CN107903394B - 高聚物/石墨烯@磁性纳米粒子泡沫复合材料的合成方法 - Google Patents

高聚物/石墨烯@磁性纳米粒子泡沫复合材料的合成方法 Download PDF

Info

Publication number
CN107903394B
CN107903394B CN201711140252.4A CN201711140252A CN107903394B CN 107903394 B CN107903394 B CN 107903394B CN 201711140252 A CN201711140252 A CN 201711140252A CN 107903394 B CN107903394 B CN 107903394B
Authority
CN
China
Prior art keywords
graphene
solution
magnetic nano
high polymer
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711140252.4A
Other languages
English (en)
Other versions
CN107903394A (zh
Inventor
江智渊
赵慧
郑兰荪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201711140252.4A priority Critical patent/CN107903394B/zh
Publication of CN107903394A publication Critical patent/CN107903394A/zh
Application granted granted Critical
Publication of CN107903394B publication Critical patent/CN107903394B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • C08J9/008Nanoparticles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0843Cobalt
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0856Iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0862Nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Abstract

高聚物/石墨烯@磁性纳米粒子泡沫复合材料的合成方法,涉及聚酰亚胺。1)制备石墨烯溶液;2)将二氨基二苯醚粉末加到步骤1)制备的石墨烯溶液中混合,得溶液A;3)将均苯四甲酸二酐粉末加入步骤2)制备的混合溶液A中缩合,得溶液B;4)在步骤3)得到的溶液B中加入磁性纳米粒子,搅拌,得溶液C;5)将步骤4)得到的溶液C倾倒在平板上,再放在以水为絮凝剂的絮凝池中,絮凝后烘干;所得的材料的结构特点是带有明显泡沫结构的高聚物/石墨烯@磁性纳米粒子复合材料,并且在电磁波吸收上表现出比较优越的性质。操作简单,可操作性强,重现性好,产率可达95%。

Description

高聚物/石墨烯@磁性纳米粒子泡沫复合材料的合成方法
技术领域
本发明涉及聚酰亚胺,尤其是涉及高聚物/石墨烯@磁性纳米粒子泡沫复合材料的合成方法。
背景技术
聚酰亚胺具有优良的机械性能,一些聚酰亚胺品种不溶于有机溶剂,对稀酸稳定聚酰亚胺具有很高的耐辐照性能,聚酰亚胺是自熄性聚合物,发烟率低。聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手",并认为“没有聚酰亚胺就不会有今天的微电子技术”。聚酰亚胺高聚物与石墨烯形成的这种泡沫结构已有研究。(Y.Li,X.L.pei,B.shen,W.T.zhai,L.H.zhang,RSC ADV.5(2015)24342-24351)然而,目前对于聚酰亚胺高聚物/石墨烯与磁性纳米粒子复合形成的泡沫结构研究的不多,同时这种结构的复合材料具有良好的导电性和高饱和磁化强度,在电磁波吸收方面有良好的应用空间,有广阔的应用空间。
发明内容
本发明的目的在于提供工艺步骤较为简单,泡沫结构合成较为均一和高聚物/石墨烯@磁性纳米粒子泡沫复合材料的合成方法。
本发明包括以下步骤:
1)制备石墨烯溶液;
在步骤1)中,所述制备石墨烯溶液的具体方法可为:将石墨烯加入到N,N-二甲基甲酰胺溶液中,超声混合,得石墨烯溶液。
2)将二氨基二苯醚(ODA)粉末加到步骤1)制备的石墨烯溶液中混合,得溶液A;
3)将均苯四甲酸二酐(PMDA)粉末加入步骤2)制备的混合溶液A中缩合,得溶液B;
在步骤3)中,所述将均苯四甲酸二酐(PMDA)粉末加入步骤2)制备的混合溶液A中缩合,可将与二氨基二苯醚(ODA)等摩尔量的PMDA粉末加入步骤2)中制备的溶液中。
4)在步骤3)得到的溶液B中加入磁性纳米粒子,搅拌,得溶液C;
在步骤4)中,所述磁性纳米粒子可选自金属、金属氧化物、合金等中的一种。
5)将步骤4)得到的溶液C倾倒在平板上,再放在以水为絮凝剂的絮凝池中,絮凝后烘干;
在步骤5)中,所述平板可采用玻璃板等;所述烘干的温度可为60℃。
本发明所得的材料的结构特点是带有明显泡沫结构的高聚物/石墨烯@磁性纳米粒子(金属,金属氧化物,合金)复合材料,并且在电磁波吸收上表现出比较优越的性质。
本发明的突出优点在于:
1)利用溶液缩聚法制备得到新型高聚物/石墨烯@磁性纳米粒子(金属,金属氧化物,合金)泡沫复合材料,这种材料在微波吸收上具有潜在的应用前景;
2)本发明操作简单,可操作性强,重现性好,产率可达95%。
3)本发明可大规模制备,实现商品化,在实际应用中具有潜在的应用价值。
4)本发明耐高温,在航空航天方面具有潜在的应用价值。
附图说明
图1为泡沫结构的高聚物/石墨烯的扫描电镜(SEM)图。
图2为泡沫结构的高聚物/石墨烯的红外谱图。
图3为小倍数下的泡沫结构的高聚物/石墨烯@Fe3O4扫描电镜(SEM)图。
图4为放大倍数下的泡沫结构的高聚物/石墨烯@Fe3O4扫描电镜(SEM)图。
图5为泡沫结构的高聚物/石墨烯@Fe3O4所对应的X射线粉末衍射图。
图6为泡沫结构的高聚物/石墨烯@Fe3O4所对应的不同厚度的微波吸收曲线。在图6中,测试频率范围在2~18GHz。
图7为泡沫结构的高聚物/石墨烯@FeCoNi的扫描电镜(SEM)图。
图8为泡沫结构的高聚物/石墨烯@FeCoNi对应的X射线粉末衍射图。
图9为泡沫结构的高聚物/石墨烯@FeCoNi对应不同厚度的微波吸收曲线。在图9中,测试频率范围在2~18GHz。
图10所对应的为泡沫结构的高聚物/石墨烯@Co扫描电镜(SEM)图。
图11所对应的为泡沫结构的高聚物/石墨烯@Co射线粉末衍射图。
具体实施方式
下面通过实施例结合附图对本发明作进一步说明。
实施例1
(1)在100~250ml的圆底烧瓶中,加入一定量的氧化还原石墨烯,量取一定体积的N,N-二甲基溶剂,超声1.5h,称量加入等摩尔量的ODA和PMDA,机械搅拌反应8h,,得到的溶液倾倒在干净的玻璃板上,将其放在以水为絮凝剂的絮凝池中,絮凝大概12h,放在60℃的烘箱中12h。
(2)在100-250ml的圆底烧瓶中,加入一定量的氧化还原石墨烯,量取一定体积的N,N-二甲基溶剂,超声1h,称量加入等摩尔量的ODA和PMDA,机械搅拌5h,之后加入一定量的金属氧化物(以Fe3O4为例),继续搅拌3h,得到的溶液倾倒在干净的玻璃板上,将其放在以水为絮凝剂的絮凝池中,絮凝大概10h,放在60℃的烘箱中16h。
由图1可以看出用本方法制备出了泡沫结构。由图2可以看出本发明制备聚酰亚胺酸这种高聚物。由图3和图4可以看出,制备了高聚物/石墨烯及磁性金属(金属氧化物,合金)等纳米粒子泡沫结构。图5中的X射线粉末衍射图可以看出:衍射角度18.3°、30.1°、35.5°、37.1°、43.1°、53.5°、56.9°、62.6°、70.9°与体心立方结构的Fe3O4:PDF#65-3107的(111)、(220)和(311)、(222)、(400)、(422)、(511)、(440)、(620)晶面相对应,并且并没有发现其它杂质峰的出现。图6为微波吸收的模拟图,根据模拟数据可以看到,在吸波片层厚度为2mm,低于-10dB吸收频带范围,达到2.4GHz的吸收展宽。
实施例2
(1)在100~250ml的圆底烧瓶中,加入一定量的氧化还原石墨烯,量取一定体积的N,N-二甲基溶剂,超声2h,称量加入等摩尔量的ODA和PMDA,机械搅拌7h,之后加入一定量的金属合金(以FeCoNi为例),继续搅拌5h,得到的溶液倾倒在干净的玻璃板上,将其放在以水为絮凝剂的絮凝池中,絮凝大概12h,放在60℃的烘箱中12h。
由图7可以看出,制备了高聚物/石墨烯及磁性纳米粒子(金属,合金,金属氧化物)泡沫结构。图8中的X射线粉末衍射图可以看出:衍射角度44.5°、51.8°、76.7°,92.7°与体心立方结构的FeCoNi的(111)、(200)和(220)、(222)、(311)、晶面相对应,并且并没有发现其它杂质峰的出现。图9为微波吸收的模拟图,根据模拟数据可以看到,在吸波片层厚度为2.5mm,低于-10dB吸收频带范围,达到5.9GHz的吸收展宽。
实施例3
(1)在100~250ml的圆底烧瓶中,加入一定量的氧化还原石墨烯,量取一定体积的N,N-二甲基溶剂,超声0.5h,称量加入等摩尔量的ODA和PMDA,机械搅拌10h,之后加入一定量的金属(以Co为例),继续搅拌5h,得到的溶液倾倒在干净的玻璃板上,将其放在以水为絮凝剂的絮凝池中,絮凝大概10h,放在60℃的烘箱中18h
由图10可以看出,制备了高聚物@石墨烯及磁性金属合金纳米粒子泡沫结构。图11的X射线粉末衍射图可以看出:衍射角度41.7°、44.8°、47.6°,75.9°与六方结构的金属Co:PDF#05-0727的(100)、(002)、(101)、(110)晶面相对应,并且并没有发现其它杂质峰的出现。

Claims (6)

1.高聚物/石墨烯@磁性纳米粒子泡沫复合材料的合成方法,其特征在于包括以下步骤:
1)制备石墨烯溶液;
2)将二氨基二苯醚(ODA)粉末加到步骤1)制备的石墨烯溶液中混合,得溶液A;
3)将均苯四甲酸二酐(PMDA)粉末加入步骤2)制备的混合溶液A中缩合,得溶液B;
4)在步骤3)得到的溶液B中加入磁性纳米粒子,搅拌,得溶液C;
5)将步骤4)得到的溶液C倾倒在平板上,再放在以水为絮凝剂的絮凝池中,絮凝后烘干。
2.如权利要求1所述高聚物/石墨烯@磁性纳米粒子泡沫复合材料的合成方法,其特征在于在步骤1)中,所述制备石墨烯溶液的具体方法为:将石墨烯加入到N,N-二甲基甲酰胺溶液中,超声混合,得石墨烯溶液。
3.如权利要求1所述高聚物/石墨烯@磁性纳米粒子泡沫复合材料的合成方法,其特征在于在步骤3)中,所述将均苯四甲酸二酐粉末加入步骤2)制备的混合溶液A中缩合,是将与二氨基二苯醚等摩尔量的PMDA粉末加入步骤2)中制备的溶液中。
4.如权利要求1所述高聚物/石墨烯@磁性纳米粒子泡沫复合材料的合成方法,其特征在于在步骤4)中,所述磁性纳米粒子选自金属、金属氧化物、合金中的一种。
5.如权利要求1所述高聚物/石墨烯@磁性纳米粒子泡沫复合材料的合成方法,其特征在于在步骤5)中,所述平板采用玻璃板。
6.如权利要求1所述高聚物/石墨烯@磁性纳米粒子泡沫复合材料的合成方法,其特征在于在步骤5)中,所述烘干的温度为60℃。
CN201711140252.4A 2017-11-16 2017-11-16 高聚物/石墨烯@磁性纳米粒子泡沫复合材料的合成方法 Active CN107903394B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711140252.4A CN107903394B (zh) 2017-11-16 2017-11-16 高聚物/石墨烯@磁性纳米粒子泡沫复合材料的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711140252.4A CN107903394B (zh) 2017-11-16 2017-11-16 高聚物/石墨烯@磁性纳米粒子泡沫复合材料的合成方法

Publications (2)

Publication Number Publication Date
CN107903394A CN107903394A (zh) 2018-04-13
CN107903394B true CN107903394B (zh) 2019-06-07

Family

ID=61845884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711140252.4A Active CN107903394B (zh) 2017-11-16 2017-11-16 高聚物/石墨烯@磁性纳米粒子泡沫复合材料的合成方法

Country Status (1)

Country Link
CN (1) CN107903394B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113527678B (zh) * 2020-04-14 2023-04-07 中科院广州化学有限公司 一种聚酰亚胺泡沫复合材料及其制备方法与应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158956A (ja) * 2003-11-25 2005-06-16 Aica Kogyo Co Ltd 電磁波シールド樹脂組成物
KR101307378B1 (ko) * 2009-12-31 2013-09-11 제일모직주식회사 전자파 차폐 특성이 우수한 열가소성 수지 조성물
CN102732037B (zh) * 2011-04-08 2014-09-10 中国科学院金属研究所 石墨烯泡沫∕聚合物高导电复合材料及其制备方法和应用
CN103319892B (zh) * 2013-07-12 2016-02-03 中国科学院长春应用化学研究所 一种聚酰亚胺泡沫复合材料及其制备方法
CN105524466A (zh) * 2014-09-28 2016-04-27 中国科学院苏州纳米技术与纳米仿生研究所 多孔石墨烯电磁吸波复合材料、其制备方法及应用
WO2017116657A1 (en) * 2015-12-28 2017-07-06 Nanotek Instruments, Inc. Graphene-Carbon Hybrid Foam

Also Published As

Publication number Publication date
CN107903394A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
Wen et al. Microwave absorption properties of multiwalled carbon nanotube/FeNi nanopowders as light-weight microwave absorbers
Yang et al. Selective tailoring of covalent bonds on graphitized hollow carbon spheres towards controllable porous structure and wideband electromagnetic absorption
CN105536585B (zh) 一种碳纳米管分散方法
Sun et al. Attapulgite modulated thorny nickel nanowires/graphene aerogel with excellent electromagnetic wave absorption performance
Zhang et al. Facile preparation of CNTs microspheres as improved carbon absorbers for high-efficiency electromagnetic wave absorption
Hekmatara et al. Microwave absorption property of aligned MWCNT/Fe3O4
Wang et al. Microwave absorption properties and infrared emissivities of ordered mesoporous C–TiO2 nanocomposites with crystalline framework
Zhao et al. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes filled with Ag nanowires
CN102583336B (zh) 一种磁功能化石墨烯复合材料的制备方法
Xiao et al. 3D printed SiC nanowire reinforced composites for broadband electromagnetic absorption
CN103333465B (zh) 一种FeCo@MWNTs/环氧树脂基吸波复合材料的制备方法
CN109233740A (zh) 基于改性MOF材料热解制备Fe/Co/C复合吸波材料的方法
CN105129857B (zh) 一种花状氧化钨纳米材料及其制备方法
CN103333449B (zh) 聚甲基丙烯酸甲酯-氢氧化锌纳米复合材料及其制备方法
CN104004496B (zh) 一种还原氧化石墨烯/氧化镍复合吸波材料的制备方法
Kazmi et al. PVDF/CFO-anchored CNTs ternary composite system with enhanced EMI shielding and EMW absorption properties
Hou et al. Microwave absorption and mechanical properties of La (NO3) 3-doped multi-walled carbon nanotube/polyvinyl chloride composites
CN108774491B (zh) 一种三维石墨烯海绵/Fe2O3复合吸波材料及其制备方法
CN106975489A (zh) 一种氧化镍原位包覆石墨烯纳米复合材料的制备方法
CN107722932A (zh) 一种碳/聚苯胺吸波微球的制备方法
CN109936974A (zh) 一种三明治结构CoFe@C/石墨烯电磁波吸收材料的合成方法
Ameer et al. Ultra low permittivity/loss CoFe2O4 and CoFe2O4–rGO nanohybrids by novel 1-hexanol assisted solvothermal process
Yin et al. Structural engineering of porous biochar loaded with ferromagnetic/anti-ferromagnetic NiCo2O4/CoO for excellent electromagnetic dissipation with flexible and self-cleaning properties
CN107903394B (zh) 高聚物/石墨烯@磁性纳米粒子泡沫复合材料的合成方法
Lu et al. Improved electromagnetic wave absorbing performance of PDCs-SiCN (Ni) fibers with different nickel content

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant