CN110696762A - Method and structure for realizing paper folding torsion energy absorption structure - Google Patents

Method and structure for realizing paper folding torsion energy absorption structure Download PDF

Info

Publication number
CN110696762A
CN110696762A CN201911082916.5A CN201911082916A CN110696762A CN 110696762 A CN110696762 A CN 110696762A CN 201911082916 A CN201911082916 A CN 201911082916A CN 110696762 A CN110696762 A CN 110696762A
Authority
CN
China
Prior art keywords
energy absorption
equilateral hexagon
torsion energy
points
paper folding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911082916.5A
Other languages
Chinese (zh)
Inventor
陈志民
王前选
杨艺
李鹏
徐祥南
黄琬
李耀文
阎涛
吴志颖
李浪怡
闫笑颜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuyi University
Original Assignee
Wuyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuyi University filed Critical Wuyi University
Priority to CN201911082916.5A priority Critical patent/CN110696762A/en
Publication of CN110696762A publication Critical patent/CN110696762A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact

Abstract

The invention relates to the technical field of structure manufacturing and computer image processing, and discloses a method and a structure for realizing a paper folding torsion energy absorption structure, wherein the method comprises the following steps: s1, constructing a first equilateral hexagon in a plane of a three-dimensional coordinate system X-Y, wherein six points in the anticlockwise direction are A, B, C, D, E, F in sequence; s2, carrying out Z-direction translation on the equilateral hexagon to obtain a second equilateral hexagon, and determining six points a, b, c, d, e and f corresponding to the point A, B, C, D, E, F, wherein the translation distance is h; s3, taking the center of the second equilateral hexagon as the axis to rotate the second equilateral hexagon horizontally by phi degrees along the clockwise direction; s4, connecting point A, B, C, D, E, F and points a, b, c, d, e, f in a one-to-one straight line, and connecting B, C, D, E, F, A and points a, b, c, d, e, f in a one-to-one straight line. The paper folding structure has good energy absorption characteristic.

Description

Method and structure for realizing paper folding torsion energy absorption structure
Technical Field
The invention relates to the technical field of structure manufacturing and computer image processing, in particular to a method and a structure for realizing a paper folding torsion energy absorption structure.
Background
The existing types of energy-absorbing structures are various, and numerous researchers develop a plurality of energy-absorbing structures used at the end of a train. Such as an energy absorption device utilizing compression deformation of a metal thin-walled structure, an energy absorption device utilizing a cutter to shave a metal material, an energy absorption device utilizing hydraulic pressure, an energy absorption device utilizing brittle metal fracture, and the like. Many of them are also used in the automotive, marine, aircraft, and other industries.
Among a plurality of energy absorption structures, a metal thin-wall structure can dissipate a large amount of impact kinetic energy through plastic deformation, fracture and other damage modes when bearing impact load, and the energy absorption device is low in cost, high in specific energy absorption efficiency and very effective. The round tube is one of the most effective and widely applied energy absorption structures, namely the traditional metal thin-wall energy absorption structure.
However, the existing energy absorption structure including tubular and honeycomb aluminum has two disadvantages:
(1) the initial peak value of the impact force is too high, so that passengers are subjected to secondary collision, and the passengers are collided with the internal structures of a passenger room of the vehicle, such as a vehicle seat, a desktop, a side wall, a floor and a roof, or the passengers are thrown out of the vehicle, so that casualties are caused;
(2) if the energy absorption is insufficient and the huge kinetic energy in collision can not be absorbed fully as much as possible, the residual kinetic energy can cause the metal car body to generate large plastic deformation, so that the car body structure is damaged, passengers lose living space, and the casualties of the passengers are caused.
Disclosure of Invention
The invention aims to provide a method and a structure for realizing a folded paper torsion energy-absorbing structure, wherein the method is simple and quick, and the structure not only can be used for compressing and absorbing energy, but also can be used for torsion energy absorption and is suitable for complex collision conditions.
In order to solve the technical problem, the invention provides a method for realizing a folded paper torsion energy absorption structure, which comprises the following steps of:
s1, constructing a first equilateral hexagon in a plane of a three-dimensional coordinate system X-Y, wherein six points in the anticlockwise direction are A, B, C, D, E, F in sequence;
s2, carrying out Z-direction translation on the equilateral hexagon to obtain a second equilateral hexagon, and determining six points a, b, c, d, e and f corresponding to the point A, B, C, D, E, F, wherein the translation distance is h;
s3, taking the center of the second equilateral hexagon as the axis to rotate the second equilateral hexagon horizontally by phi degrees along the clockwise direction;
s4, linearly connecting the point A, B, C, D, E, F with the points a, b, c, d, e and f in a one-to-one correspondence manner, and linearly connecting the point B, C, D, E, F, A with the points a, b, c, d, e and f in a one-to-one correspondence manner; every three connecting line segments connected end to end form a triangular plane, and the parameters of all the triangular planes are the same;
s5, forming a plane by the first equilateral hexagon, and forming a three-dimensional paper folding structure by the first equilateral hexagon and all triangular planes.
Preferably, the angle B in the triangular plane ABa is 38 ° and the angle a is 30 °.
Preferably, the length of the first equilateral hexagon is L, the distance from each point to its center point is r, and the triangle plane ABa satisfies the following formula:
Figure BDA0002264510180000021
Figure BDA0002264510180000023
preferably, steps S3 and S4 are replaced by linearly connecting points A, B, C, D, E, F and f, a, b, c, d, e in a one-to-one correspondence, and connecting points B, C, D, E, F, A and f, a, b, c, d, e in a one-to-one correspondence; every three connected line segments connected end to end form a triangular plane, and the parameters of all the triangular planes are the same.
Preferably, the second equilateral hexagon forms a plane.
In order to solve the technical problem, the invention also provides a paper folding torsion energy absorption structure, which comprises the paper folding torsion energy absorption structure realized according to the implementation method of the paper folding torsion energy absorption structure.
Preferably, two folded paper torsion energy-absorbing structures are arranged, and first equilateral hexagons of the two folded paper torsion energy-absorbing structures are overlapped.
The invention has the following beneficial effects:
(1) compared with the traditional structure, the folded paper torsion energy absorption structure is more stable in compression energy absorption, does not generate instability under the condition of sudden load, and is safer and more reliable.
(2) Compared with the traditional structure in the process of compression energy absorption, the folded paper torsion energy absorption structure not only can absorb energy in a compression mode, but also can absorb energy in a torsion mode, and is more suitable for complex collision conditions; compared with the compression energy absorption process, the cross-sectional area mutation is smaller in the collision process, other space cannot be accumulated, and the occupied space is smaller.
Drawings
FIG. 1 is a schematic structural diagram of a origami torsion energy-absorbing structure provided by an embodiment of the invention;
fig. 2 is a schematic top view of a origami torsion energy absorbing structure provided in an embodiment of the present invention.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
Referring to fig. 1 and 2, a method for implementing a origami torsion energy-absorbing structure in a preferred embodiment of the invention includes the following steps:
s1, constructing a first equilateral hexagon in a plane of a three-dimensional coordinate system X-Y, wherein six points in the anticlockwise direction are A, B, C, D, E, F in sequence;
s2, carrying out Z-direction translation on the equilateral hexagon to obtain a second equilateral hexagon, and determining six points a, b, c, d, e and f corresponding to the point A, B, C, D, E, F, wherein the translation distance is h;
s3, taking the center of the second equilateral hexagon as the axis to rotate the second equilateral hexagon horizontally by phi degrees along the clockwise direction;
s4, linearly connecting the point A, B, C, D, E, F with the points a, b, c, d, e and f in a one-to-one correspondence manner, and linearly connecting the point B, C, D, E, F, A with the points a, b, c, d, e and f in a one-to-one correspondence manner; every three connecting line segments connected end to end form a triangular plane, and the parameters of all the triangular planes are the same;
s5, forming a plane by the first equilateral hexagon, and forming a three-dimensional paper folding structure by the first equilateral hexagon and all triangular planes.
In a preferred embodiment of the invention, the angle B in said triangular plane ABa is 38 ° and the angle a is 30 °.
In a preferred embodiment of the present invention, the length of the first equilateral hexagon is L, the distance from each point to its center point is r, and the triangle plane ABa satisfies the following formula:
Figure BDA0002264510180000041
Figure BDA0002264510180000042
in the preferred embodiment of the present invention, steps S3 and S4 are replaced by linearly connecting points A, B, C, D, E, F and points f, a, b, c, d, e in a one-to-one correspondence, and linearly connecting points B, C, D, E, F, A and points f, a, b, c, d, e in a one-to-one correspondence; every three connected line segments connected end to end form a triangular plane, and the parameters of all the triangular planes are the same.
In a preferred embodiment of the invention, said second equilateral hexagons form a plane.
The invention also provides a paper folding torsion energy absorption structure, which comprises the paper folding torsion energy absorption structure realized according to the implementation method of the paper folding torsion energy absorption structure.
In a preferred embodiment of the invention, two folded paper torsion energy-absorbing structures are provided, and first equilateral hexagons of the two folded paper torsion energy-absorbing structures are overlapped.
Specifically, the folded paper torsion energy absorption structure in the preferred embodiment of the invention bears the impact force on the first equilateral hexagon surface, compresses the folded paper torsion energy absorption structure to realize the energy absorption effect, twists, disperses the impact force to all directions to realize the torsion energy absorption, and compared with the traditional structure in the process of compression energy absorption, the structure not only can compress the energy absorption, but also can twist to absorb the energy, and is more suitable for the complex conditions of collision; the compression energy-absorbing process is compared, and the cross-sectional area sudden change is littleer in collision process, can not save other spaces, and the space that occupies is littleer to it is more stable at the compression energy-absorbing, under the load condition of sudden change, can not produce the unstability phenomenon, compares safe and reliable more than traditional structure.
Furthermore, three parameters of the planar state of the preferred embodiment of the present invention, such as angle a, i.e. α, angle B, i.e. β, length a in the triangular plane ABa, satisfy:
LAB=a、
Figure BDA0002264510180000051
also, the structure of the preferred embodiment of the present invention has many folded states during collapse, different heights h, twist angles φ and radii r, which obviously cannot be determined by the three constants a, α, and β. Thus introducing the variable εABBCAnd epsilonACThe three variables (h, φ and r) are related to three constants (a, α, and β), e.g.
The above description is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, various modifications and substitutions can be made without departing from the technical principle of the present invention, and these modifications and substitutions should also be regarded as the protection scope of the present invention.

Claims (7)

1. A method for realizing a folded paper torsion energy absorption structure is characterized in that: the method comprises the following steps:
s1, constructing a first equilateral hexagon in a plane of a three-dimensional coordinate system X-Y, wherein six points in the anticlockwise direction are A, B, C, D, E, F in sequence;
s2, carrying out Z-direction translation on the equilateral hexagon to obtain a second equilateral hexagon, and determining six points a, b, c, d, e and f corresponding to the point A, B, C, D, E, F, wherein the translation distance is h;
s3, taking the center of the second equilateral hexagon as the axis to rotate the second equilateral hexagon horizontally by phi degrees along the clockwise direction;
s4, linearly connecting the point A, B, C, D, E, F with the points a, b, c, d, e and f in a one-to-one correspondence manner, and linearly connecting the point B, C, D, E, F, A with the points a, b, c, d, e and f in a one-to-one correspondence manner; every three connecting line segments connected end to end form a triangular plane, and the parameters of all the triangular planes are the same;
s5, forming a plane by the first equilateral hexagon, and forming a three-dimensional paper folding structure by the first equilateral hexagon and all triangular planes.
2. The method for realizing the origami torsion energy-absorbing structure according to claim 1, wherein the angle B in the triangular plane ABa is 38 degrees, and the angle a is 30 degrees.
3. The method for realizing the origami torsion energy absorption structure as claimed in claim 1, wherein the side length of the first equilateral hexagon is L, the distance from each point to the center point of the first equilateral hexagon is r, and the triangle plane ABa satisfies the following formula:
Figure FDA0002264510170000011
Figure FDA0002264510170000012
Figure FDA0002264510170000013
4. the method for realizing the origami torsion energy absorbing structure according to claim 1, wherein the steps S3 and S4 are replaced by linearly connecting points A, B, C, D, E, F and f, a, b, c, d, e in a one-to-one correspondence manner, and linearly connecting points B, C, D, E, F, A and f, a, b, c, d, e in a one-to-one correspondence manner; every three connected line segments connected end to end form a triangular plane, and the parameters of all the triangular planes are the same.
5. The method for realizing the origami torsion energy absorbing structure according to claim 4, wherein the second equilateral hexagon forms a plane.
6. The paper folding torsion energy absorption structure is characterized by comprising the paper folding torsion energy absorption structure realized according to the realization method of the paper folding torsion energy absorption structure disclosed by any one of claims 1 to 5.
7. The method for realizing the paper folding torsion energy absorption structure is characterized in that two paper folding torsion energy absorption structures are arranged, and the first equilateral hexagons of the two paper folding torsion energy absorption structures are overlapped.
CN201911082916.5A 2019-11-07 2019-11-07 Method and structure for realizing paper folding torsion energy absorption structure Pending CN110696762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911082916.5A CN110696762A (en) 2019-11-07 2019-11-07 Method and structure for realizing paper folding torsion energy absorption structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911082916.5A CN110696762A (en) 2019-11-07 2019-11-07 Method and structure for realizing paper folding torsion energy absorption structure

Publications (1)

Publication Number Publication Date
CN110696762A true CN110696762A (en) 2020-01-17

Family

ID=69204576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911082916.5A Pending CN110696762A (en) 2019-11-07 2019-11-07 Method and structure for realizing paper folding torsion energy absorption structure

Country Status (1)

Country Link
CN (1) CN110696762A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111619489A (en) * 2020-06-03 2020-09-04 长沙理工大学 Collision energy absorption box with rotary folding concave angle
CN114659408A (en) * 2022-02-14 2022-06-24 东南大学 Composite anti-explosion structure based on Kresling folded paper and design method thereof
CN114688193A (en) * 2022-04-24 2022-07-01 中国石油大学(华东) Buffering shock-absorbing structure based on paper folding principle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011106152A1 (en) * 2011-06-30 2013-01-03 Volkswagen Ag Deformation element for attaching cross beam and bulkhead of motor vehicle chassis, has cross-sectional end faces whose polygonal sides are rotated to specific angle with respect to tube axis
JP6184130B2 (en) * 2013-03-01 2017-08-23 新日鐵住金株式会社 Cylindrical structure for automobile frame structure and automobile frame structure
US20190093728A1 (en) * 2017-09-25 2019-03-28 University Of Washington Shock absorbing and impact mitigating structures based on axial-rotational coupling mechanism
CN209079845U (en) * 2018-11-02 2019-07-09 江南大学 A kind of three-dimensional origami structure vehicle energy absorption box
CN110316120A (en) * 2019-06-14 2019-10-11 上海交通大学 A kind of composite material Origami energy-absorbing folded tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011106152A1 (en) * 2011-06-30 2013-01-03 Volkswagen Ag Deformation element for attaching cross beam and bulkhead of motor vehicle chassis, has cross-sectional end faces whose polygonal sides are rotated to specific angle with respect to tube axis
JP6184130B2 (en) * 2013-03-01 2017-08-23 新日鐵住金株式会社 Cylindrical structure for automobile frame structure and automobile frame structure
US20190093728A1 (en) * 2017-09-25 2019-03-28 University Of Washington Shock absorbing and impact mitigating structures based on axial-rotational coupling mechanism
CN209079845U (en) * 2018-11-02 2019-07-09 江南大学 A kind of three-dimensional origami structure vehicle energy absorption box
CN110316120A (en) * 2019-06-14 2019-10-11 上海交通大学 A kind of composite material Origami energy-absorbing folded tube

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111619489A (en) * 2020-06-03 2020-09-04 长沙理工大学 Collision energy absorption box with rotary folding concave angle
CN111619489B (en) * 2020-06-03 2021-03-16 长沙理工大学 Collision energy absorption box with rotary folding concave angle
CN114659408A (en) * 2022-02-14 2022-06-24 东南大学 Composite anti-explosion structure based on Kresling folded paper and design method thereof
CN114659408B (en) * 2022-02-14 2024-04-12 东南大学 Composite antiknock structure based on Kresling paper folding and design method thereof
CN114688193A (en) * 2022-04-24 2022-07-01 中国石油大学(华东) Buffering shock-absorbing structure based on paper folding principle
CN114688193B (en) * 2022-04-24 2023-08-25 中国石油大学(华东) Buffering and damping structure based on paper folding principle

Similar Documents

Publication Publication Date Title
CN110696760B (en) Method and structure for realizing energy absorption structure of paper folding rib plate
CN110696762A (en) Method and structure for realizing paper folding torsion energy absorption structure
CN207374492U (en) Endergonic structure and automobile collision preventing girder construction
CN109322957A (en) A kind of axial direction ripple honeycomb sandwich panels shock resistance energy absorption device
CN111219436B (en) Paper folding type thin-walled tube
CN109532730B (en) Automobile energy absorbing box device filled inside
WO2011030717A1 (en) Energy-absorbing structure
CN205524081U (en) Energy -absorbing box and including car of this energy -absorbing box
CN111022538B (en) Multifunctional gradient energy absorption box
CN112428949B (en) Recoverable car energy-absorbing box that warp based on vibration material disk
CN110425243B (en) Multidirectional bearing honeycomb structure
CN110843709A (en) Novel sandwich structure automobile front anti-collision beam and assembly
CN103287369A (en) Multistage embedded type octagonal automobile energy absorbing and buffering device
CN109624900B (en) Automobile collision energy absorption box
CN109094499B (en) Multi-section multi-material mixed automobile energy absorption box device
CN110758298B (en) Method and structure for realizing triple energy absorption structure of folded paper
CN111186459B (en) Combined energy absorption structure
CN110873141A (en) Method and structure for realizing paper folding deformation energy absorption structure
CN110576654B (en) Sandwich structure applied to automobile collision energy-absorbing box
CN206386431U (en) A kind of staggered porous energy absorber
CN114060445A (en) Three-dimensional curved-wall mixed-phase regular quadrilateral chiral honeycomb
CN110758297A (en) Method and structure for realizing folded paper nested energy absorption structure
CN110696761A (en) Method and structure for realizing paper folding dual energy absorption structure
CN102673501B (en) Thin-walled energy-absorbing device
CN112172721A (en) Thin-wall energy absorption device with jade lotus leaf vein imitation distribution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200117

WD01 Invention patent application deemed withdrawn after publication