *
李军 等: "在工业过程控制领域:基础控制技术的进展与展望", 《自动化学报》 *
马广彬: "加速度计温度控制系统研究和设计", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113485094A (en) * 2021-08-02 2021-10-08 中北大学 Method and device for obtaining process optimal ZN model

Also Published As

Publication number Publication date
CN113139291B (en) 2022-09-16

Similar Documents

Publication Publication Date Title
KR940002642B1 (en) Thermostat means adaptively controlling the amount of overshoot or undershoot of space temperature
EP3916208A1 (en) Method and system for controlling electronic water pump of engine
CN113139291B (en) Method and device for obtaining optimal sliding window filtering model of controlled process
CN108983733B (en) Cascade control method, device, equipment and storage medium
CN114151373B (en) Method, system, terminal and storage medium for regulating and controlling rotation speed of server fan
CN111262299B (en) Charger output voltage adjusting method and device, intelligent terminal and medium
CN114183929B (en) Control method and control device of gas water heater
CN113162567B (en) Design method and device of inertia combined filter and terminal equipment
CN113359413B (en) Parameter adjusting system and method of actual differentiator
CN109407793B (en) Temperature control method, related device and readable storage medium
CN204331513U (en) A kind of equipment heating control circuit and heating control apparatus
CN114138031B (en) Method, device, storage medium, and program for controlling heating of oxygen sensor
CN114183769B (en) Control method and control device for gas proportional valve
CN114115383B (en) Method and system for controlling temperature of product in oven, electronic device and storage medium
CN113296412B (en) Parameter adjusting method and device for cascade sliding window filter
CN113189919B (en) Control system and method for high-frequency noise power gain
CN113110032A (en) Novel high-performance proportional-integral controller and control method and device thereof
CN114711638A (en) Control method and device of baking equipment, baking equipment and storage medium
CN113300676B (en) System and method for automatically tracking noise power gain of actual differentiator
CN113296396B (en) Automatic tracking system and method for high-frequency noise power gain
CN113325710B (en) Automatic tracking system and method for high-frequency noise amplitude gain
CN113935198B (en) Multi-energy system operation optimization method and device, electronic equipment and readable storage medium
CN113126549B (en) Basic controller and control method and device thereof
CN113176456B (en) Online measuring device and method for noise interference level of second-order advanced observer
CN116754986B (en) Welding power supply calibration device with no-load voltage detection function and calibration method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant