CN109704781A - A kind of silicon nitride nano band aeroge and preparation method thereof - Google Patents

A kind of silicon nitride nano band aeroge and preparation method thereof Download PDF

Info

Publication number
CN109704781A
CN109704781A CN201811626361.1A CN201811626361A CN109704781A CN 109704781 A CN109704781 A CN 109704781A CN 201811626361 A CN201811626361 A CN 201811626361A CN 109704781 A CN109704781 A CN 109704781A
Authority
CN
China
Prior art keywords
silicon nitride
aeroge
nitride nano
carbon fiber
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811626361.1A
Other languages
Chinese (zh)
Other versions
CN109704781B (en
Inventor
王红洁
于志明
卢德
苏磊
李明主
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201811626361.1A priority Critical patent/CN109704781B/en
Publication of CN109704781A publication Critical patent/CN109704781A/en
Application granted granted Critical
Publication of CN109704781B publication Critical patent/CN109704781B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

The invention discloses a kind of silicon nitride nano band aeroge and preparation method thereof, 1) prepare polysiloxanes colloidal sol;2) slurry is prepared;3) the three-dimensional porous carbon fiber skeleton that formation is mutually overlapped by the chopped carbon fiber of siloxane sol bonding is constructed;4) solidify and crack: three-dimensional porous carbon fiber skeleton is heated to the solidification temperature of polysiloxanes colloidal sol, isothermal holding heating and heat preservation in nitrogen atmosphere handles, cools to room temperature with the furnace, obtain carbon fiber/silicon nitride nano fiber composite block;5) it removes carbon: carbon fiber/silicon nitride nano fiber composite block is heated to 400 DEG C~1000 DEG C, and 2~4h of isothermal holding in air, obtain silicon nitride nano band aeroge.Nitridation silica aerogel using this method preparation has very excellent high-temperature stability and heat-proof quality, and overcome the brittleness problems of traditional ceramics aeroge, it is at low cost, high-efficient without expensive drying equipment and inefficient drying process, it is suitably applied the fields such as heat-insulated, heat preservation, wave transparent.

Description

A kind of silicon nitride nano band aeroge and preparation method thereof
Technical field
The invention belongs to the preparation technical fields of aeroge, are related to a kind of silicon nitride nano band aeroge and its preparation side Method.
Background technique
Aeroge is solid most light known to the current mankind, there is the superelevation porosity, thus with very excellent heat-insulated Thermal insulation property, it is considered to be substitute the best new material of traditional heat-insulating heat-preserving material.The service life of aeroge is that tradition is heat-insulated Ten times or more of thermal insulation material, and using aeroge as heat-insulating heat-preserving material, the thickness of material requested is only the heat-insulated guarantor of tradition / 5th of adiabator arrive half, and quality is lighter, this not only shows great application value in civil field, and And there is unmatched advantage in military heat-insulation and heat-preservation field.So far, aeroge is mainly in the application of civilian aspect The heat-insulation and heat-preservations of some industry heat supply pipelines, LNG storage, new energy bus the fields such as the heat-insulated protective plate of battery;In military side The utilization in face is mainly on the heat insulating member of aircraft.All in all, the application scenarios of aeroge are also far from reaching at present Expection of the people to it, the preparation cost that this is primarily due to aeroge is high, and maximum operation (service) temperature is limited, and usually in crisp Property, it can not directly use, need just to can guarantee certain reliability after compound with other inorfils, but also while also will increase The density of aeroge.
At present in ceramic aerogel technology of preparing it is the most mature be aerosil, signified aeroge in the market Almost it is defaulted as aerosil.But aerosil has brittleness big, and temperature tolerance is poor, uses temperature for a long time No more than 650 DEG C, because there is " the pearl neck " formed that contacted with each other by nanometer silicon dioxide particle in high temperature aerobic environment Structure easily shrinks the disadvantages of failure.It is same although the use temperature of conventional aluminium oxide aeroge can reach 1000 DEG C Also there is brittleness disadvantage, reliability is low, greatly limits the application field and depth of ceramic aerogel.As national defence is to material Military service performance requirement in extreme environment is higher and higher and industrial circle is to energy-efficient material increasing need, compels New technology of preparing will be improved and research and develop by being essential, and prepare that high temperature stability performance is excellent, and heat-proof quality is good with lower cost, and Ceramic aerogel material with excellent mechanical performances.
Silicon nitride also has very excellent thermostabilization because all having good mechanical property under high temperature and room temperature Property, high ablation resistance, compared to conventional oxide ceramics, silicon nitride possesses outstanding high-temperature comprehensive property.But it nitrogenizes Silica aerogel is but rarely reported.We during early-stage study, applied one about the " silicon nitride nano of compressible reply (application number: being the method preparation nanometer using quasi- CVD 201610566429.6) to the patent of line aeroge and its technology of preparing " Line paper, then block aeroge is obtained after compound, although nitridation silica aerogel, but low output, period has been prepared in this method It is long, at high cost.
Summary of the invention
In order to overcome the disadvantages of the above prior art, the purpose of the present invention is to provide a kind of silicon nitride nano band aeroges And preparation method thereof, this method is easy to operate, low for equipment requirements, process safety is controllable, high-efficient;Through nitrogen made from this method SiClx nanobelt aeroge high-temperature stability, thermal insulation and mechanical property are excellent, and size is controllable.
In order to achieve the above object, the present invention is achieved by the following scheme:
A kind of preparation method the invention discloses silicon nitride nano with aeroge, comprising the following steps:
1) it prepares polysiloxanes colloidal sol: after siloxane sol, water and dehydrated alcohol are mixed, polysiloxanes colloidal sol is made;
2) it prepares slurry: chopped carbon fiber being dispersed in polysiloxanes colloidal sol made from step 1), carbon fiber is made Surface coats one layer of siloxane sol;
3) it forms: constructing the three-dimensional porous carbon fiber bone for mutually overlapping formation by the chopped carbon fiber of siloxane sol bonding Frame;
4) solidify and crack: three-dimensional porous carbon fiber skeleton is heated to the solidification temperature of polysiloxanes colloidal sol, at heat preservation 4~8h is managed, 1200 DEG C~1700 DEG C are warming up in nitrogen atmosphere, 1~3h of isothermal holding cools to room temperature with the furnace, obtains Carbon fiber/silicon nitride nano fiber composite block;
5) it removes carbon: carbon fiber/silicon nitride nano fiber composite block is heated to 400 DEG C~1000 DEG C in air, and 1~8h of isothermal holding obtains silicon nitride nano band aeroge.
Preferably, in step 1), by percentage to the quality, comprising: 10%~70% siloxane sol, 10%~50% Water and 10%~80% dehydrated alcohol;And siloxane sol uses methyltrimethoxysilane and/or dimethylformamide dimethyl oxygen Base silane.
3, preparation method of the silicon nitride nano according to claim 1 with aeroge, which is characterized in that step 2) In, chopped carbon fiber average length used is 0.5mm~2mm.
4, preparation method of the silicon nitride nano according to claim 1 with aeroge, which is characterized in that step 3) is adopted Unreacted siloxane sol is removed with vacuum filtration method or filter press technique, forms chopped carbon fiber sol bonded by polysiloxanes Three-dimensional porous carbon fiber skeleton.
5, preparation method of the silicon nitride nano according to claim 1 with aeroge, which is characterized in that step 4) In, the solidification temperature of polysiloxanes colloidal sol is 80~120 DEG C, and nitrogen pressure is 0.1~2MPa, heating rate is 2~10 DEG C/ min。
6, preparation method of the silicon nitride nano according to claim 1 with aeroge, which is characterized in that step 5) In, 400~1000 DEG C are risen in air with the heating rate of 1 DEG C~10 DEG C/min.
7, according to claim 1~any one of 6 described in preparation method of the silicon nitride nano with aeroge, feature It is, intensity of the silicon nitride nano with aeroge and density are adjustable, it is embodied in:
By changing the solubility or crosslinking degree of siloxane sol, regulate and control intensity of the silicon nitride nano with aeroge and close Degree;
Alternatively, regulating and controlling intensity and density of the silicon nitride nano with aeroge by the average length for changing chopped carbon fiber;
Alternatively, regulating and controlling silicon nitride nano by the retention amount for changing polysiloxanes colloidal sol in three-dimensional porous carbon fiber skeleton Intensity and density with aeroge;
Alternatively, regulating and controlling intensity and density of the silicon nitride nano with aeroge by control nitrogen pressure.
8, using silicon nitride nano made from preparation method described in any one of claim 1~7 band aeroge, It is characterized in that, density of the silicon nitride nano with aeroge is 5mg/cm3~50mg/cm3, thermal conductivity be 0.030W/mK~ 0.051W/mK, silicon nitride nano strip length are 100 μm~500 μm, and width is 0.2~3 μm.
Compared with prior art, the invention has the following advantages:
Preparation method of the silicon nitride nano disclosed by the invention with aeroge, by siloxane sol, water, dehydrated alcohol with one Certainty ratio is mixed with polysiloxanes colloidal sol, and then chopped carbon fiber is dispersed in prepared polysiloxanes colloidal sol, The three-dimensional porous skeleton that formation is mutually overlapped by the chopped carbon fiber that siloxane sol bonds is constructed, at then cured and cracking Reason obtains silicon nitride nano fiber aeroge.In the methods of the invention, Silica hydrogel is only in chopped carbon fiber template surface and node Place exists, and is free of in the gap by being formed between chopped carbon fiber or content is considerably less, and entire chopped carbon fiber skeleton is still With high porosity, this just provides maximized space for the growth of silicon nitride nano band, is the high porosity of aeroge Provide guarantee.Meanwhile the Silica hydrogel in chopped carbon fiber skeleton is also accordingly in porous skeleton structure, and therefore, after Pintsch process, The Silica hydrogel of high porosity (high-specific surface area) can be cracked into gas phase with maximum conversion ratio, and generate nitrogen as reactant SiClx nanobelt, after last oxidation removes chopped carbon fiber template, obtained aeroge is that pure phase nitrogenizes silica aerogel, purity Height, it is very less or free from foreign meter containing other impurity.The present invention is by introducing life of the carbon fiber skeleton as silicon nitride nano fiber Long template increases its growing space, by control template size be can control final aerogel block body size, it can be achieved that The magnanimity preparation of low cost, provides further technical foundation for the industrialization of silicon nitride ceramics aeroge.
Nitridation silica aerogel using this method preparation has very excellent high-temperature stability and heat-proof quality, and overcomes The brittleness problems of traditional ceramics aeroges, it is at low cost, high-efficient without expensive drying equipment and inefficient drying process, It is suitably applied the fields such as heat-insulated, heat preservation, wave transparent.
Detailed description of the invention
Fig. 1 is nitridation silica aerogel preparation flow artwork of the invention;
Fig. 2 is the macro morphology photo of the nitridation silica aerogel obtained of embodiment 1;
Fig. 3 is the microcosmic scanned photograph of nitridation silica aerogel of the nitridation silica aerogel obtained of embodiment 1;
Fig. 4, which is that embodiment 2 is obtained, nitrogenizes silica aerogel XRD diagram;
Fig. 5 is the thermogravimetric curve in air atmosphere of the nitridation silica aerogel obtained of embodiment 2;
Fig. 6 is the stress-strain diagram of the nitridation silica aerogel obtained of embodiment 2.
Specific embodiment
In order to enable those skilled in the art to better understand the solution of the present invention, below in conjunction in the embodiment of the present invention Attached drawing, technical scheme in the embodiment of the invention is clearly and completely described, it is clear that described embodiment is only The embodiment of a part of the invention, instead of all the embodiments.Based on the embodiments of the present invention, ordinary skill people The model that the present invention protects all should belong in member's every other embodiment obtained without making creative work It encloses.It should be noted that term " includes " and " having " and their any deformation, it is intended that cover non-exclusive packet Contain, for example, what the process, method, system, product or equipment for containing a series of steps or units were not necessarily limited to be clearly listed Those step or units, but may include be not clearly listed or it is intrinsic for these process, methods, product or equipment Other step or units.
The invention will be described in further detail with reference to the accompanying drawing:
It is the preparation method process flow chart of silicon nitride nano fiber aeroge of the invention, including following step referring to Fig. 1 It is rapid:
It 1) is raw material with siloxane precursors, such as methyltrimethoxysilane, dimethyldimethoxysil,ne, water is as friendship Join agent, dehydrated alcohol is solvent, prepares polysiloxanes colloidal sol with certain proportion;
2) a certain amount of chopped carbon fiber is evenly dispersed in polysiloxanes colloidal sol, makes carbon fiber surface with one layer Siloxane sol;
3) it forms: removing most silica solution, such as using vacuum filtration or the method for filters pressing, form chopped carbon fiber By the sol bonded three-dimensional porous carbon fiber skeleton of polysiloxanes;
4) solidify: three-dimensional porous carbon fiber skeleton is placed in 4~8h of isothermal holding in 80 DEG C~120 DEG C environment;
5) it cracks: the carbon fiber skeleton after curing process being placed under certain nitrogen pressure, is warming up to 1200 DEG C~1700 DEG C, and 1~3h is kept the temperature, it then cools to room temperature with the furnace, obtains carbon fiber/silicon nitride nano fiber composite block;
6) 400 DEG C~1000 DEG C and 1~8h of isothermal holding are risen in air with certain heating rate, obtain silicon nitride Aeroge.
Embodiment 1
It is 5mg/cm that the present embodiment, which is prepared for density,3, and the adjustable nitridation silica aerogel of size, density, specific steps are such as Under:
1) with methyltrimethoxysilane (mass fraction 10wt.%) and raw materials of silica sol, using water as crosslinking agent (quality Score 30wt.%) dehydrated alcohol as solvent (mass fraction 60wt.%), prepares silica solution;
2) 2g chopped carbon fiber (length about 2mm) is dispersed in 100ml silica solution, mechanical stirring 10min;
3) using the method for vacuum filtration, the carbon fiber being dispersed in colloidal sol is made mutually to be overlapped to form three-dimensional porous carbon fiber bone Frame;
4) porous carbon fiber skeleton is placed in 100 DEG C of environment, isothermal holding 4 hours;
5) 1400 DEG C of temperature are risen in the nitrogen that pressure is 0.2Mpa, isothermal holding 2h is generated in carbon fiber skeleton A large amount of silicon nitride nano fibers, furnace cooling;
6) 400 DEG C, isothermal holding 8h are risen in air with the heating rate of 10 DEG C/min, oxidation removal carbon fiber obtains Silica aerogel must be nitrogenized.
It as a result referring to fig. 2, is nitridation silica aerogel photomacrograph obtained, from figure 2 it can be seen that using present invention side Nitridation silica aerogel obtained by method is macroscopically white, and millimetre-sized overlength silicon nitride nano band is contained on aeroge surface.
It is the microcosmic scanned photograph of nitridation silica aerogel obtained referring to Fig. 3.It can be seen from the figure that nitridation silica aerogel Microcosmic is by intertwineing with each other constituted network-like structure without several silicon nitride nano bands.The network-like structure of this high porosity Nitridation silica aerogel is set to have excellent heat preservation and insulation.
Embodiment 2
It is 15mg/cm that the present embodiment, which is prepared for density,3, and the adjustable nitridation silica aerogel of size, density, specific steps are such as Under:
1) with dimethyldimethoxysil,ne (mass fraction 40wt.%) for raw material, using water as crosslinking agent (mass fraction 10wt.%) dehydrated alcohol prepares polysiloxanes colloidal sol as solvent (mass fraction 50wt.%);
2) chopped carbon fiber (length is about 1mm) is dispersed in silica solution, carries out mechanical stirring 10min;
3) using the method for vacuum filtration, the carbon fiber being dispersed in colloidal sol is made mutually to be overlapped to form three-dimensional porous carbon fiber bone Frame;
4) porous carbon fiber skeleton is placed in 70 DEG C of baking ovens, isothermal holding 8 hours;
5) 1550 DEG C, isothermal holding 2h are risen in the nitrogen that pressure is 0.5Mpa, is generated in carbon fiber skeleton a large amount of Silicon nitride nano fiber, furnace cooling;
6) 1000 DEG C, isothermal holding 1h are risen in air with the heating rate of 2 DEG C/min, oxidation removal carbon fiber obtains Silica aerogel must be nitrogenized.
It referring to fig. 4, is the XRD spectra of the present embodiment nitridation silica aerogel obtained.It can be seen from the figure that silicon nitride gas The characteristic peak of gel belongs to typical α-Si3N4, and no other impurity peaks show that this method is obtained and nitrogenize silica aerogel purity It is high.
It is the thermogravimetric curve in air atmosphere of the present embodiment nitridation silica aerogel obtained referring to Fig. 5.Heating rate For 10 DEG C/min, it can be seen from the figure that the quality technology for nitrogenizing silica aerogel is protected in 10100 DEG C of air environments below It holds constant, shows extremely excellent high-temperature oxidation resistance and high-temperature stability;When temperature is higher than 10100 DEG C, SiC aeroge Quality starts to be slowly increased, this mainly nitrogenizes the silicon oxide layer of the beta-silicon nitride nanowire Surface Creation in silica aerogel and is led It causes.When temperature rises to 1200 DEG C, it is only 103wt.% that the weight gain for nitrogenizing silica aerogel, which is less than, this shows that nitrogenizing silica aerogel exists There is excellent antioxygenic property and thermal stability in high temperature air environment, be suitable as the materials such as high temperature insulating, filtering.
It is density made from the present embodiment is 16mg/cm referring to Fig. 63Nitridation silica aerogel stress-strain diagram.From As can be seen that being 16mg/cm using density prepared by method disclosed by the invention in figure3, the porosity be 99.5% nitridation Silica aerogel overcomes the brittleness problems of traditional ceramics aeroge, has certain elasticity and compression and back renaturation.When compressed shape variable After reaching 90%, nitridation silica aerogel overall structure keeps very complete, and no macroscopic cracking generates, and compression stress is up to 0.15MPa, this belongs to the extremely excellent one kind of performance in other aerogel materials that the porosity is up to 99.5%.Without brittleness, This compressible, high-intensitive three big mechanical characteristic makes nitridation silica aerogel produced by the present invention can be realized answering for various scenes With, such as heat supply pipeline, new energy battery thermal insulation board, LNG storage transport.
Embodiment 3
It is 30mg/cm that the present embodiment, which is prepared for density,3, and the adjustable nitridation silica aerogel of size, density, specific steps are such as Under:
1) with methyltrimethoxysilane (mass fraction 60wt.%) for raw material, using water as crosslinking agent (mass fraction 30wt.%) dehydrated alcohol prepares silica solution as solvent (mass fraction 10wt.%);
2) 2g chopped carbon fiber (length is about 0.5mm) is dispersed in 100ml silica solution, carries out mechanical stirring and ultrasound 5min;
3) method for using filters pressing, makes the carbon fiber being dispersed in colloidal sol mutually be overlapped to form three-dimensional porous carbon fiber skeleton;
4) porous carbon fiber skeleton is placed in 70 DEG C of baking ovens, isothermal holding 8 hours;
5) 1700 DEG C are risen in the nitrogen that pressure is 1Mpa, isothermal holding 3h generates a large amount of nitrogen in carbon fiber skeleton SiClx nanofiber, furnace cooling;
6) 700 DEG C, isothermal holding 4h are risen in air with the heating rate of 1 DEG C/min, oxidation removal carbon fiber obtains Nitrogenize silica aerogel.
Embodiment 4
It is 50mg/cm that the present embodiment, which is prepared for density,3, and the adjustable nitridation silica aerogel of size, density, specific steps are such as Under:
1) with methyltrimethoxysilane (mass fraction 70wt.%) for raw material, using water as crosslinking agent (mass fraction 20wt.%) dehydrated alcohol prepares silica solution as solvent (mass fraction 10wt.%);
2) 2g chopped carbon fiber (length is about 1.5mm) is dispersed in 100ml silica solution, carries out mechanical stirring and ultrasound 5min;
3) method for using filters pressing, makes the carbon fiber being dispersed in colloidal sol mutually be overlapped to form three-dimensional porous carbon fiber skeleton;
4) porous carbon fiber skeleton is placed in 80 DEG C of baking ovens, isothermal holding 6 hours;
5) 1600 DEG C are risen in the nitrogen that pressure is 1Mpa, isothermal holding 3h generates a large amount of nitrogen in carbon fiber skeleton SiClx nanofiber, furnace cooling;
6) 650 DEG C, isothermal holding 5h are risen in air with the heating rate of 1 DEG C/min, oxidation removal carbon fiber obtains Nitrogenize silica aerogel.
The method of the present invention preparation nitridation silica aerogel is not related to costly, time consuming, inefficient needed for traditional aeroge preparation Drying equipment, it is only necessary to common gas pressure sintering furnace and air furnace can meet preparation and require, and raw material is simple, at low cost, nothing A large amount of solvent need to be consumed, preparation process is simple, and the period is the 1/8~1/5 of conventional method, significantly reduces the system of aeroge Standby period and cost, while yield is greatly improved.
The above content is merely illustrative of the invention's technical idea, and this does not limit the scope of protection of the present invention, all to press According to technical idea proposed by the present invention, any changes made on the basis of the technical scheme each falls within claims of the present invention Protection scope within.

Claims (8)

1. a kind of preparation method of silicon nitride nano with aeroge, which comprises the following steps:
1) it prepares polysiloxanes colloidal sol: after siloxane sol, water and dehydrated alcohol are mixed, polysiloxanes colloidal sol is made;
2) it prepares slurry: chopped carbon fiber being dispersed in polysiloxanes colloidal sol made from step 1), carbon fiber surface is made Coat one layer of siloxane sol;
3) it forms: constructing the three-dimensional porous carbon fiber skeleton for mutually overlapping formation by the chopped carbon fiber of siloxane sol bonding;
4) solidify and crack: three-dimensional porous carbon fiber skeleton is heated to the solidification temperature of polysiloxanes colloidal sol, isothermal holding 4~ 8h, is warming up to 1200 DEG C~1700 DEG C in nitrogen atmosphere, and 1~3h of isothermal holding cools to room temperature with the furnace, obtains carbon fiber Dimension/silicon nitride nano fiber composite block;
5) it removes carbon: carbon fiber/silicon nitride nano fiber composite block is heated to 400 DEG C~1000 DEG C in air, and kept the temperature 1~8h is handled, silicon nitride nano band aeroge is obtained.
2. preparation method of the silicon nitride nano according to claim 1 with aeroge, which is characterized in that in step 1), with Mass percent meter, comprising: 10%~70% siloxane sol, 10%~50% water and 10%~80% anhydrous second Alcohol;And siloxane sol uses methyltrimethoxysilane and/or dimethyldimethoxysil,ne.
3. preparation method of the silicon nitride nano according to claim 1 with aeroge, which is characterized in that in step 2), institute It is 0.5mm~2mm with chopped carbon fiber average length.
4. preparation method of the silicon nitride nano according to claim 1 with aeroge, which is characterized in that step 3) is using true Empty suction method or filter press technique remove unreacted siloxane sol, make chopped carbon fiber formed by polysiloxanes it is sol bonded three Tie up porous carbon fiber skeleton.
5. preparation method of the silicon nitride nano according to claim 1 with aeroge, which is characterized in that in step 4), gather The solidification temperature of siloxane sol is 80~120 DEG C, and nitrogen pressure is 0.1~2MPa, and heating rate is 2~10 DEG C/min.
6. preparation method of the silicon nitride nano according to claim 1 with aeroge, which is characterized in that in step 5), 400~1000 DEG C are risen in air with the heating rate of 1 DEG C~10 DEG C/min.
7. preparation method of the silicon nitride nano described according to claim 1~any one of 6 with aeroge, feature exist In, intensity of the silicon nitride nano with aeroge and density are adjustable, it is embodied in:
By changing the solubility or crosslinking degree of siloxane sol, regulate and control intensity and density of the silicon nitride nano with aeroge;
Alternatively, regulating and controlling intensity and density of the silicon nitride nano with aeroge by the average length for changing chopped carbon fiber;
Alternatively, regulating and controlling silicon nitride nano band gas by the retention amount for changing polysiloxanes colloidal sol in three-dimensional porous carbon fiber skeleton The intensity and density of gel;
Alternatively, regulating and controlling intensity and density of the silicon nitride nano with aeroge by control nitrogen pressure.
8. using silicon nitride nano band aeroge, feature made from preparation method described in any one of claim 1~7 It is, density of the silicon nitride nano with aeroge is 5mg/cm3~50mg/cm3, thermal conductivity be 0.030W/mK~ 0.051W/mK, silicon nitride nano strip length are 100 μm~500 μm, and width is 0.2~3 μm.
CN201811626361.1A 2018-12-28 2018-12-28 Silicon nitride nanobelt aerogel and preparation method thereof Active CN109704781B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811626361.1A CN109704781B (en) 2018-12-28 2018-12-28 Silicon nitride nanobelt aerogel and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811626361.1A CN109704781B (en) 2018-12-28 2018-12-28 Silicon nitride nanobelt aerogel and preparation method thereof

Publications (2)

Publication Number Publication Date
CN109704781A true CN109704781A (en) 2019-05-03
CN109704781B CN109704781B (en) 2021-09-07

Family

ID=66257936

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811626361.1A Active CN109704781B (en) 2018-12-28 2018-12-28 Silicon nitride nanobelt aerogel and preparation method thereof

Country Status (1)

Country Link
CN (1) CN109704781B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111205106A (en) * 2020-01-11 2020-05-29 西安交通大学 Silicon nitride @ carbon wave-absorbing foam and preparation method and application thereof
WO2020167442A1 (en) * 2019-02-01 2020-08-20 The Regents Of The University Of California Double-negative-index ceramic aerogels for thermal superinsulation
CN112047742A (en) * 2020-09-03 2020-12-08 中钢南京环境工程技术研究院有限公司 Low-cost preparation method of large-size silicon nitride nanobelt aerogel
CN112811933A (en) * 2021-01-18 2021-05-18 中国人民解放军海军工程大学 Preparation method of nanowire-reinforced silicon nitride foamed ceramic composite silicon dioxide aerogel and product thereof
CN113754446A (en) * 2020-06-02 2021-12-07 中国科学院化学研究所 3D printing silicon nitride fiber aerogel and preparation method and application thereof
CN114349537A (en) * 2022-01-25 2022-04-15 西安交通大学 Super-elastic aerogel and preparation method thereof
CN114349529A (en) * 2022-01-19 2022-04-15 中国科学院化学研究所 Silicon nitride hollow microsphere and preparation method thereof
CN114956858A (en) * 2022-05-11 2022-08-30 西安交通大学 Layered elastic-plastic silicon nitride ceramic and preparation method thereof
CN115196988A (en) * 2022-07-29 2022-10-18 陕西科技大学 Nitride nanobelt modified carbon/carbon composite material and preparation method thereof
CN116217253A (en) * 2023-01-17 2023-06-06 西安交通大学 Impedance gradual change layered gradient composite aerogel and preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030078156A1 (en) * 2001-08-23 2003-04-24 Lowden Richard A. Creep resistant refractory with controlled optical emission
KR20110089835A (en) * 2011-07-13 2011-08-09 이재환 High density nano coating compositions
CN103304252A (en) * 2013-06-13 2013-09-18 哈尔滨工业大学 Preparation method of SiO2 aerogel/porous Si3N4 composite material
CN103664214A (en) * 2012-09-13 2014-03-26 南京航空航天大学 Preparation method of wave-transparent composite material containing silicon nitride interface
CN104446306A (en) * 2014-11-17 2015-03-25 广州大学 Submicron inorganic whisker aerogel thermal insulation composite and preparation method thereof
CN106608730A (en) * 2015-10-26 2017-05-03 沈阳拓荆科技有限公司 Carbon-based Si-C-O aerogel thermal insulation composite material and preparation method thereof
CN107188527A (en) * 2017-06-19 2017-09-22 西安交通大学 A kind of SiC flexible ceramics constructed by nano wire and preparation method thereof
CN108328586A (en) * 2018-03-01 2018-07-27 西安交通大学 A kind of nitridation silica aerogel of compressible reply and preparation method thereof
CN108503327A (en) * 2018-04-13 2018-09-07 航天特种材料及工艺技术研究所 A kind of low cost aeroge thermal insulation material, preparation method and applications

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030078156A1 (en) * 2001-08-23 2003-04-24 Lowden Richard A. Creep resistant refractory with controlled optical emission
KR20110089835A (en) * 2011-07-13 2011-08-09 이재환 High density nano coating compositions
CN103664214A (en) * 2012-09-13 2014-03-26 南京航空航天大学 Preparation method of wave-transparent composite material containing silicon nitride interface
CN103304252A (en) * 2013-06-13 2013-09-18 哈尔滨工业大学 Preparation method of SiO2 aerogel/porous Si3N4 composite material
CN104446306A (en) * 2014-11-17 2015-03-25 广州大学 Submicron inorganic whisker aerogel thermal insulation composite and preparation method thereof
CN106608730A (en) * 2015-10-26 2017-05-03 沈阳拓荆科技有限公司 Carbon-based Si-C-O aerogel thermal insulation composite material and preparation method thereof
CN107188527A (en) * 2017-06-19 2017-09-22 西安交通大学 A kind of SiC flexible ceramics constructed by nano wire and preparation method thereof
CN108328586A (en) * 2018-03-01 2018-07-27 西安交通大学 A kind of nitridation silica aerogel of compressible reply and preparation method thereof
CN108503327A (en) * 2018-04-13 2018-09-07 航天特种材料及工艺技术研究所 A kind of low cost aeroge thermal insulation material, preparation method and applications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GEORGE HASEGAWA 等: "Highly Flexible Hybrid Polymer Aerogels and Xerogels Based on Resorcinol-Formaldehyde with Enhanced Elastic Stiffness and Recoverability: Insights into the Origin of Their Mechanical Properties", 《CHEMISTRY OF MATERIALS》 *
SU LEI 等: "Resilient Si3N4 Nanobelt Aerogel as Fire-Resistant and Electromagnetic Wave-Transparent Thermal Insulator", 《APPLIED MATERIALS & INTERFACES》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020167442A1 (en) * 2019-02-01 2020-08-20 The Regents Of The University Of California Double-negative-index ceramic aerogels for thermal superinsulation
CN111205106A (en) * 2020-01-11 2020-05-29 西安交通大学 Silicon nitride @ carbon wave-absorbing foam and preparation method and application thereof
CN113754446A (en) * 2020-06-02 2021-12-07 中国科学院化学研究所 3D printing silicon nitride fiber aerogel and preparation method and application thereof
CN112047742A (en) * 2020-09-03 2020-12-08 中钢南京环境工程技术研究院有限公司 Low-cost preparation method of large-size silicon nitride nanobelt aerogel
CN112811933A (en) * 2021-01-18 2021-05-18 中国人民解放军海军工程大学 Preparation method of nanowire-reinforced silicon nitride foamed ceramic composite silicon dioxide aerogel and product thereof
CN114349529A (en) * 2022-01-19 2022-04-15 中国科学院化学研究所 Silicon nitride hollow microsphere and preparation method thereof
CN114349537A (en) * 2022-01-25 2022-04-15 西安交通大学 Super-elastic aerogel and preparation method thereof
CN114956858A (en) * 2022-05-11 2022-08-30 西安交通大学 Layered elastic-plastic silicon nitride ceramic and preparation method thereof
CN114956858B (en) * 2022-05-11 2023-06-06 西安交通大学 Layered elastoplastic silicon nitride ceramic and preparation method thereof
CN115196988A (en) * 2022-07-29 2022-10-18 陕西科技大学 Nitride nanobelt modified carbon/carbon composite material and preparation method thereof
CN116217253A (en) * 2023-01-17 2023-06-06 西安交通大学 Impedance gradual change layered gradient composite aerogel and preparation method and application thereof

Also Published As

Publication number Publication date
CN109704781B (en) 2021-09-07

Similar Documents

Publication Publication Date Title
CN109704781A (en) A kind of silicon nitride nano band aeroge and preparation method thereof
CN109627006B (en) Large-size silicon carbide aerogel and preparation method thereof
CN101698591B (en) Fiber composite carbon aerogel material and preparation method thereof
CN101037345B (en) Method for preparing mullite porous ceramic by gel refrigeration drying process
CN105859318B (en) Staple fiber-SiC nano fiber enhancing carborundum porous ceramics material and preparation method thereof
CN108116002B (en) A kind of sandwich thermally protective materials and its manufacturing method with high slab strength
CN108178647A (en) A kind of preparation method of the heat-insulated porous mullite fiber ceramics of high-strength light
CN109251005B (en) Preparation method of reinforced silica aerogel material
CN109553395B (en) Low-cost preparation method of ceramic aerogel
CN105084878A (en) Preparation method of acicular mullite porous ceramic block material with superhigh amount of porosity
CN108862234A (en) A kind of preparation method of fibre reinforced carbon aerogel composite material
CN103232228A (en) Preparation method of porous aluminum oxide composite ceramic
CN111454071B (en) Rock wool fiber reinforced silica-based high-strength heat insulation composite material and preparation method thereof
CN106608730A (en) Carbon-based Si-C-O aerogel thermal insulation composite material and preparation method thereof
CN109824381A (en) A kind of silicon carbide ceramic membrane and its preparation method and application
CN104926355B (en) Based on the method that gelatin solution Freeze Drying Technique prepares orienting stephanoporate silicon nitride ceramics
CN107986744B (en) High-temperature-resistant aerogel composite heat-insulating felt and preparation method thereof
CN112778017A (en) Ceramic fiber composite aerogel thermal insulation material and preparation method thereof
CN115849949A (en) Preparation method of high-strength low-thermal-conductivity ceramic aerogel material
CN104276835A (en) Preparation method of carbon/carbon composite thermal insulation material containing anti-oxidization coating
CN111269015B (en) Densified mullite-corundum-SiC composite heat storage ceramic material for solar thermal power generation and preparation method thereof
CN102211766A (en) Rapid low-cost preparation method of high heat conduction carbon material
CN107399972A (en) A kind of method that transparent aluminium nitride ceramic is prepared based on SPS methods
CN114411242B (en) Quartz fiber reinforced carbon-silicon dioxide composite material guide cylinder and preparation method thereof
CN115772385A (en) Silicon carbide aerogel-based composite phase-change heat storage material and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant