CN102570892B - 脉宽调制控制方法和减轻过调制区域中反射波效应的系统 - Google Patents

脉宽调制控制方法和减轻过调制区域中反射波效应的系统 Download PDF

Info

Publication number
CN102570892B
CN102570892B CN201110394015.7A CN201110394015A CN102570892B CN 102570892 B CN102570892 B CN 102570892B CN 201110394015 A CN201110394015 A CN 201110394015A CN 102570892 B CN102570892 B CN 102570892B
Authority
CN
China
Prior art keywords
value
band
carrier wave
phase
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110394015.7A
Other languages
English (en)
Other versions
CN102570892A (zh
Inventor
兰加拉詹·M·塔拉姆
大卫·莱盖特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rockwell Automation Technologies Inc
Original Assignee
Rockwell Automation Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockwell Automation Technologies Inc filed Critical Rockwell Automation Technologies Inc
Publication of CN102570892A publication Critical patent/CN102570892A/zh
Application granted granted Critical
Publication of CN102570892B publication Critical patent/CN102570892B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明提供了脉宽调制控制方法和减轻过调制区域中反射波效应的系统。提供了用于操作多相逆变器以驱动负载同时减轻反射波的电力转换系统和方法,其中如果相信号或值的至少一个正在转变入或转变出脉冲宽度调制载波波形范围以外的过调制范围,则选择性地调整一个或者更多个PWM调制信号。

Description

脉宽调制控制方法和减轻过调制区域中反射波效应的系统
技术领域
本公开涉及逆变器脉冲宽度调制技术,其中如果一个或者更多个相信号或值转变入或转变出脉冲宽度调制载波波形的范围以外的过调制范围,则选择性地调整PWM调制信号以减轻反射波。
背景技术
电动机驱动器和其他形式的电力转换系统将电力从一种形式转换为另一种形式,可以用在各种应用中,诸如为使用从单相或多相交流(AC)输入源转换的电力的电动机供电、转换来自风力发电机的AC电力以将电力供应给输电线路等。电力转换器可以包括针对不同类型的转换应用的多级,转换应用诸如用于具有脉冲宽度调制(PWM)的有源电流源整流器的电动机的AC/DC(直流)/AC驱动器,其中选择性地开关AC输入电力以产生DC输出总线电压,通过PWM受控逆变器级从DC输出总线电压来驱动负载。这种类型的转换器在具有变化的电动机负载的情况下驱动需要可变速度控制的工业应用中的电动机时尤其有用。逆变器通常针对每个输出相采用一对高/低驱动器,用于选择性地将输出线与上或下DC总线中的一条耦合,其中通常使用诸如可控硅整流器(SCR)、门极可关断晶闸管(GTO)、门极换流晶闸管(GCT,诸如集成门极换流晶闸管(IGCT)或对称门极换流晶闸管(SGCT))等的基于半导体的开关实施相对高频的逆变器开关。
很多用于电动机驱动应用的脉冲宽度调制方案采用逆变器中的最小暂停和极性反转时间来将电动机峰值电压限制达到主导(lead)长度的某一期望值,其中暂停时间描述任何开关保持在开或关状态的最小时间,极性反转时间是当从正极性向负极性转变时输出线线间电压保持在0的最小时间,反之亦然。已经开发了各种脉宽调制方案来解决电动机驱动转换器中的过载电动机电压、反射波效应和共模电压问题。
2006年4月25日公布的授予Thunes等的并转让给本申请的受让人的美国专利第7,034,501号描述了以低速度空间调制信号以防止电流调节驱动器中通过反射波的过电压,其中通过电流调节器补偿伏秒失真。该专利的整体内容通过引用合并于此,如同在本文中完全阐述一样。
2007年1月16日公布的授予Kerkman等的也转让给本申请的受让人的美国专利第7,164,254号公开了共模电压减小技术,其中修改开关序列以避免使用零向量从而减小电动机中的共模电压。该专利的整体内容通过引用合并于此,如同在本文中完全阐述一样。
2006年9月12日公布的授予Yin等的并转让给本申请的受让人的美国专利第7,106,025号公开了用于消除算法中的死区效应以减小整流器/逆变器可变频率驱动器(VFD)中的三相电力转换装置产生的共模电压的技术,该专利的整体内容通过引用合并于此,如同在本文中完全阐述一样。
2007年4月25日公布的授予Thunes等的并转让给本申请的受让人的美国专利第7,034,501号公开了用于减轻AC电动机驱动器中的反射波的选通脉冲时间间隔调整技术,该专利的整体内容通过引用合并于此,如同在本文中完全阐述一样。
2009年2月27日提交的序号为12/394,613和2009年4月24日提交的序号为12/429,309的、两者均转让给本申请的受让人的共同未决的美国专利申请公开了使用仅具有活动(active)向量的开关序列控制AC电动机中的共模电压,但是这会增大输出电流失真,尤其是在低速度时,该方法可能无法在所有的PWM波形发生器中容易地实施。
2004年11月16日公布的授予Kerkman等的并转让给本申请的受让人的第6,819,070号美国专利公开了控制AC电动机驱动器中的反射电压的逆变器开关控制技术,该专利的整体内容通过引用合并于此,如同在本文中完全阐述一样。该专利描述了调整选通脉冲以最小化由于反射波现象引起的峰值电动机过电压的方法。这些技术包括通过针对每个相独立地限制占空因数的最小和最大值来执行最小暂停时间并防止施加到电动机的线线间电压的极性反转。当不处于脉冲下降时,独立限制相的最大和最小占空因数以PWM开关模式执行了暂停时间和极性反转时间,从而在不处于脉冲下降时限制峰值电动机过电压。然而,当PWM方案的调制波形超过载波波形的最大值或当调制波形在最小载波波形值以下时,在向过调制状况的转变期间可能减小暂停时间,导致在电动机端子处的高电压。另外,在向过调制的转变期间可能减小极性反转时间,也引起高电动机端子电压。而且,在两个相上向或从过调制的同时转变可以导致极性反转,即使对于短线缆长度也潜在地在电动机端子处生成很高的电压(例如,高达大约4倍的DC总线水平)。因此,需要改进的逆变器脉冲宽度调制技术和系统来避免或减轻过调制情况中的这些问题。
发明内容
现在概述本公开的各个方面以方便对本公开的基本理解,其中该概述不是本公开的广泛总结,并且既不意在识别本公开的某些元件,也不意在描述其范围。确切地,该概述的主要目的是在下文中呈现的更详细的描述之前以简化形式呈现本公开的一些概念。本公开涉及逆变器脉冲宽度调制技术,其中如果一个或者更多个相信号或值转变入或转变出脉冲宽度调制载波波形的范围以外的过调制范围,则选择性地调整PWM调制信号以减轻反射波。
提供了一种电力转换系统,所述电力转换系统包括:逆变器,向负载提供多相AC输出电力;以及开关控制系统,向逆变器的开关装置提供脉冲宽度调制开关控制信号。开关控制系统包括脉冲宽度调制系统,所述脉冲宽度调制系统基于载波波形和单独对应于负载相的一组相信号或值提供控制信号。载波波形具有从最大值到最小值延伸的载波波形范围,载波范围包括与载波最大值和载波最小值隔开的并且在载波最大值和载波最小值之间的第一带和第二带。开关控制系统还包括过调制补偿部件,如果在当前采样循环周期(cycle)内相信号或值的至少一个正在转变入或转变出载波波形范围以外的过调制范围,则所述过调制补偿部件选择性地调整一个或者更多个相信号或值以提供一组过调制补偿相信号或值。脉冲宽度调制系统使用该补偿相信号或值来提供逆变器开关控制信号。如果给定相信号或值在载波最大值和第一带之间转变,则过调制补偿部件将该信号或值调整至下第一带值,并且如果该相信号或值在载波最小值和第二带之间转变,则补偿部件将该信号或值调整至上第二带值。
在某些实施例中,第一带具有上第一带值,所述上第一带值由偏移量ε与载波最大值隔开并在载波最大值以下偏移量ε,其中第一带范围等于偏移量,其中第二带具有下第二带值,所述下第二带值由偏移量与载波最小值隔开并在载波最小值以上偏移量,其中第二带范围等于偏移量。
在某些实施例中,如果第一相信号或值在第一范围内并且第二相信号或值向载波最大值转变,则过调制补偿部件被操作为将第二相信号或值调整至下第一带值;如果第一相信号或值在第一范围内并且第二相信号或值从载波最大值转变,则补偿部件将第二相信号或值调整为保持在载波最大值处。另外,如果第一相信号或值在第二范围内并且第二相信号或值向载波最小值转变,则补偿部件将第二相信号或值调整至上第二带值;如果第一相信号或值在第二范围内并且第二相信号或值从载波最小值转变,则补偿部件将第二相信号或值调整为保持在载波最小值处。
在某些实施例中,如果两个相信号或值正向或从载波最大值转变或者正向或从载波最小值转变,则过调制补偿部件被操作以将两个相信号或值中的一个调整为保持在其先前水平。
此外,在某些实施例中,如果在前一脉冲宽度调制周期中调整了给定相信号或值,则过调制补偿部件在随后的脉冲宽度调制周期中对该信号或值进行补偿调整。
提供了一种用于操作脉冲宽度调制的逆变器以将DC电力转换为多相AC输出电力的方法。根据一个或者更多个设置点信号或值以及根据单独对应于负载相的电压或电流的反馈信号或值确定一组相信号或值。该方法还包括:如果在当前采样循环周期中相信号或值的至少一个正在转变入或转变出过调制范围,则在给定脉冲宽度调制周期内选择性地调整至少一个相信号或值以提供一组过调制补偿信号或值;以及根据载波波形和补偿相信号或值生成脉冲宽度调制的逆变器开关控制信号。
某些实施例中的载波波形范围包括第一带和第二带,所述第一带具有偏离载波最大值并在载波最大值以下的第一带范围和下第一带值,所述第二带具有偏离载波最小值并在载波最小值以上的第二带范围和上第二带值,其中第一带与第二带隔开并且第一带在第二带以上。
在某些实施例中,如果给定相信号或值在载波最大值和第一带之间转变,则相信号或值的选择性调整包括将给定相信号或值调整至下第一带值;如果信号或值在载波最小值和第二带之间转变,则将其调整至上第二带值。
在某些实施例中,如果第一相信号或值在第一范围内且第二相信号或值向载波最大值转变,则相信号或值的选择性调整包括将第二相信号或值调整至下第一带值;如果第一相信号或值在第一范围内且第二相信号或值从载波最大值转变,则将第二相信号或值调整为保持在载波最大值处。另外,如果第一相信号或值在第二范围内且第二相信号或值向载波最小值转变,则相信号或值的选择性调整包括将第二相信号或值调整至上第二带值;如果第一相信号或值在第二范围内且第二相信号或值从载波最小值转变,则将第二相信号或值调整为保持在载波最小值处。
在某些实施例中,如果两个相信号或值正向或从载波最大值转变或者正向或从载波最小值转变,则将二者之一调整为保持在其先前水平处。
此外,在某些实施例中,如果在一个脉冲宽度调制周期中调整给定相信号或值,则在随后的脉冲宽度调制周期中对该相信号或值进行补偿调整。
提供了一种非暂态计算机可读介质,所述非暂态计算机可读介质具有用于操作脉冲宽度调制的逆变器以将DC电力转换为多相AC输出电力的计算机可运行指令。计算机可读介质包括计算机可运行指令,所述计算机可运行指令用于基于至少一个设置点信号或值以及基于单独对应于与逆变器的AC输出端子相关联的负载相的电压或电流的反馈信号或值,确定单独对应于负载相的一组相信号或值。还提供了计算机可运行指令用于在当前采样循环周期中相信号或值的至少一个正转变入或转变出脉冲宽度调制载波波形范围以外的过调制范围时,在给定脉冲宽度调制周期中选择性地调整至少一个相信号或值以提供一组过调制补偿相信号或值。另外,介质包括用于根据载波波形和该组过调制补偿相信号或值通过脉冲宽度调制生成逆变器开关控制信号的计算机可运行指令。
附图说明
以下描述和附图详细阐述了本公开的某些说明性实施,其表示可以执行本公开的各种原理的几种示例性方式。但是,所示出的示例没有穷举本公开的众多可能的实施例。当与附图结合考虑时,以下详细描述中将阐述本公开的其他目的、优点和特征,在附图中:
图1A和1B是示出了根据本公开的一个或者更多个方面的具有通过补偿过调制状况的实施反射波减小的逆变器开关控制系统的示例性电压源转换器型可变频率电动机驱动器的示意图;
图1C是示出了图1A和1B的电动机驱动器的示例性逆变器开关控制系统的部分示意图,根据本公开实施具有过调制补偿的直接数字脉冲宽度调制;
图1D是示出了根据本公开的使用选择性地调整的调制信号用于反射波减小的具有载波发生器和比较器的实施基于载波的正弦-三角脉冲宽度调制的另一个示例性开关控制系统的示意图;
图1E是示出了用于图1A至图1D的开关控制系统中的过调制补偿设置的示例性规则的部分示意图;
图2A是示出了其中调制波形保持在载波波形的最大和最小值内的线性调制模式中的示例性单相脉冲宽度调制实施的波形图;
图2B是是示出了其中调制波形在最大载波波形幅度以上转变以及在载波最小值以下转变的脉冲宽度调制实施中的过调制状况的波形图;
图2C是示出了在线性调制期间单相的上和下开关的示例性开关操作的波形图;
图2D是示出了使用最大水平和最小水平调制具有选择性的暂停时间执行的三个示例性相的波形的脉冲宽度调制的波形图;
图2E是示出了其中使用最大水平和最小水平方法相从过调制状况的转变导致线线间电压脉冲短于期望的最小暂停时间的状况的脉冲宽度调制波形图;
图2F是示出了其中在第二相接近执行的最大的情况下相从过调制状况的转变导致快速的线线间电压相反转的另一种过调制状况的脉冲宽度调制波形图;
图2G是示出了两个相向和从过调制的同时转变导致快速的线到线极性反转的另一个示例性脉冲宽度调制波形图;
图3A和3B是示出了在图1A至图1E的系统中选择性的调整转变入或转变出过调制的相以防止暂停时间减少的脉冲宽度调制波形图;
图4是示出了在图1A至图1E的系统中用来减轻极性反转时间减少的选择性相调整的脉冲宽度调制波形图;
图5是示出了在图1A至图1E的系统中允许仅单个相转变入或转变出过调制的选择性相调整的脉冲宽度调制波形图;以及
图6是示出了根据本公开的一个或者更多个方面的操作脉冲宽度调制的逆变器的示例性方法的流程图。
具体实施方式
现在参照图,以下结合附图描述了若干实施例或实施方式,其中,贯穿全文相同的附图标记用来指代相同的元件,并且其中,各个特征不一定按照比例绘制。
首先参照图1A至1E,尽管所公开的概念可适用于任何形式的其中使用PWM激励的逆变器来提供多相输出电力的电力转换系统,但是以下在各种示例性的其中多相逆变器110b向电动机负载120提供AC输出电流和电压的电动机驱动系统100的背景下示出和描述了脉冲宽度调制技术。在电动机驱动器110和其他电力转换器中,重要的设计考虑是减小或避免电动机负载120处的过载电压。发明人认识到了在生成逆变器控制信号中脉冲宽度调制的某些方面可以影响过调制周期期间的开关脉冲定时,导致反射波和潜在的过载电动机电压。因此,如果在当前PWM循环周期中一个或更多个PWM调制波形信号或值(此处称为相信号或值)转变入或转变出过调制范围,则所描述的系统通过选择性地调整一个或更多个相信号或值来解决这些问题。在这点上,当至少一个相信号或值在脉冲宽度调制载波波形的范围以外、即在载波峰值以上或者在载波最小值(谷值)以下时发生过调制状况。如之前所提及的,通过引用合并于此的、授予Kerkman等的美国专利第6,819,070号公开了如下的逆变器开关控制技术:该技术通过独立地针对每个相调整选通脉冲以执行最小暂停时间来控制AC电动机驱动器中的反射电压,这可以解决线性调制状况期间(其中相值在PWM载波波形范围以内)的这些问题。然而,单独该技术无法防止在过调制情形下的上述困难。
所示出的电动机驱动110提供了具有用来在给定的PWM周期(TPWM)中选择性地调整一个或更多个相信号或值的过调制补偿部件的逆变器开关控制,以在当前采样循环周期中一个或更多个相信号或值转变入或转变出脉冲宽度调制载波波形范围以外的过调制范围时提供一组过调制补偿相信号或值。示例性实施例示出了在使用同步采样的实施方式中的这些概念,其中电动机电压被感测并反馈到控制器,控制器算法在载波信号的峰值和/或谷值之一或者两者处相应地更新相信号或值,从而在每个这样的采样更新处,当前值将通常是相对于在之前的PWM循环周期中使用的相应值的步进改变。此外,在实践中,PWM调制波形可以是电的、光的或其他的信号、例如具有模拟形式,并且/或者这些可以是代表理论上连续的相波形(诸如正弦曲线电动机电压或电流)的水平的值,并且PWM控制可以对于信号和/或值之一或两者进行操作。此外,所示出的技术可以结合任何形式的PWM开关信号生成设备来使用,诸如使用处理器运行的软件、处理器运行的固件、硬件、逻辑电路和/或其组合来执行载波波形值(或信号)与调制波形值的比较的直接数字脉冲宽度调制控制(例如图1C),以及具有板上载波发生器168a和比较器电路168b的基于载波的PWM系统(图1D)。此外,在系统中所示出和描述的使用三角载波波形202,可以使用其他载波波形形状。在这点上,使用示例性三角载波波形202作为所示出的示例中的载波波形,在某些实施例中具有约256或512μs的载波波形周期TPWM。示例性载波波形具有峰值或最大值(1)以及谷值或最小值(0)。
然而,如在图2A至2G中所见到的,在转变入或转变出过调制期间,暂停时间可以减少50%以及不期望的快速极性反转,任何一种可以导致电动机过电压,特别是对于低总线电压、高调制系数和高载波频率的状况。针对电力转换系统逆变器110b的多个输出相中给定的一个,图2A至2C描绘了典型的开关配置,其中上开关(例如图1A和1B的逆变器110b中的开关S7)可以选择性地将输出相线耦合到上(例如正的)DC总线端子,并且下开关(例如S10)可以选择性地将该相耦合到下DC总线端子。在PWM波形图中,三角波载波信号202具有周期TPWM和从载波最大值“1”延伸到载波最小值“0”的载波波形范围202R。可以使用其他比例向PWM调制和载波波形分配“值”,其中当调制波形204在载波202的范围202R之内时发生线性调制,并且当调制波形204在载波范围202R之外时发生过调制。在正常的线性调制操作期间(图2A),调制波形204保持在载波波形202的最大和最小值之内,而在图2B中看到过调制状况,其中相信号204转变到最大载波波形幅度(“1”)以上以及还转变到载波最小值(“0”)以下。如图2C中所见,对于线性调制中的相“U”,当相信号或值204(调制波形)在载波204以上时,上开关S7被接通(导通)而下开关S10断开(非导通)。相反地,当相信号204在载波202以下时,S7被断开而S10被开关为接通。
图2D示出了主要根据授予Kerkman等的美国专利第6,819,070号中描述的技术,对于三个示例性相U、V和W的线性调制模式的补偿,用于分别使用最大和最小水平“MAX”和“MIN”执行选择性的暂停时间。如所提及的,该方式将暂停时间和相反转时间限制到用于线性调制的可接受的水平(例如,如图1C和1D中所见的预设的暂停时间Tdwell)。在这点上,当不处于脉冲下降中时,通过该技术独立地限制相U、V和W的最大和最小占空因数,在PWM开关模式中执行了暂停时间和极性反转时间,当不处于脉冲下降中时,限制了峰值电动机过电压。
然而,参照图2E至2G,如图2E中所见,在实际相值向或从过调制状况转变期间,暂停时间可以减少至可接受的水平以下,导致了高的电动机电压。在图2E的情形中(缺少本公开的创新),相U从载波最大值“1”以上(即使控制器有效地将信号或值ΦU截断到“1”)转变到MAX以下,所得到的相U和W之间的线线间电压VUW经历持续时间约为所想要的暂停时间Tdwell的一半的低走(low-going)脉冲,除此之外以线性调制来执行。如图2E中的图右部中所见,当相U从MAX以下转变到上过调制状况时,发生同样情况。在向或从下过调制范围(“0”以下)转变中发现了类似问题。
此外,如图2F中所示,在向或从过调制转变期间可以减少极性反转时间,并且即使对于短的线缆长度,在两相上向或从过调制的同时转变也可以导致快速的极性反转(图2G),在电动机端子处潜在地生成非常高的电压(例如,高达约四倍的DC总线水平)。如图2F中所见,在相U从过调制转变到MAX以下的区域或者从MAX以下的区域转变到过调制同时另一相V恰好在MAX以下的情况下,相反转时间再次少于Tdwell(例如在一个示例中约为0.5Tdwell)。如图2G中所见,当两相U和V同时转变到过调制或者从过调制转变时,极性反转时间也不利地受到影响。
为了解决这些缺点,图1A至1E示出了利用过调制补偿部件用于在过调制转变期间的选择性调整相信号或值的示例性系统100及其电动机驱动电力转换系统110。图1A中示出了示例性电动机驱动配置100,其包括驱动电动机负载120的电压源转换器类型电动机驱动器110。尽管图1A示出了具有有源整流器110a的电压源转换器110,但是如图1B中所示,使用无源整流器110a的其他实施例也是可能的。图1A的系统100包括与向驱动器110提供输入电力的三相AC电压源111相耦合的输入端104,并且驱动器110转换输入电力以提供电动机电压来驱动具有与电感Lm相关联的相绕组的、耦合到转换器输出端114的电动机负载120。驱动110可以包括连接到AC电力源111的输入滤波器112。尽管这些示例示出为具有三相输入112,但是其他实施例可以提供单相AC输入或者可以包括适应于接收三个或更多输入相的多相输入端。图1A中的驱动器110在输出端子114处提供了可变频率、可变幅度的单相或多相AC输出电力来驱动具有所示出的示例中的三相绕组的AC电动机负载120。其他实施例中的输出端114可以具有任意数目的相,并且例如可以为电动机之外的负载(诸如风能系统中的电力输电线路)提供电力。电动机驱动器110可以包括输入电路112中的输入滤波器电容,以及输出滤波器电路中的输出滤波器电容(未示出)。
驱动器110包括从源111经由输入端112接收AC输入电力的整流器110a,以及具有连接在上下DC支路之间的电容C(单个或多个电容器)的中间DC电路150。整流器110a通过中间DC电路150与逆变器110b相耦合,并且在驱动器110中可以可选地包括一个或更多个隔离部件(例如未示出的变压器)。输出端114经由线U、V和W向电动机负载120提供AC电输出电力。
整流器110a是具有耦合在输入端112和DC电路150之间的开关装置S1-S6的有源开关型整流器,并且根据由开关控制系统140的整流器控制部件144a提供的多个整流器开关控制信号142a来操作。在操作中,AC输入电力由整流器开关S1-S6来开关,以创建中间电路150中的中间DC总线电压。示例性逆变器110b包括耦合在DC电路150和输出端114的相线U、V和W之间的开关装置S7-S12。逆变器开关S7-S12根据来自开关控制系统140的逆变器控制部件144b的相应开关控制信号142b来操作,以选择性地转换来自DC电路150的DC电力来提供用来驱动电动机负载120的AC输出电力。
整流器和逆变器开关装置S1-S12可以是以开环或闭环方式根据任何合适类型或形式的开关方案(诸如相控制、脉冲宽度调制等)来控制的任何合适的可控电开关类型(例如,SGCT、IGCT、GTO、晶闸管、IGBT等)。在某些实施例中,逆变器110b的开关装置S7-S12是包括不受限SGCT、IGBT或GTO的强制换流装置,并且整流器110a的开关装置S1-S6可以是诸如上述提到的强制换流装置以及诸如晶闸管的线换流装置。在这点上,可以使用晶闸管装置用于具有附加到装置触发电路的额外电路的强制换流装置形式的逆变器开关装置S7-S12,触发电路换流。
整流器110a和逆变器110b在开关控制系统140的控制下操作,开关控制系统140可以包括一个或更多个处理器和相关联的存储器以及I/O电路,I/O电路包括用于生成开关控制信号142以选择性地激励开关装置S1-S12的驱动电路,但也可以利用例如具有互联和信息共享以便于整流器110a和逆变器110b的配合操作的分立的开关控制系统。这些实施例中的开关控制系统140包括逆变器控制部件144b,逆变器控制部件144b提供逆变器开关控制信号142b,以使得逆变器110b根据一个或更多个设置点141(诸如想要的电动机速度、扭矩等)选择性地转换来自中间DC电路150的DC电压来向AC输出端114提供AC电力。开关控制系统140及其部件144可以实施为任何合适的硬件、处理器运行的软件、处理器运行的固件、可编程逻辑电路或其组合,可操作为由其根据一个或更多个想要的包络(profile)或设置点141(信号和/或数字值)以开环或闭环方式或其组合控制电动机120的任何合适的控制器或调节器。
此外,在操作中,控制器140的整流器控制部件144a提供整流器开关控制信号142a来使得整流器110a转换AC电输入电力以向DC电路150提供调节后的DC电压。为此,整流器控制器144a可以利用一个或更多个反馈信号或值118a,诸如来自整流器110a的、代表实际DC线路电压的测量DC电压值。来自整流器110a的DC电压向逆变器110b提供输入,其中示例性逆变器控制144b可以向整流器控制器144a提供想要的DC线路电压信号或值作为调节设置点。以这种方式,整流器110a提供逆变器110b所需要的DC电压,并且整流器控制器144a也可以实施诸如功率因数校正的其他控制功能,同时逆变器控制器144b根据一个或更多个设置点值或信号141执行驱动器110的必要的电动机控制操作。
驱动器110还包括反馈系统118,反馈系统118包括一个或更多个感测元件,感测元件被操作用来提供表示输入端112、整流器110a、中间DC电路150、逆变器110b和/或输出端114处的电状况的一个或更多个反馈信号和/或值118a。开关控制系统140可以被提供有一个或更多个设置点或想要的值141以及一个或更多个来自反馈系统118的反馈信号或值118a,通过反馈信号或值118a在正常的电动机驱动操作中实现一个或更多个闭环电动机驱动控制目标。用于控制功能的反馈信号或值可以基于来自反馈系统118的信号和/或值118a、测量的输入值(例如线电压、中性点电压、电流等)、以及可以是任何合适的形式(诸如电信号、数字数据等)并且可以从任何合适的源(诸如与系统100相关联的一个或更多个传感器、外部网络、开关、用户接口或者其他合适的源)接收的其他信息、数据等。反馈电路118从整流器110a、DC电路150和逆变器110b中的至少一个向控制器140提供反馈信号或值,并且可以通过适当的转速表或其他传感器提供测量的电动机速度值、和/或控制器140可以根据其确定电动机速度、扭矩、电流和/或电压等的感测值。在这点上,甚至对于没有直接电动机速度测量传感器的系统,也可以基于反馈信号或值118a通过控制器140经由合适的电动机模型内部生成无传感器电动机速度反馈值。
如图1C和1D中最佳地示出的,从开关控制系统140的逆变器控制部分144b向逆变器110b提供开关控制信号142b,这可以利用任何合适形式的脉冲宽度调制电路来使用以下描述的选择性相调整技术来减少或者减轻经由逆变器开关控制的反射波实施直接数字PWM(图1C)或基于载波的PWM(图1D)。图1C的实施例提供了包括直接数字脉冲宽度调制部件168的逆变器开关控制系统144b,以基于得自一个或更多个设置点141(例如速度、扭矩、角度等)和基于代表逆变器110b的输出(例如相电压、电流等)的反馈信号或值118a,经由驱动器电路170向逆变器110b提供脉冲宽度调制开关控制信号142b。图1D示出了具有基于载波(例如正弦三角)的脉冲宽度调制部件168的另一示例性逆变器控制144b,基于载波的脉冲宽度调制部件168具有载波发生器168a和比较器168b。
图1C和1D中的逆变器控制部件144b还包括过调制补偿部件164。在操作中,逆变器控制器144b接收可以是任何形式的、代表AC相输出(所示出的示例中的相U、V和W)的反馈信号或值118a。设置点输入141和反馈信号或值118a可以是任何合适的形式,诸如电信号、数字数据等,并且可以从任何合适的源接收,合适的源诸如传感器、外部网络、开关、驱动器110上设置的用户接口或其他合适的源。使用设置点信号或值141以及反馈信号或值118a,控制器144b确定单独对应于电动机负载相U、V、W的一组相信号或值ΦU、ΦV、ΦW。逆变器控制器144b可以分别包括预补偿和/或后补偿部件或系统162和/或166。一个或更多个补偿或调整操作可以通过预补偿部件162来执行以修改相信号或值ΦU、ΦV、ΦW,或者这些相信号或值ΦU、ΦV、ΦW可以直接提供给过调制补偿部件164。
过调制补偿部件164可以包括或者否则存取偏移值ε、暂停时间Tdwell以及规则组164a,并且这些偏移值ε、暂停时间Tdwell以及规则组164a中的任何一个都可以从外部源172(诸如计算机、网络、用户接口等)提供,其中图1E中示出了示例性规则组164a。补偿部件164接收相信号或值ΦU、ΦV、ΦW(无论是否有预补偿),并且如果相信号或值ΦU、ΦV、ΦW(无论是否有预补偿)中的至少一个正转变入或转变出过调制范围,则以给定的脉冲宽度调制周期TPWM选择性地调整相信号或值ΦU、ΦV、ΦW中的一个或更多个,以提供一组过调制补偿相信号或值ΦU’、ΦV’、ΦW’。如图1E中所见,示例性规则组164a提供了三个规则(规则1、规则2和规则3),并且所示出的补偿部件164可以实施这些规则164a中的一个、一些或全部。特别地,如以下结合图3A至6进一步描述的,部件164可以通过调整相值或信号Φ来操作,以防止在过调制范围之一和预定义的带302之间的转变(图1E的规则1),以防止在另一个相先前位于带302之一中时一个相转变入或转变出过调制(规则2),以及/或者防止两个相同时转变入或转变出过调制(规则3),其中规则1的执行便于控制暂停时间,规则2和规则3有助于减轻快速的极性反转。
过调制补偿相信号或值ΦU’、ΦV’、ΦW’可以从补偿部件164直接提供给PWM系统168,或者这些过调制补偿相信号或值ΦU’、ΦV’、ΦW’可以由后补偿部件166进一步修改。PWM系统168(按照图1C是直接数字的或者如图1D是基于载波的)根据载波波形202和过调制补偿相信号或值ΦU’、ΦV’、ΦW’的组,通过脉冲宽度调制来生成逆变器开关控制信号142b。在某些实施例中,预补偿部件162和/或后补偿部件166可以实施各种功能,诸如减少反射波、减少共模等。开关控制系统140及其部件144和164可以实施为任何合适的硬件、处理器运行的软件或固件、可编程逻辑电路或其组合,被操作为由其根据一个或更多个想要的包络或设置点141以开环或闭环方式控制电动机120的任何合适的控制器或调节器。
参照图3A至6,在某些实施例中,过调制补偿部件164进行操作,以大致根据图6中列出的处理600来为在操作逆变器110b中的过调制情形提供选择性的相信号或值调整,并且以下针对处理600进行了描述。图3A和3B示出了规则1的示例性应用,图4示出了规则2的应用,而图5描绘了与规则1和2相一致的规则3的操作。
如图3A至5中所见,载波波形范围202R包括与载波最大值“1”隔开并位于载波最大值“1”以下的上第一带302a,其中第一带302a从第一下带值延伸到第一上带值。此外,下第二带302b限定在载波范围202R内(在第一范围302a以下),其从与载波最小值“0”隔开并且位于载波最小值“0”以上的下第二带值延伸到上第二带值,其中第一带302a与第二带302b隔开并且位于第二带302b以上。带302可以但不必须是相等的范围,并且可以但不必须分别从载波最大值和最小值偏移相同的量。在某些实施例中,偏移量ε存储在过调制补偿部件164中(或者可以由过调制补偿部件164存取)(例如以上的图1C和1D中所见),这可以由用户设置或者否则得自外部源172。在一个实施方式中,偏移量ε基于载波波形202和想要的最小暂停时间来确定。在所示出的实施例中,第一带302a具有与载波最大值“1”隔开偏移量ε并且位于载波最大值“1”以下偏移量ε的上第一带值1-ε,以及下第一带值1-2ε,其中第一带范围302aR等于偏移量ε。此外,在这些实施例中,互补的第二带302b具有与载波最小值“0”隔开偏移量ε并且位于载波最小值“0”以上偏移量ε的下第二带值ε,以及上第二带值2ε,以使得第二带范围302bR也等于偏移量ε。
如图6中所见,处理600开始,其中过调制补偿部件164在610处通过在载波波形202的峰值(载波最大值“1”)和/或谷值(最小值“0”)中任一或两者处获得反馈信号或值118a(例如单独代表负载相U、V、W的相应电压或电流)来开始新的采样周期。在620处,过调制补偿部件164基于设置点141和反馈信号或值118a(例如线线间电动机相电压、电动机线电流等),确定当前相值Φ(例如所示出的三相示例中的ΦU、ΦV和ΦW)以形成基准向量171来代表电动机驱动输出的想要的状态。过调制补偿部件164在630处可选地针对单独的相值实施具有最小暂停时间性能的线性调制执行,例如如授予Kerkman等人的美国专利第6,819,070号中所描述的。
在640处,过调制补偿部件164基于与先前的相信号或值的比较,确定当前载波循环周期的更新的相信号或值ΦU、ΦV和/或ΦW中的任何相信号或值是否正在向或从过调制状况转变(例如,在该示例中,向或从大于或等于载波最大值“1”的值转变,或者向或从小于或等于载波最小值“0”的值转变)。如果不是(640处的否),则处理600返回用于如上所述的610处的下一采样更新。
如果相信号或值ΦU、ΦV和/或ΦW中的一个或更多个正在转变入或转变出过调制状况(图6中640处的是),则过调制补偿部件164在650处在当前PWM周期TPWM中选择性地调整至少一个相信号或值ΦU、ΦV、ΦW,以提供一组过调制补偿相信号或值ΦU’、ΦV’、ΦW’,并且在654处根据载波波形202和该组过调制补偿相信号或值ΦU’、ΦV’、ΦW’,通过脉冲宽度调制生成逆变器开关控制信号142b。在某些实施例中,如果在一个脉冲宽度调制周期TPWM中调整给定的相信号或值Φ,则过调制补偿部件164在655处在随后的脉冲宽度调制周期TPWM中对给定的相信号或值Φ进行补偿调整。此后,处理600返回用于610处的下一采样更新。
过调制补偿部件164在650处执行选择性相信号或值调整中可以实施规则164a(图1E)中的一个或更多个。如图3A和6中所见,如果给定的相信号或值(例如图3A中的相ΦU)从载波最大值“1”转变到第一带302a,则过调制补偿部件164被操作为通过在651A处将相信号或值ΦU’调整到下第一带值1-2ε来实施规则1A。如图3A的下部所示,该调整保证了所得到的线线间电压VU’W的低走脉冲具有tdwell的持续时间,而无法进行该调整将产生具有仅约为指定的最小暂停时间一半的脉冲宽度的电压UVW。图3B图示了相信号或值ΦU从第一带302a转变到过调制的另一示例,其中在651A处实施规则1A而非将ΦU’强制为第一下带值1-2ε。以该方式,执行规则1A便于减少反射波,并且对于过调制情形执行了暂停时间规范。对于相转变入或相转变出下过调制状况,如果给定的相信号或值ΦU在载波最小值“0”和第二带302b之间转变,则过调制补偿部件164在图6中651B处实施规则1B,以将给定的相信号或值ΦU’调整到上第二带值2ε。因而第一规则减轻了快速电动机电压脉冲,从而减少了电动机负载120经历由反射波引起的过载电压水平的可能性。此外,在某些实施例中,如果在一个脉冲宽度调制周期TPWM中调整给定的相信号或值Φ,则过调制补偿部件164通过在随后的脉冲宽度调制周期TPWM中对给定的相信号或值Φ进行补偿调整,在图6中655处在下一循环周期中(图3A和3B的右侧所示)进行补偿。
也参照图4,过调制补偿部件164也可以实施规则2A和/或2B来减轻极性反转时间的减少。在该情况下,如果第一相信号或值(例如图4中的ΦV)处于第一范围302a中并且第二相信号或值ΦU向或从载波最大值“1”转变,则适用规则2A。对于一种可能的情形,在第二信号或值转变到载波最大值的情况下,过调制补偿部件164在652A处将第二相信号或值ΦU’调整为下第一带值1-2ε。如图4的示例中所示,如果第一相信号或值ΦV处于第一范围302a中并且第二相信号或值ΦU从载波最大值“1”转变,则过调制补偿部件164调整第二相信号或值ΦU’保持在载波最大值“1”处,从而所得到的用于线线间电压VU’W的相反转时间超过tdwell。如以上规则1的执行中那样,如果在一个PWM周期TPWM中做出这样的调整,则在某些实施例中过调制补偿部件164在下一循环周期中在655处进行补偿,如图4的右侧中所见。过调制补偿部件164可以相似地按照规则2B在652B处对向或从下过调制范围的转变做出调整。例如,如果第一相信号或值处于第二范围302b中并且第二相信号或值转变到载波最小值“0”,则在652B处将第二相信号或值ΦU’调整到上第二带值2ε,并且如果第一相信号或值处于第二范围302b中且第二相信号或值从载波最小值“0”转变,则调整第二相信号或值调整保持在载波最小值“0”处。
还参照图5,在某些实施例中,当两个相信号或值(例如图5的示例中的ΦV和ΦU)同时向或从载波最大值“1”转变、或者同时向或从载波最小值“0”转变时,通过过调制补偿部件164按照规则3在653处做出选择性调整,也可以便于反转时间的执行。在该情况下,过调制补偿部件164选择性地将两个相信号或值(例如所图示的示例中的相ΦU’)调整为保持在其先前水平。此外,如图5的右边中所见,过调制补偿部件164可以在随后的脉冲宽度调制周期TPWM中对给定的相信号或值ΦU做出补偿调整。两个同时转变的相之间的选择可以基于任何合适的标准或者算法(诸如在某些实施例中的round-robin选择)做出。
根据本公开的其他方面,以上描述的技术可以实施为非暂态计算机可读介质,包括用于执行上述方法步骤的计算机可运行的指令,其中中间和最终值存储在存储器中,诸如位于示例性开关控制系统140中或者在电力转换系统110中的其他位置的、或者在与其可操作地耦合的存储器中的电子存储器。
以上示例仅仅是对本公开的各个方面的若干可能实施例的说明,其中在阅读和理解本说明书和附图后,本领域的技术人员将想到等同的替换和/或修改。特别是对于由上述部件(组件、装置、系统、电路等)执行的各种功能,除非另外指出,否则用来描述这样的部件的术语(包括对“装置”的引用)意在对应于执行所描述的部件的所指定的功能的(即,在功能上等同的)任何部件(诸如硬件、处理器运行的软件或其组合),即使在结构上不等同于执行本公开的图示的实施方式中所示出的功能的结构。此外,尽管本公开的特定特征可能仅针对若干实施方式中的一个进行了公开,但是按照可能想要的或者对于任何给定的或者特定的应用所有利的,这样的特征可以与其他实施方式的一个或更多个其他特征相结合。此外,就详细描述和/或权利要求书中使用的术语“包含”、“具有”或者其变形而言,这些术语意在以类似于术语“包括”的方式是开放性的。

Claims (10)

1.一种电力转换系统(110),包括:
直流电路(150),所述直流电路(150)包括第一直流电流路径和第二直流电流路径;
逆变器(110b),所述逆变器(110b)包括具有用于将交流电力提供给负载(120)的多个交流端子(114)的多相交流连接,以及开关网络,所述开关网络包括单独耦合在所述直流电流路径之一和所述交流端子(114)之一之间的多个开关装置(S7-S12),根据相应的逆变器开关控制信号(142b)单独对所述开关装置进行操作,以选择性地将所对应的直流电流路径与对应的交流端子(114)电耦合;以及
开关控制系统(140),包括
脉冲宽度调制系统(168),被操作用于至少部分地根据载波波形(202)和单独对应于与所述逆变器(110b)的所述交流端子之一相关联的负载相(U,V,W)的一组相信号或值(ΦU,ΦV,ΦW),通过脉冲宽度调制提供所述逆变器开关控制信号(142b),所述载波波形(202)具有载波周期(TPWM)以及从载波最大值(“1”)到载波最小值(“0”)延伸的载波波形范围(202R),所述载波波形范围(202R)包括第一带(302a)和第二带(302b),所述第一带(302a)具有偏离所述载波最大值(“1”)并在所述载波最大值(“1”)以下的第一带范围(302aR)和下第一带值(1-2ε),所述第二带(302b)具有偏离所述载波最小值(“0”)并在所述载波最小值(“0”)以上的第二带范围(302bR)和上第二带值(2ε),所述第一带(302a)与所述第二带(302b)隔开并且所述第一带(302a)在所述第二带(302b)以上,基于至少一个设置点信号或值(141)以及基于单独对应于所述负载相(U,V,W)的电压或电流的反馈信号或值(118a)确定所述相信号或值(ΦU,ΦV,ΦW),以及
过调制补偿部件(164),如果在当前采样循环周期中所述相信号或值(ΦU,ΦV,ΦW)的至少一个正在转变入或转变出所述载波波形范围(202R)以外的过调制范围,则所述过调制补偿部件(164)在给定脉冲宽度调制周期(TPWM)中被操作以选择性地调整至少一个相信号或值(ΦU,ΦV,ΦW)以便提供一组过调制补偿相信号或值(ΦU’,ΦV’,ΦW’),并且所述过调制补偿部件(164)被操作以将所述组的过调制补偿相信号或值(ΦU’,ΦV’,ΦW’)提供给所述脉冲宽度调制系统(168)以根据所述组的过调制补偿相信号或值(ΦU’,ΦV’,ΦW’)通过脉冲宽度调制提供所述逆变器开关控制信号(142b),如果给定相信号或值(ΦU)在所述载波最大值(“1”)和所述第一带(302a)之间转变,则所述过调制补偿部件(164)被操作(规则1A)以将所述给定相信号或值(ΦU)调整至所述下第一带值(1-2ε),并且如果所述给定相信号或值(ΦU)在所述载波最小值(“0”)和所述第二带(302b)之间转变,则所述过调制补偿部件(164)被操作(规则1B)以将所述给定相信号或值(ΦU)调整至所述上第二带值(2ε)。
2.根据权利要求1所述的电力转换系统(110):
其中如果第一相信号或值(ΦV)在所述第一带(302a)内并且第二相信号或值(ΦU)向所述载波最大值(“1”)转变,则所述过调制补偿部件(164)被操作(规则2A)为将所述第二相信号或值(ΦU)调整至所述下第一带值(1-2ε);
其中如果所述第一相信号或值(ΦV)在所述第一带(302a)内并且所述第二相信号或值(ΦU)从所述载波最大值(“1”)转变,则所述过调制补偿部件(164)被操作(规则2A)为将所述第二相信号或值(ΦU)调整为保持在所述载波最大值(“1”)处;
其中如果所述第一相信号或值(ΦV)在所述第二带(302b)内并且所述第二相信号或值(ΦU)向所述载波最小值(“0”)转变,则所述过调制补偿部件(164)被操作(规则2B)为将所述第二相信号或值(ΦU)调整至所述上第二带值(2ε);以及
其中如果所述第一相信号或值(ΦV)在所述第二带(302b)内并且所述第二相信号或值(ΦU)从所述载波最小值(“0”)转变,则所述过调制补偿部件(164)被操作(规则2B)为将所述第二相信号或值(ΦU)调整为保持在所述载波最小值(“0”)处。
3.根据权利要求2所述的电力转换系统(110),其中如果两个相信号或值(ΦV,ΦU)正向或从所述载波最大值(“1”)转变或者正向或从所述载波最小值(“0”)转变,则所述过调制补偿部件(164)被操作(规则3)以将所述两个相信号或值(ΦV,ΦU)中的一个调整为保持在其先前水平。
4.根据权利要求1所述的电力转换系统(110),其中如果在一个脉冲宽度调制周期(TPWM)中调整给定相信号或值(ΦU),则所述过调制补偿部件(164)被操作以在随后的脉冲宽度调制周期(TPWM)中对所述给定相信号或值(ΦU)进行补偿调整。
5.根据权利要求1所述的电力转换系统(110),其中所述第一带(302a)具有上第一带值(1-ε),所述上第一带值(1-ε)按偏移量(ε)与所述载波最大值(“1”)隔开并在所述载波最大值(“1”)以下偏移所述偏移量(ε),其中所述第一带范围(302aR)等于所述偏移量(ε),其中所述第二带(302b)具有下第二带值(ε),所述下第二带值(ε)按所述偏移量(ε)与所述载波最小值(“0”)隔开并在所述载波最小值(“0”)以上偏移所述偏移量(ε),其中所述第二带范围(302bR)等于所述偏移量(ε)。
6.根据权利要求1所述的电力转换系统(110),其中如果两个相信号或值(ΦV,ΦU)正向或从所述载波最大值(“1”)转变或者正向或从所述载波最小值(“0”)转变,则所述过调制补偿部件(164)被操作(规则3)以将所述两个相信号或值(ΦV,ΦU)中的一个调整为保持在其先前水平。
7.一种操作脉冲宽度调制的逆变器(110b)以将直流电力转换为多相交流输出电力的方法(600),所述方法(600)包括:
基于至少一个设置点信号或值(141)以及基于单独对应于与所述逆变器(110b)的交流输出端子相关联的负载相(U,V,W)的电压或电流的反馈信号或值(118a),确定单独对应于所述负载相(U,V,W)的一组相信号或值(ΦU,ΦV,ΦW)(620);以及
如果在当前采样循环周期中所述相信号或值(ΦU,ΦV,ΦW)的至少一个正在转变入或转变出脉冲宽度调制载波波形范围(202R)以外的过调制范围,则在给定脉冲宽度调制周期(TPWM)中选择性地调整至少一个相信号或值(ΦU,ΦV,ΦW)以提供一组过调制补偿相信号或值(ΦU’,ΦV’,ΦW’)(650);
根据载波波形(202)和所述组的过调制补偿相信号或值(ΦU’,ΦV’,ΦW’)通过脉冲宽度调制生成逆变器开关控制信号(142b)(654),所述载波波形(202)具有载波周期(TPWM)以及从载波最大值(“1”)到载波最小值(“0”)延伸的载波波形范围(202R)。
8.根据权利要求7所述的方法(600):
其中,所述载波波形范围(202R)包括第一带(302a)和第二带(302b),所述第一带(302a)具有偏离所述载波最大值(“1”)并在所述载波最大值(“1”)以下的第一带范围(302aR)和下第一带值(1-2ε),所述第二带(302b)具有偏离所述载波最小值(“0”)并在所述载波最小值(“0”)以上的第二带范围(302bR)和上第二带值(2ε),所述第一带(302a)与所述第二带(302b)隔开并且所述第一带(302a)在所述第二带(302b)以上,
其中选择性地调整至少一个相信号或值(ΦU,ΦV,ΦW)包括:
如果给定相信号或值(ΦU)在所述载波最大值(“1”)和所述第一带(302a)之间转变,则将所述给定相信号或值(ΦU)调整至所述下第一带值(1-2ε)(651A);以及
如果所述给定相信号或值(ΦU)在所述载波最小值(“0”)和所述第二带(302b)之间转变,则将所述给定相信号或值(ΦU)调整至所述上第二带值(2ε)(651B)。
9.根据权利要求7所述的方法(600):
其中,所述载波波形范围(202R)包括第一带(302a)和第二带(302b),所述第一带(302a)具有偏离所述载波最大值(“1”)并在所述载波最大值(“1”)以下的第一带范围(302aR)和下第一带值(1-2ε),所述第二带(302b)具有偏离所述载波最小值(“0”)并在所述载波最小值(“0”)以上的第二带范围(302bR)和上第二带值(2ε),所述第一带(302a)与所述第二带(302b)隔开并且所述第一带(302a)在所述第二带(302b)以上,
其中选择性地调整至少一个相信号或值(ΦU,ΦV,ΦW)(650)包括:
如果第一相信号或值(ΦV)在所述第一带(302a)内并且第二相信号或值(ΦU)向所述载波最大值(“1”)转变,则将所述第二相信号或值(ΦU)调整至所述下第一带值(1-2ε)(652A);
如果所述第一相信号或值(ΦV)在所述第一带(302a)内并且所述第二相信号或值(ΦU)从所述载波最大值(“1”)转变,则将所述第二相信号或值(ΦU)调整为保持在所述载波最大值(“1”)处(652A);
如果所述第一相信号或值(ΦV)在所述第二带(302b)内并且所述第二相信号或值(ΦU)向所述载波最小值(“0”)转变,则将所述第二相信号或值(ΦU)调整至所述上第二带值(2ε)(652B);以及
如果所述第一相信号或值(ΦV)在所述第二带(302b)内并且所述第二相信号或值(ΦU)从所述载波最小值(“0”)转变,则将所述第二相信号或值(ΦU)调整为保持在所述载波最小值(“0”)处(652B)。
10.根据权利要求7所述的方法(600):其中选择性地调整至少一个相信号或值(ΦU,ΦV,ΦW)(650)包括:如果两个相信号或值(ΦV,ΦU)正向或从所述载波最大值(“1”)转变或者正向或从所述载波最小值(“0”)转变,则将所述两个相信号或值(ΦV,ΦU)中的一个调整为保持在其先前水平。
CN201110394015.7A 2010-12-01 2011-12-01 脉宽调制控制方法和减轻过调制区域中反射波效应的系统 Active CN102570892B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/957,672 US8488345B2 (en) 2010-12-01 2010-12-01 Pulse width modulation control method and system for mitigating reflected wave effects in over-modulation region
US12/957,672 2010-12-01

Publications (2)

Publication Number Publication Date
CN102570892A CN102570892A (zh) 2012-07-11
CN102570892B true CN102570892B (zh) 2016-05-18

Family

ID=45315547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110394015.7A Active CN102570892B (zh) 2010-12-01 2011-12-01 脉宽调制控制方法和减轻过调制区域中反射波效应的系统

Country Status (3)

Country Link
US (1) US8488345B2 (zh)
EP (1) EP2475088B1 (zh)
CN (1) CN102570892B (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8385091B2 (en) * 2009-08-20 2013-02-26 Electric IT Corporation 3-phase high-power UPS
EP2621071A4 (en) * 2010-09-22 2017-05-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
US8503207B2 (en) * 2010-09-29 2013-08-06 Rockwell Automation Technologies, Inc. Discontinuous pulse width drive modulation method and apparatus for reduction of common-mode voltage in power conversion systems
US20130018490A1 (en) * 2011-07-11 2013-01-17 General Electric Company Web-Based Operator Control Interface to Generator Control Systems
JP2014176170A (ja) * 2013-03-07 2014-09-22 Toshiba Corp 受電装置および充電システム
US9054586B2 (en) 2013-03-15 2015-06-09 Rockwell Automation Technologies, Inc. Methods and apparatus for continuous and discontinuous active rectifier boost operation to increase power converter rating
US8873261B1 (en) * 2013-05-09 2014-10-28 Drs Power & Control Technologies, Inc. Current source rectifier modulation in discontinuous modes of operation
US9236828B1 (en) 2014-07-03 2016-01-12 Rockwell Automation Technologies, Inc. Methods and power conversion system control apparatus to control IGBT junction temperature at low speed
US9318976B1 (en) 2014-10-30 2016-04-19 Rockwell Automation Technologies, Inc. Adjustable PWM method to increase low speed starting torque and inverter voltage measurement accuracy
EP3196714B2 (de) * 2016-01-19 2023-08-23 dSPACE GmbH Simulationsverfahren und simulationsvorrichtung
DE102016215174A1 (de) * 2016-08-15 2018-02-15 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Verfahren zum Betrieben einer elektrischen Maschine und elektrische Maschine
JP6765985B2 (ja) * 2017-02-16 2020-10-07 日立オートモティブシステムズ株式会社 インバータ装置および電動車両
DE102017223156A1 (de) * 2017-12-19 2019-06-19 Robert Bosch Gmbh Mess-PWM ohne Verfälschung der Phasenspannung
CN108429476B (zh) * 2018-03-28 2020-03-24 阳光电源股份有限公司 一种级联h桥逆变器的控制方法及控制器
US10158299B1 (en) * 2018-04-18 2018-12-18 Rockwell Automation Technologies, Inc. Common voltage reduction for active front end drives
DE102018121888A1 (de) * 2018-09-07 2020-03-12 Danfoss Power Electronics A/S Verfahren zum Einstellen eines Wechselrichters, der über einen du/dt-Filter mit einem Elektromotor verbunden ist
US10784797B1 (en) 2019-06-19 2020-09-22 Rockwell Automation Technologies, Inc. Bootstrap charging by PWM control
US11211879B2 (en) 2019-09-23 2021-12-28 Rockwell Automation Technologies, Inc. Capacitor size reduction and lifetime extension for cascaded H-bridge drives
CN111030498B (zh) * 2019-12-10 2020-10-09 中铁电气化局集团有限公司 级联h桥逆变器的调制波的补偿方法
US11336206B2 (en) 2020-09-23 2022-05-17 Rockwell Automation Technoligies, Inc. Switching frequency and PWM control to extend power converter lifetime
US11761985B2 (en) * 2021-02-09 2023-09-19 Analog Devices International Unlimited Company Calibration using flipped sensor for highly dynamic system
US11539283B1 (en) * 2021-06-04 2022-12-27 Rockwell Automation Technologies, Inc. System and method for reducing delay in the modulation of a multi-phase output voltage from an inverter
CN113595364B (zh) * 2021-07-28 2022-08-09 科华数据股份有限公司 一种pwm调制方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034501B1 (en) * 2005-02-28 2006-04-25 Rockwell Automation Technologies, Inc. Adjusting gate pulse time intervals for reflected wave mitigation

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0105215B1 (en) 1982-09-07 1987-03-04 Hitachi, Ltd. Control apparatus for ac motors
JPS62163589A (ja) * 1986-01-13 1987-07-20 Hitachi Ltd パルス幅変調インバ−タによる誘導電動機の制御装置
US4904919A (en) 1988-06-21 1990-02-27 Allen-Bradley Company, Inc. Dual mode control of a PWM motor drive for current limiting
JPH0274192A (ja) * 1988-09-08 1990-03-14 Toshiba Corp 電力変換装置
AU651034B2 (en) * 1992-04-24 1994-07-07 Hitachi Limited Power converter for converting DC voltage into AC phase voltage having three levels of positive, zero and negative voltage
JP2814837B2 (ja) * 1992-06-04 1998-10-27 株式会社日立製作所 電力変換装置
CA2114679C (en) * 1993-02-04 1997-07-01 Shigeru Tanaka Power converter control system
US5625550A (en) 1994-09-27 1997-04-29 Allen-Bradley Company, Inc. Apparatus used with AC motors for compensating for turn on delay errors
US5610806A (en) 1995-06-19 1997-03-11 Allen-Bradley Company, Inc. Pulse width modulation method for driving three phase power inverter/converter switches with balanced discontinuous phase commands
US5736825A (en) 1996-06-25 1998-04-07 Allen-Bradley Company, Inc. Method and apparatus for linearizing pulse width modulation by modifying command voltges
US5671130A (en) 1996-08-23 1997-09-23 Allen-Bradley Company, Inc. Method and apparatus for controlling voltage reflections using a motor controller
US5811949A (en) 1997-09-25 1998-09-22 Allen Bradley Company, Llc Turn-on delay compensator for motor control
US6014497A (en) 1997-10-01 2000-01-11 Allen-Bradley Company, Llc Method and apparatus for determining a critical dwell time for use in motor controls
US5912813A (en) 1997-10-01 1999-06-15 Allen-Bradley Company, Llc Method and apparatus for controlling reflected voltage using a motor controller
US5990658A (en) 1998-01-22 1999-11-23 Allen-Bradley Company, Llc Apparatus for controlling reflected voltage on motor supply lines
US6023417A (en) 1998-02-20 2000-02-08 Allen-Bradley Company, Llc Generalized discontinuous pulse width modulator
US6359416B1 (en) 2000-09-29 2002-03-19 Rockwell Automation Technologies, Inc. Adaptive predictive synchronous current frame regulator method and apparatus
US6617821B2 (en) 2001-09-20 2003-09-09 Rockwell Automation Technologies, Inc. Method and apparatus for compensating for device dynamics by adjusting inverter carrier frequency
US6636012B2 (en) 2001-09-28 2003-10-21 Rockwell Automation Technologies, Inc. Stator and rotor resistance identifier using high frequency injection
US6469916B1 (en) 2001-10-01 2002-10-22 Rockwell Automation Technologies, Inc. Method and apparatus for compensating for device dynamics and voltage drop in inverter based control systems
US6477067B1 (en) 2001-10-02 2002-11-05 Rockwell Automation Technologies, Inc. Method and apparatus for compensating for device dynamics in inverter based control systems
US6541933B1 (en) 2001-11-20 2003-04-01 Rockwell Automation Technologies, Inc. Angle control of modulating wave to reduce reflected wave overvoltage transients
US6703809B2 (en) 2002-03-05 2004-03-09 Rockwell Automation Technologies, Inc. Flux position identifier using high frequency injection with the presence of a rich harmonic spectrum in a responding signal
GB0213098D0 (en) * 2002-06-07 2002-07-17 Trw Ltd Motor control device
US6720748B1 (en) 2003-02-12 2004-04-13 Rockwell Automation Technologies, Inc. Static commissioning method and apparatus to identify rated flux current
US6819070B2 (en) 2003-02-12 2004-11-16 Rockwell Automation Technologies, Inc. Method and apparatus for controlling reflected voltage using a motor controller
US6819077B1 (en) 2003-05-21 2004-11-16 Rockwell Automation Technologies, Inc. Method and apparatus for reducing sampling related errors in a modulating waveform generator used with a PWM controller
US6842354B1 (en) 2003-08-08 2005-01-11 Rockwell Automation Technologies, Inc. Capacitor charge balancing technique for a three-level PWM power converter
US6982533B2 (en) 2003-09-17 2006-01-03 Rockwell Automation Technologies, Inc. Method and apparatus to regulate loads
JP2006042454A (ja) * 2004-07-23 2006-02-09 Toyota Industries Corp 電流検出制御装置及びインバータ装置
JP4601044B2 (ja) 2004-08-30 2010-12-22 日立アプライアンス株式会社 電力変換装置およびその電力変換装置を備えた空気調和機
US7215559B2 (en) 2004-09-28 2007-05-08 Rockwell Automation Technologies, Inc. Method and apparatus to reduce common mode voltages applied to a load by a drive
US7164254B2 (en) * 2005-02-28 2007-01-16 Rockwell Automation Technologies, Inc. Modulation methods and apparatus for reducing common mode voltages
US7106025B1 (en) 2005-02-28 2006-09-12 Rockwell Automation Technologies, Inc. Cancellation of dead time effects for reducing common mode voltages
US7336509B2 (en) 2005-09-28 2008-02-26 Rockwell Automation Technologies, Inc. Method and apparatus for estimating line inductance for PWM rectifier control
US7356441B2 (en) 2005-09-28 2008-04-08 Rockwell Automation Technologies, Inc. Junction temperature prediction method and apparatus for use in a power conversion module
JP4811917B2 (ja) * 2005-12-27 2011-11-09 三菱電機株式会社 電力変換装置
KR100789441B1 (ko) * 2005-12-30 2007-12-28 엘에스산전 주식회사 인버터의 전류 검출 장치 및 방법
US7400518B2 (en) * 2006-05-22 2008-07-15 Rockwell Automation Technologies, Inc. Modulation methods and apparatus for reducing common mode noise
JP4448855B2 (ja) * 2006-05-23 2010-04-14 三菱電機株式会社 電力変換装置
US7342380B1 (en) 2006-08-31 2008-03-11 Rockwell Automation Technologies, Inc. System and method for adjustable carrier waveform generator
EP2143196B1 (en) * 2007-03-27 2018-08-15 Danfoss Drives A/S Method for driving a pulse width modulated controller
JP2008259380A (ja) * 2007-04-09 2008-10-23 Fuji Electric Systems Co Ltd 交流交流直接変換器の制御装置
WO2009072359A1 (ja) * 2007-12-04 2009-06-11 Mitsubishi Electric Corporation 交流電動機の制御装置
US7738267B1 (en) * 2009-01-07 2010-06-15 Rockwell Automation Technologies, Inc. Systems and methods for common-mode voltage reduction in AC drives
JP2010220285A (ja) * 2009-03-13 2010-09-30 Toyota Motor Corp 回転電機制御システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034501B1 (en) * 2005-02-28 2006-04-25 Rockwell Automation Technologies, Inc. Adjusting gate pulse time intervals for reflected wave mitigation

Also Published As

Publication number Publication date
US20120140532A1 (en) 2012-06-07
EP2475088A2 (en) 2012-07-11
CN102570892A (zh) 2012-07-11
US8488345B2 (en) 2013-07-16
EP2475088B1 (en) 2018-08-15
EP2475088A3 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
CN102570892B (zh) 脉宽调制控制方法和减轻过调制区域中反射波效应的系统
CN202160117U (zh) 功率转换系统
RU2381610C1 (ru) Регулятор мощности и транспортное средство, оснащенное регулятором мощности
JP6206502B2 (ja) 電力変換装置及び電力変換方法
CN102291083B (zh) 共模电压降低设备和用于基于电流源转换器的驱动器的方法
US8730702B2 (en) Very high efficiency three phase power converter
US7310254B2 (en) AC-to-AC (frequency) converter with three switches per leg
US7495410B2 (en) Systems and methods for improved motor drive power factor control
US8466662B2 (en) Power transfer between independent power ports utilizing a single transformer
US7692938B2 (en) Multiphase power converters and multiphase power converting methods
US6411530B2 (en) Drive and power supply with phase shifted carriers
JPH0851790A (ja) 誘導性負荷用制御回路
US10944328B2 (en) Welding power supply with extended voltage characteristic
JPH09131075A (ja) インバータ装置
US20230249564A1 (en) Charging device and vehicle
WO2015130787A1 (en) Power conversion electronics
US20150016167A1 (en) Multilevel Converter
JP2004531196A (ja) 多段スイッチ回路
KR101654755B1 (ko) 교류 모터 또는 직류 모터의 선택적 제어
US6366064B1 (en) Dual mode controller for switching circuirty
US6636693B2 (en) DC motor matrix converter with field and armature circuits
JPH0576179A (ja) 電力変換装置
JP3246584B2 (ja) Ac/dcコンバータ
US20200144902A1 (en) Device for stabilizing direct current (dc) distribution system
JP2001169539A (ja) アクティブ還流型チョッパ回路及びそれを用いた電圧調節器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: ohio

Patentee after: Rockwell automation technologies

Address before: ohio

Patentee before: Rockwell Automation Tech Inc.