CN106706481A - Electrode ablation particle distribution measurement method - Google Patents

Electrode ablation particle distribution measurement method Download PDF

Info

Publication number
CN106706481A
CN106706481A CN201710204381.9A CN201710204381A CN106706481A CN 106706481 A CN106706481 A CN 106706481A CN 201710204381 A CN201710204381 A CN 201710204381A CN 106706481 A CN106706481 A CN 106706481A
Authority
CN
China
Prior art keywords
particle
height
distribution
measured
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710204381.9A
Other languages
Chinese (zh)
Inventor
钟伟
刘云龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronic Engineering of CAEP
Original Assignee
Institute of Electronic Engineering of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronic Engineering of CAEP filed Critical Institute of Electronic Engineering of CAEP
Priority to CN201710204381.9A priority Critical patent/CN106706481A/en
Publication of CN106706481A publication Critical patent/CN106706481A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N2015/144Imaging characterised by its optical setup
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1486Counting the particles

Abstract

The invention discloses an electrode ablation particle distribution measurement method. The measurement method comprises extraction of height data in a to-be-measured surface image. The measurement method comprises the following steps: firstly determining a to-be-measured surface boundary, generating a particle statistical grid, computing the difference between the maximum height in the grid and the average height, comparing the difference with the standard height difference of the to-be-measured surface to judge whether particles exist in the grid, marking the particle height and the space information at the same time, and finally acquiring space position distribution and height size distribution results of electrode ablation particles. By use of the electrode ablation particle distribution measurement method disclosed by the invention, the quantized distribution measurement result of the electrode ablation particles can be realized, the acquired particle height size and space distribution information can be used for evaluating the influence of the particles to the surface state and performance, and the method is especially suitable for breakdown risk evaluation caused by electrode ablation of a gas spark switch.

Description

A kind of electrode erosion distribution of particles measuring method
Technical field
The invention belongs to image identification technical field, and in particular to a kind of electrode erosion distribution of particles measuring method.
Background technology
Gas spark switch is one of critical component of pulse power device, in nuclear fusion, particle accelerator, electrovacuum device The fields such as part have significant application value.In electrode surface meeting when gas spark switch works under the conditions of hyperbar, high current There is ablation phenomen more, and the sputter particles that ablation is produced are one of key factors of influence switch performance.Due to The sputter particles that electrode erosion is produced are gathered in electrode surface, and size is mostly in micron dimension, it is difficult to differentiated.At present, mostly Using the optical imaging analysis technology such as SEM, laser co-focusing, can only obtain to the qualitative microcosmic of sputter particles Description, and the quantity, size, spatial distribution to electrode surface particle lack quantitative analysis means.
The content of the invention
The technical problems to be solved by the invention are to provide a kind of electrode erosion distribution of particles measuring method.
Electrode erosion distribution of particles measuring method of the invention, is characterized in, described measuring method is comprised the following steps:
A. electrode erosion particle image is obtained, and is named as surface image to be measured;
B. altitude information is extracted from surface image to be measured, the point beyond apparent height scope is marked, determine table to be measured Face border;
C. according to the geometry of surface-boundary to be measured, particle statistic grid is generated, number of meshes is N;
D. the mean height of surface hm of particle statistic grid cell is calculated1、hm2……hmNWith surface maximum height hmax1、 hmax2……hmaxN
E. the difference in height Δ h of particle statistic grid cell is calculated1=hmax1-hm1、Δh2=hmax2-hm2……ΔhN=hmaxN- hmN, Δ h is calculated respectively1、Δh2……ΔhNWith surface standard difference in height h to be measuredrefDifference, if difference be more than 0, exist Particle;
F. the particle statistic grid cell that there is particle is analyzed, obtains locus distribution and the height of electrode erosion particle Degree Size Distribution result.
Particle statistic grid in described step c is polar grid.
Electrode erosion distribution of particles measuring method general principle of the present invention is:It is high in electrode erosion particle image by extracting Degrees of data, in Surface Creation particle statistic grid to be measured, by the mean height of surface and table that calculate particle statistic grid cell Face maximum height, and its difference in height is compared with surface standard difference in height to be measured, if difference is more than 0, in grid cell There is particle.
Electrode erosion distribution of particles measuring method of the invention can be obtained by calculating whole surface height data to be measured Electrode erosion particle space position distribution and height dimension distribution results, can provide quantization for gas spark switch optimization design Analyze data, with important engineering application value.
Brief description of the drawings
Fig. 1 is the exterior view to be measured after the electric discharge that obtains of electrode erosion distribution of particles measuring method of the invention 1000 times Picture;
Fig. 2 is the surface image to be measured not discharged that electrode erosion distribution of particles measuring method of the invention is obtained;
Fig. 3 is the locus distribution of the surface electrode ablation particle to be measured that embodiment 1 is obtained.
Specific embodiment
Describe the present invention in detail with reference to the accompanying drawings and examples.
Electrode erosion distribution of particles measuring method of the invention is comprised the following steps:
A. electrode erosion particle image is obtained, and is named as surface image to be measured;
B. altitude information is extracted from surface image to be measured, the point beyond apparent height scope is marked, determine table to be measured Face border;
C. according to the geometry of surface-boundary to be measured, particle statistic grid is generated, number of meshes is N;
D. the mean height of surface hm of particle statistic grid cell is calculated1、hm2……hmNWith surface maximum height hmax1、 hmax2……hmaxN
E. the difference in height Δ h of particle statistic grid cell is calculated1=hmax1-hm1、Δh2=hmax2-hm2……ΔhN=hmaxN- hmN, Δ h is calculated respectively1、Δh2……ΔhNWith surface standard difference in height h to be measuredrefDifference, if difference be more than 0, exist Particle;
F. the particle statistic grid cell that there is particle is analyzed, obtains locus distribution and the height of electrode erosion particle Degree Size Distribution result.
Particle statistic grid in described step c is polar grid.
Embodiment 1
The concrete operation step of the present embodiment is as follows:
Obtain the surface image to be measured after electric discharge 1000 times, extract its surface height data, and to surface range to be measured beyond It is highly NaN (not-a-number) to zone marker, to determine the border on surface to be measured;Specifically border determination process is: The all pixels point of traversing graph picture, obtains non-NaN(Annular region)In point boundary coordinate x1, x2, x3, the x4 in transverse and longitudinal direction and Y1, y2, y3, y4, as shown in Figure 1.Calculate the surface center of circle to be measured transverse and longitudinal coordinate respectively x0=(x1+x2+x3+x4)/4 and y0= (y1+y2+y3+y4)/4, interior outer radius is respectively rin=(y3-y2+x3-x2)/4 and rout=(y4-y1+x4-x1)/4.
According toWithSurface cartesian coordinate to be measured is converted into polar coordinates, wherein.Centered on the surface center of circle to be measured, circumference and radial direction step-length respectively d θ=π/180, dr=10 are taken μm, wherein radial direction step-length determines according to maximum particle size on surface to be measured, sets up annular particles statistics polar grid;
Calculate particle statistic grid cell mean height of surface hm1, hm2 ... hmN and surface maximum height hmax1, hmax2……hmaxN;
Calculate difference in height Δ h1=hmax1-hm1, Δ h2=hmax2-hm2 ... the Δs hN=hmaxN- of particle statistic grid cell HmN, calculates Δ h1, the difference of Δ h2 ... Δs hN and surface standard difference in height href to be measured respectively, if difference is more than 0, deposits In particle.Surface standard difference in height href wherein to be measured is typically taken as the surface roughness to be measured do not discharged, as shown in Figure 2.
Particle statistic grid cell to there is particle is analyzed, obtain electrode erosion particle locus distribution and Height dimension distribution results are as shown in table 1 and Fig. 3.
In the present embodiment, extract electric discharge 1000 times after surface image to be measured altitude information, according to surface-boundary to be measured Geometry generation particle statistic grid, to judging with the presence or absence of particle in particle statistic grid cell, obtain it is to be measured The locus distribution of surface electrode ablation particle and height dimension distribution results, are consistent with being recognized, so as to demonstrate this Invent a kind of correctness of the electrode erosion distribution of particles measuring method for proposing.
The present invention is not limited to above-mentioned specific embodiment, person of ordinary skill in the field from above-mentioned design, Without performing creative labour, done a variety of conversion are within the scope of the present invention.
Table 1

Claims (2)

1. a kind of electrode erosion distribution of particles measuring method, it is characterised in that:Described measuring method is comprised the following steps:
A. electrode erosion particle image is obtained, and is named as surface image to be measured;
B. altitude information is extracted from surface image to be measured, the point beyond apparent height scope is marked, determine table to be measured Face border;
C. according to the geometry of surface-boundary to be measured, particle statistic grid is generated, number of meshes is N;
D. the mean height of surface hm of particle statistic grid cell is calculated1、hm2……hmNWith surface maximum height hmax1、 hmax2……hmaxN
E. the difference in height Δ h of particle statistic grid cell is calculated1=hmax1-hm1、Δh2=hmax2-hm2……ΔhN=hmaxN- hmN, Δ h is calculated respectively1、Δh2……ΔhNWith surface standard difference in height h to be measuredrefDifference, if difference be more than 0, exist Particle;
F. the particle statistic grid cell that there is particle is analyzed, obtains locus distribution and the height of electrode erosion particle Degree Size Distribution result.
2. electrode erosion distribution of particles measuring method according to claim 1, it is characterised in that:In described step c Particle statistic grid is polar grid.
CN201710204381.9A 2017-03-31 2017-03-31 Electrode ablation particle distribution measurement method Pending CN106706481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710204381.9A CN106706481A (en) 2017-03-31 2017-03-31 Electrode ablation particle distribution measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710204381.9A CN106706481A (en) 2017-03-31 2017-03-31 Electrode ablation particle distribution measurement method

Publications (1)

Publication Number Publication Date
CN106706481A true CN106706481A (en) 2017-05-24

Family

ID=58887365

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710204381.9A Pending CN106706481A (en) 2017-03-31 2017-03-31 Electrode ablation particle distribution measurement method

Country Status (1)

Country Link
CN (1) CN106706481A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110021965A1 (en) * 2007-11-19 2011-01-27 Massachusetts Institute Of Technology Adhesive articles
CN103076265A (en) * 2013-01-11 2013-05-01 战仁军 Measuring device for particle distribution and particle diameter
EP2795288A1 (en) * 2011-12-19 2014-10-29 Taurus Instruments GmbH Method for determining a particle property and for classifying a particle charge, and device for carrying out said method
CN105300851A (en) * 2015-11-11 2016-02-03 中国农业大学 Method for detecting spraying droplet three-dimensional distribution based on laser technology
CN106204705A (en) * 2016-07-05 2016-12-07 长安大学 A kind of 3D point cloud segmentation method based on multi-line laser radar

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110021965A1 (en) * 2007-11-19 2011-01-27 Massachusetts Institute Of Technology Adhesive articles
EP2795288A1 (en) * 2011-12-19 2014-10-29 Taurus Instruments GmbH Method for determining a particle property and for classifying a particle charge, and device for carrying out said method
CN103076265A (en) * 2013-01-11 2013-05-01 战仁军 Measuring device for particle distribution and particle diameter
CN105300851A (en) * 2015-11-11 2016-02-03 中国农业大学 Method for detecting spraying droplet three-dimensional distribution based on laser technology
CN106204705A (en) * 2016-07-05 2016-12-07 长安大学 A kind of 3D point cloud segmentation method based on multi-line laser radar

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
谢昌明等: "高压气体开关放电电极的显微结构表征", 《高压电器》 *
陈小岗等: "三维表面微观形貌的等高图绘制及粗糙度3-D评定参数计算方法研究", 《中国科技信息》 *

Similar Documents

Publication Publication Date Title
JP3834495B2 (en) Fine pattern inspection apparatus, CD-SEM apparatus management apparatus, fine pattern inspection method, CD-SEM apparatus management method, program, and computer-readable recording medium
US9449790B2 (en) Pattern shape evaluation method, semiconductor device manufacturing method, and pattern shape evaluation device
CN103868929A (en) Three-dimensional detection method for defects of sealing surface
US10060726B2 (en) Parallel image measurement method oriented to the insulating layer thickness of a radial symmetrical cable section
CN110441305B (en) Surface coverage rate inspection method for secondary shot blasting
CN104237267A (en) Electron microscope identification method for residual oil in light reservoir nanopores and device for executing method
Zhou et al. Chisel edge wear measurement of high-speed steel twist drills based on machine vision
US20150213172A1 (en) Method for measuring and analyzing surface structure of chip or wafer
CN111723821A (en) Detection and identification method and device for power plant instrument image
JP5292132B2 (en) Image forming apparatus
CN105486240B (en) A kind of pipeline outer wall erosion profile quantitative detecting method
KR20160082530A (en) Pattern measurement device and computer program
CN106706481A (en) Electrode ablation particle distribution measurement method
JP2014203665A (en) Method and device for quantification of electrode material
WO2021048104A1 (en) Wafer inspection methods and systems
CN108414159A (en) A kind of method and device positioning HDPE film leak location using stress wave
JP2011186044A (en) Method and apparatus for measuring fine pattern
CN105528801A (en) Generation method of switch equipment mechanical stroke curve enveloping line
CN111210419B (en) Micro magnetic shoe surface defect detection method based on human visual characteristics
US9316492B2 (en) Reducing the impact of charged particle beams in critical dimension analysis
CN104050336A (en) Method for judging restrained condition of three-dimensional geometrical elements based on track intersection
Shang et al. The research on identification of wool or cashmere fibre based on the digital image
CN103201819B (en) Pattern determination device and concavo-convex decision method
CN104897706A (en) Measurement method of chip or wafer surface structure
CN112215823A (en) Point cloud-based police buoy plane position measuring method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170524