CN101226163A - Method for measuring metallic film fatigue life on a flexible substrate - Google Patents

Method for measuring metallic film fatigue life on a flexible substrate Download PDF

Info

Publication number
CN101226163A
CN101226163A CNA200810017372XA CN200810017372A CN101226163A CN 101226163 A CN101226163 A CN 101226163A CN A200810017372X A CNA200810017372X A CN A200810017372XA CN 200810017372 A CN200810017372 A CN 200810017372A CN 101226163 A CN101226163 A CN 101226163A
Authority
CN
China
Prior art keywords
metallic film
fatigue
cycle index
resistance variations
flexible substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200810017372XA
Other languages
Chinese (zh)
Other versions
CN101226163B (en
Inventor
孙军
张敬
刘刚
孙晓娟
汪承材
丁向东
江峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong cloud Mstar Technology Ltd
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN200810017372XA priority Critical patent/CN101226163B/en
Publication of CN101226163A publication Critical patent/CN101226163A/en
Application granted granted Critical
Publication of CN101226163B publication Critical patent/CN101226163B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

The invention discloses a fatigue life test method of metallic film on a flexible substrate, which comprises processing fatigue test under integral circulation stress load on a metallic film/flexible substrate system with better interface combination, recording the stress-strain curvature and resistance change-circulation frequency curvature of the metallic film, detecting the metallic film microcosmic structure under different circulation frequencies in the fatigue process to obtain a metallic film surface damage topography-resistance change-circulation frequency curvature. The invention uses the sharp increase of resistance change on the resistance change-circulation frequency curvature to represent metallic film damage and define a fatigue life Nf. The strain amplitude delta epsilon and relative fatigue life Nf obtained from the stress-strain curvature forms the metallic film fatigue property failure evaluation of the metallic film/flexible substrate system. The inventive method has simple test, accurate measurement and prior property.

Description

The metal membrane in flexible substrate method for testing fatigue life
Technical field
The present invention relates to metallic film material, belong to the membraneous material field, relate to the evaluation of metallic film material fatigue behaviour, particularly the metal membrane in flexible substrate method for testing fatigue life.
Background technology
Flexible circuit board is widely used in VLSI (very large scale integrated circuit) and the microelectromechanical systems (MEMS), and generally the metallic film material (as copper and aluminium) that connects up as metallization promptly is deposited on and forms metallic film/flexible base, board system on this flexible base, board.As engineering metal construction membraneous material, its fatigue behaviour is an important index very, can be used for material safety design and life prediction.Yet because metallic film material is in micron or submicron-scale on the one dimension direction, the fatigue that has limited membraneous material loads and fatigue behaviour research, and therefore military service behavior and evaluation fatigue lifetime thereof under CYCLIC LOADING becomes the problem demanding prompt solution that guarantees microelectronic material, device and equipment dependability operation with Study on Forecast to metallic film material.
For the metallic film that is deposited on the rigid substrates, be used for the preparation and the related experiment process complexity of the sample of CYCLIC LOADING, to the equipment requirements height, limited the research of its fatigue property test and used.On the other hand, can with deposit metal films on flexible base, board, be whole stress application CYCLIC LOADING to film/matrix, utilize the sudden change (increase) of load width of cloth control metal membrane strain amplitude to come the formation of characterizing metal film fatigue damage, provide its fatigue lifetime.But for the metallic film that is deposited on the flexible base, board, because metallic film tends to stretch with the flexible base, board coupling in deformation process, metallic film often shows a kind of uniform plastic yield mode, yet keeps enough deformabilities even produced microscopic damage.From the angle analysis of microcosmic be exactly, though produced numerous tiny micro-cracks in the metallic film, but, the big crackle of film breaks do not occur being enough to cause, so film can continue to take place plastic yield to reach high deformation strain because these micro-cracks are equally distributed.
However, owing to produced numerous micro-cracks already in the metallic film, the electric property that these micro-cracks will have a strong impact on metallic film is resistance for example, causes seriously shorten the actual life of metallic film.Therefore, press for and set up a kind of safer and easy metallic film fatigue life and determine method, be beneficial to the material design reference.All the time, this problem has all been given great concern both at home and abroad, but relevant concrete definite method had not seen also but that report was arranged.
Summary of the invention
Direct purpose of the present invention is to overcome above-mentioned prior art deficiency, and a kind of metal membrane in flexible substrate method for testing fatigue life is provided, and the test of this method is simple, measures accurately and has an apriority.
Technical scheme of the present invention is achieved in that according to the following steps carries out:
(1) adopt the magnetron sputtering deposition method with deposit metal films on flexible base, board, its elastic strain 〉=2%; Thickness of metal film 50 nanometers-20 micron; Deposition process parameters is: sputtering power 120-180W; Sputtering bias-voltage-60--80V; Background air pressure 3.0 * 10 -3-4.5 * 10 -3Pa; Operating air pressure (Ar) 0.1-0.3Pa;
(2) adopting range is that little puller system of 250N carries out the loading of whole pulsating stress with metallic film/flexible base, board system is heavy.In loading procedure, metallic film is subjected to tension while flexible base, board also to be in the elastic stretching deformation stage, when unloading, the flexible base, board of elastic shrinkage gives the metallic film compressive stress, thereby load with this fatigue and cyclic of drawing-press that realizes metallic film that circulates, the record stress-strain curve obtains strain amplitude Δ ε;
(3) adopt resistance test measuring apparatus metal thin film resistor to change (Δ=(R-R relatively 0)/R 0, R wherein 0Be the resistance value of metallic film before stretching, R is the resistance value of metallic film in the drawing process) with the variation of loaded cycle number of times, draw resistance variations-cycle index curve; By the microstructure of different cycle index metal membranes in the sem observation fatigue process, obtain metallic film surface damage pattern-resistance variations-cycle index curve;
(4) the unexpected increase with resistance variations on resistance variations-cycle index curve comes the damage of characterizing metal film; Pairing cycle index is defined as strain amplitude Δ ε pairing fatigue lifetime of N when resistance variations increases suddenly on resistance variations-cycle index curve f
Described metallic film material is metallic copper or aluminium, and flexible substrate material is a polyimide.
Can simulate the fatigue behaviour and the inefficacy of metallic film in actual condition metal membrane/flexible base, board system artificially by the present invention, and the inefficacy critical cycle number of times under a certain strain amplitude of quantitative measurement, realize determining of following fatigue lifetime of metallic film CYCLIC LOADING.
Embodiment
The present invention is owing to the quantity and the distribution of underbead crack in the metal material can reflect by the resistance variations of material, therefore when metallic film/flexible base, board system is carried out the strain CYCLIC LOADING and is write down resistance variations-cycle index curve, microstructure by different cycle index metal membranes in the sem observation fatigue process, cycle index when determining micro-crack and occurring, obtain metallic film surface damage pattern-resistance variations-cycle index relation, determine fatigue lifetime by the unique point that resistance variations on this relation and the resistance variations-cycle index curve increases suddenly.
Embodiment 1:
The polyimide flexible base, board is processed into traditional tensile sample shape, and (20 * 6mm) is the effective workspace of sample, and the roomy district at two ends is the load clamp area in middle long narrow district.On effective workspace, thickness is 50 nanometers to the employing magnetron sputtering technique with the metallic copper thin film deposition, and deposition process parameters is: sputtering power 150W; Sputtering bias-voltage-80V; Background air pressure 4.5 * 10 -3Pa; Operating air pressure (Ar) 0.1Pa.The employing range is that little puller system of 250N applies the power cyclic loading to metallic film/flexible base, board system, strain amplitude is 0.05%-1.0%, adopt of the variation of the relative changes delta of resistance test measuring apparatus metallic copper sheet resistance, by the microstructure of different cycle index metal membranes in the sem observation fatigue process with cycle index N; Obtain metal thin film resistor variation-cycle index curve and surface damage pattern-resistance variations-cycle index curve.Suddenly increase by resistance variations on resistance variations-cycle index curve that to be the fatigue lifetime that the fatigue failure criterion obtains this metallic copper film under this strain amplitude cyclic loading be 8000 times.
Embodiment 2:
The polyimide flexible base, board is processed into traditional tensile sample shape, and (20 * 6mm) is the effective workspace of sample, and the roomy district at two ends is the load clamp area in middle long narrow district.On effective workspace, thickness is 700 nanometers to the employing magnetron sputtering technique with the metallic aluminium thin film deposition, and deposition process parameters is: sputtering power 180W; Sputtering bias-voltage-70V; Background air pressure 3.0 * 10 -3Pa; Operating air pressure (Ar) 0.2Pa.The employing range is that little puller system of 250N applies the power cyclic loading to metallic film/flexible base, board system, strain amplitude is 0.06%-1.2%, adopt of the variation of the relative changes delta of resistance test measuring apparatus metallic aluminium sheet resistance, by the microstructure of different cycle index metal membranes in the sem observation fatigue process with cycle index N; Obtain metal thin film resistor variation-cycle index curve and surface damage pattern-resistance variations-cycle index curve.Suddenly increase by resistance variations on resistance variations-cycle index curve that to be the fatigue lifetime that the fatigue failure criterion obtains this metallic aluminium film under this strain amplitude cyclic loading be 4000 times.
Embodiment 3:
The polyimide flexible base, board is processed into traditional tensile sample shape, and (20 * 6mm) is the effective workspace of sample, and the roomy district at two ends is the load clamp area in middle long narrow district.On effective workspace, thickness is 2 microns to the employing magnetron sputtering technique with the metallic copper thin film deposition, and deposition process parameters is: sputtering power 120W; Sputtering bias-voltage-80V; Background air pressure 4.5 * 10 -3Pa; Operating air pressure (Ar) 0.1Pa.The employing range is that little puller system of 250N applies the power cyclic loading to metallic film/flexible base, board system, strain amplitude is 0.045%-0.9%, adopt of the variation of the relative changes delta of resistance test measuring apparatus metallic copper sheet resistance, by the microstructure of different cycle index metal membranes in the sem observation fatigue process with cycle index N; Obtain metal thin film resistor variation-cycle index curve and surface damage pattern-resistance variations-cycle index curve.Suddenly increase by resistance variations on resistance variations-cycle index curve that to be the fatigue lifetime that the fatigue failure criterion obtains this metallic copper film under this strain amplitude cyclic loading be 2500 times.
Embodiment 4:
The polyimide flexible base, board is processed into traditional tensile sample shape, and (20 * 6mm) is the effective workspace of sample, and the roomy district at two ends is the load clamp area in middle long narrow district.On effective workspace, thickness is 5 microns to the employing magnetron sputtering technique with the metallic copper thin film deposition, and deposition process parameters is: sputtering power 150W; Sputtering bias-voltage-60V; Background air pressure 4.5 * 10 -3Pa; Operating air pressure (Ar) 0.3Pa.The employing range is that little puller system of 250N applies the power cyclic loading to metallic film/flexible base, board system, strain amplitude is 0.10%-2.0%, adopt of the variation of the relative changes delta of resistance test measuring apparatus metallic copper sheet resistance, by the microstructure of different cycle index metal membranes in the sem observation fatigue process with cycle index N; Obtain metal thin film resistor variation-cycle index curve and surface damage pattern-resistance variations-cycle index curve.Suddenly increase by resistance variations on resistance variations-cycle index curve that to be the fatigue lifetime that the fatigue failure criterion obtains this metallic copper film under this strain amplitude cyclic loading be 300 times.
Embodiment 5:
The polyimide flexible base, board is processed into traditional tensile sample shape, and (20 * 6mm) is the effective workspace of sample, and the roomy district at two ends is the load clamp area in middle long narrow district.On effective workspace, thickness is 15 microns to the employing magnetron sputtering technique with the metallic aluminium thin film deposition, and deposition process parameters is: sputtering power 150W; Sputtering bias-voltage-80V; Background air pressure 4.5 * 10 -3Pa; Operating air pressure (Ar) 0.3Pa.The employing range is that little puller system of 250N applies the power cyclic loading to metallic film/flexible base, board system, strain amplitude is 0.075%-1.5%, adopt of the variation of the relative changes delta of resistance test measuring apparatus metallic aluminium sheet resistance, by the microstructure of different cycle index metal membranes in the sem observation fatigue process with cycle index N; Obtain metal thin film resistor variation-cycle index curve and surface damage pattern-resistance variations-cycle index curve.Suddenly increase by resistance variations on resistance variations-cycle index curve that to be the fatigue lifetime that the fatigue failure criterion obtains this metallic aluminium film under this strain amplitude cyclic loading be 550 times.
Embodiment 6:
The polyimide flexible base, board is processed into traditional tensile sample shape, and (20 * 6mm) is the effective workspace of sample, and the roomy district at two ends is the load clamp area in middle long narrow district.On effective workspace, thickness is 17 microns to the employing magnetron sputtering technique with the metallic copper thin film deposition, and deposition process parameters is: sputtering power 180W; Sputtering bias-voltage-80V; Background air pressure 4.5 * 10 -3Pa; Operating air pressure (Ar) 0.1Pa.The employing range is that little puller system of 250N applies the power cyclic loading to metallic film/flexible base, board system, strain amplitude is 0.01%-0.5%, adopt of the variation of the relative changes delta of resistance test measuring apparatus metallic copper sheet resistance, by the microstructure of different cycle index metal membranes in the sem observation fatigue process with cycle index N; Obtain metal thin film resistor variation-cycle index curve and surface damage pattern-resistance variations-cycle index curve.Suddenly increase by resistance variations on resistance variations-cycle index curve that to be the fatigue lifetime that the fatigue failure criterion obtains this metallic copper film under this strain amplitude cyclic loading be 16000 times.
Embodiment 7:
The polyimide flexible base, board is processed into traditional tensile sample shape, and (20 * 6mm) is the effective workspace of sample, and the roomy district at two ends is the load clamp area in middle long narrow district.On effective workspace, thickness is 20 microns to the employing magnetron sputtering technique with the metallic copper thin film deposition, and deposition process parameters is: sputtering power 130W; Sputtering bias-voltage-60V; Background air pressure 4.5 * 10 -3Pa; Operating air pressure (Ar) 0.2Pa.The employing range is that little puller system of 250N applies the power cyclic loading to metallic film/flexible base, board system, strain amplitude is 0.04%-0.8%, adopt of the variation of the relative changes delta of resistance test measuring apparatus metallic copper sheet resistance, by the microstructure of different cycle index metal membranes in the sem observation fatigue process with cycle index N; Obtain metal thin film resistor variation-cycle index curve and surface damage pattern-resistance variations-cycle index curve.Suddenly increase by resistance variations on resistance variations-cycle index curve that to be the fatigue lifetime that the fatigue failure criterion obtains this metallic copper film under this strain amplitude cyclic loading be 5000 times.

Claims (2)

1. the metal membrane in flexible substrate method for testing fatigue life is characterized in that, may further comprise the steps:
(1) adopt the magnetron sputtering deposition method with deposit metal films on flexible base, board, its elastic strain 〉=2%; Thickness of metal film 50 nanometers-20 micron; Deposition process parameters is: sputtering power 120-180W; Sputtering bias-voltage-60--80V; Background air pressure 3.0 * 10 -3-4.5 * 10 -3Pa; Operating air pressure (Ar) 0.1-0.3Pa;
(2) adopting range is that little puller system of 250N carries out the loading of whole pulsating stress with metallic film/flexible base, board system is heavy, in loading procedure, metallic film is subjected to tension while flexible base, board also to be in the elastic stretching deformation stage, when unloading, the flexible base, board of elastic shrinkage gives the metallic film compressive stress, thereby load with this fatigue and cyclic of drawing-press that realizes metallic film that circulates, the record stress-strain curve obtains strain amplitude Δ ε;
(3) adopt the relative changes delta of resistance test measuring apparatus metal thin film resistor=(R-R 0)/R 0, R wherein 0Be the resistance value of metallic film before stretching, R is the resistance value of metallic film in the drawing process, with the variation of loaded cycle number of times, draws resistance variations-cycle index curve; By the microstructure of different cycle index metal membranes in the sem observation fatigue process, obtain metallic film surface damage pattern-resistance variations-cycle index curve;
(4) the unexpected increase with resistance variations on resistance variations-cycle index curve comes the damage of characterizing metal film; Pairing cycle index is defined as strain amplitude Δ ε pairing fatigue lifetime of N when resistance variations increases suddenly on resistance variations-cycle index curve f
2. metal membrane in flexible substrate method for testing fatigue life according to claim 1 is characterized in that, metallic film material is metallic copper or aluminium, and flexible substrate material is a polyimide.
CN200810017372XA 2008-01-22 2008-01-22 Method for measuring metallic film fatigue life on a flexible substrate Expired - Fee Related CN101226163B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200810017372XA CN101226163B (en) 2008-01-22 2008-01-22 Method for measuring metallic film fatigue life on a flexible substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810017372XA CN101226163B (en) 2008-01-22 2008-01-22 Method for measuring metallic film fatigue life on a flexible substrate

Publications (2)

Publication Number Publication Date
CN101226163A true CN101226163A (en) 2008-07-23
CN101226163B CN101226163B (en) 2010-11-10

Family

ID=39858282

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810017372XA Expired - Fee Related CN101226163B (en) 2008-01-22 2008-01-22 Method for measuring metallic film fatigue life on a flexible substrate

Country Status (1)

Country Link
CN (1) CN101226163B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839904A (en) * 2009-03-12 2010-09-22 通用汽车环球科技运作公司 Predict the aluminium alloy system and method for the fatigue lifetime under multiaxis loads
CN101929897A (en) * 2009-06-18 2010-12-29 宝理塑料株式会社 The method of the stress-strain curve of local stress measuring method, derivation resin material and the life-span prediction method of resin forming product
CN102636400A (en) * 2012-03-29 2012-08-15 长沙理工大学 Asphalt mixture fatigue property test method based on wheel load instrument
CN103364285A (en) * 2013-06-20 2013-10-23 西南交通大学 Test method for testing bending fatigue life of film
CN103460015A (en) * 2011-11-07 2013-12-18 新日铁住金株式会社 Component fatigue failure evaluation device, component fatigue failure evaluation method, and computer program
CN105372136A (en) * 2015-11-29 2016-03-02 中国人民解放军装甲兵工程学院 Fatigue limit rapid prediction method based on strain increment
CN106644786A (en) * 2017-03-08 2017-05-10 苏交科集团股份有限公司 Method for evaluating asphalt mastic fatigue performance
CN106644716A (en) * 2016-12-07 2017-05-10 湘潭大学 Amorphous alloy coating tension device using with nanoindentor and use method thereof
CN107206190A (en) * 2014-12-02 2017-09-26 新加坡科技研究局 Sensor patch and the sensing device further with the sensor patch
CN109297840A (en) * 2018-11-23 2019-02-01 辽宁工程技术大学 Pulse voltage induces thin-film material mechanical fatigue test method and device
CN110018068A (en) * 2019-04-03 2019-07-16 西北工业大学 Based on the nickel-based monocrystal Blade Properties appraisal procedure for directly cutting microspecimen
CN110082207A (en) * 2019-05-05 2019-08-02 中国人民解放军陆军装甲兵学院 Detect method and apparatus, system and the storage medium of coating material strain failure
CN110398430A (en) * 2019-07-19 2019-11-01 武汉钢铁有限公司 The full Strain life Curve test method of metal material constant amplitude
CN111721647A (en) * 2020-06-24 2020-09-29 四川大学 Low-cycle fatigue test data processing and internal stress evaluation method
CN111950163A (en) * 2020-08-20 2020-11-17 上海电气风电集团股份有限公司 Wind blade fatigue life monitoring method
CN112697618A (en) * 2020-12-11 2021-04-23 中国科学院金属研究所 Method for measuring fatigue life of thin film constrained by flexible substrate
CN114136203A (en) * 2021-11-12 2022-03-04 中国科学院金属研究所 Preparation method of flexible strain sensor with high sensitivity and good cycling stability

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1282876C (en) * 2004-10-27 2006-11-01 东华大学 Multifunctional measuring method and device for flexible material bending fatigue
CN100575956C (en) * 2005-10-10 2009-12-30 西安交通大学 A kind of method of determining metal film fatigue life in electro-mechanical coupling field
CN1804606A (en) * 2005-12-29 2006-07-19 沈阳化工学院 Apparatus and method for measuring fatigue crack of coated material
CN100561209C (en) * 2006-09-15 2009-11-18 西安交通大学 Method for measuring several critical strain values of metal membrane at test current
CN100561210C (en) * 2006-09-15 2009-11-18 西安交通大学 Method for measuring several critical strain values of metal membrane in flexible substrate

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839904A (en) * 2009-03-12 2010-09-22 通用汽车环球科技运作公司 Predict the aluminium alloy system and method for the fatigue lifetime under multiaxis loads
CN101839904B (en) * 2009-03-12 2014-05-28 通用汽车环球科技运作公司 Systems and methods to predict fatigue lives of aluminum alloys under multiaxial loading
CN101929897A (en) * 2009-06-18 2010-12-29 宝理塑料株式会社 The method of the stress-strain curve of local stress measuring method, derivation resin material and the life-span prediction method of resin forming product
CN103460015A (en) * 2011-11-07 2013-12-18 新日铁住金株式会社 Component fatigue failure evaluation device, component fatigue failure evaluation method, and computer program
CN102636400A (en) * 2012-03-29 2012-08-15 长沙理工大学 Asphalt mixture fatigue property test method based on wheel load instrument
CN103364285A (en) * 2013-06-20 2013-10-23 西南交通大学 Test method for testing bending fatigue life of film
CN103364285B (en) * 2013-06-20 2015-04-15 西南交通大学 Test method for testing bending fatigue life of film
CN107206190A (en) * 2014-12-02 2017-09-26 新加坡科技研究局 Sensor patch and the sensing device further with the sensor patch
US10512431B2 (en) 2014-12-02 2019-12-24 Agency For Science, Technology Ano Research Sensor patch and sensing device having the same
CN105372136A (en) * 2015-11-29 2016-03-02 中国人民解放军装甲兵工程学院 Fatigue limit rapid prediction method based on strain increment
CN105372136B (en) * 2015-11-29 2018-04-17 中国人民解放军装甲兵工程学院 A kind of fatigue limit method for quick predicting based on strain increment
CN106644716A (en) * 2016-12-07 2017-05-10 湘潭大学 Amorphous alloy coating tension device using with nanoindentor and use method thereof
CN106644786A (en) * 2017-03-08 2017-05-10 苏交科集团股份有限公司 Method for evaluating asphalt mastic fatigue performance
CN109297840A (en) * 2018-11-23 2019-02-01 辽宁工程技术大学 Pulse voltage induces thin-film material mechanical fatigue test method and device
CN110018068A (en) * 2019-04-03 2019-07-16 西北工业大学 Based on the nickel-based monocrystal Blade Properties appraisal procedure for directly cutting microspecimen
CN110082207A (en) * 2019-05-05 2019-08-02 中国人民解放军陆军装甲兵学院 Detect method and apparatus, system and the storage medium of coating material strain failure
CN110398430A (en) * 2019-07-19 2019-11-01 武汉钢铁有限公司 The full Strain life Curve test method of metal material constant amplitude
CN111721647A (en) * 2020-06-24 2020-09-29 四川大学 Low-cycle fatigue test data processing and internal stress evaluation method
CN111721647B (en) * 2020-06-24 2021-12-28 四川大学 Low-cycle fatigue test data processing and internal stress evaluation method
CN111950163A (en) * 2020-08-20 2020-11-17 上海电气风电集团股份有限公司 Wind blade fatigue life monitoring method
CN112697618A (en) * 2020-12-11 2021-04-23 中国科学院金属研究所 Method for measuring fatigue life of thin film constrained by flexible substrate
CN114136203A (en) * 2021-11-12 2022-03-04 中国科学院金属研究所 Preparation method of flexible strain sensor with high sensitivity and good cycling stability
CN114136203B (en) * 2021-11-12 2023-04-07 中国科学院金属研究所 Preparation method of flexible strain sensor with high sensitivity and good cycling stability

Also Published As

Publication number Publication date
CN101226163B (en) 2010-11-10

Similar Documents

Publication Publication Date Title
CN101226163B (en) Method for measuring metallic film fatigue life on a flexible substrate
CN100561210C (en) Method for measuring several critical strain values of metal membrane in flexible substrate
CN100561209C (en) Method for measuring several critical strain values of metal membrane at test current
Zike et al. Experimental determination of the micro-scale strength and stress-strain relation of an epoxy resin
Johari et al. Creep behaviour monitoring of short-term duration for fiber-glass reinforced composite cross-arms with unsaturated polyester resin samples using conventional analysis
CN111198141A (en) Mesomechanics-based polymer-based composite material fatigue life prediction method
CN112345380A (en) Method for testing fracture toughness of ceramic coating
Alaca et al. Biaxial testing of nanoscale films on compliant substrates: Fatigue and fracture
Meng et al. Compression properties of gas diffusion layers and its constitutive model under cyclic loading
CN112649360B (en) Method for testing bonding strength of silver coating
CN100538319C (en) A kind of method of measuring yield strength of metal membrane at test current
CN112114168A (en) Metal surface potential in-situ test device and method under stress and hydrogen permeation conditions
CN106556643A (en) A kind of metal material Cold Brittleness Transition Temperature assay method
Zhao et al. A soft, adhesive self‐healing naked‐eye strain/stress visualization patch
CN102607972A (en) Dynamic fatigue performance testing method used under condition of piezoelectric ceramic electromechanical coupling
CN109556954A (en) Test the fatigue tester of components fracture characteristic under the effect of different alternate stresses
Shin et al. Mechanical properties and molecular structure of rubber materials with different hardnesses for vibration isolation of elevator cabins
Kniely et al. Characterization of interfacial parameters for lifetime modelling in modern optical sensor package assemblies
CN115508183A (en) Strain equivalence-based load-holding test method
Li et al. Creep properties and damage mechanism of molded glass fiber reinforced plastic
CN112504833B (en) Online monitoring method for fatigue crack growth of sintered NdFeB
CN113466020B (en) Method for measuring wedge-in type sample based on single-side crack center hole
CN113640120B (en) Device and method for testing tensile mechanical properties of high polymer grouting material
CN116067767A (en) Simple judging method for boron fiber failure
CN209460021U (en) Test the fatigue tester of components fracture characteristic under the effect of different alternate stresses

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160414

Address after: 276017 science and technology innovation center of hi tech Industrial Development Zone, Shandong, Linyi province A317

Patentee after: Shandong cloud Mstar Technology Ltd

Address before: 710049 Xianning Road, Shaanxi, China, No. 28, No.

Patentee before: Xi'an Jiaotong University

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101110

Termination date: 20190122

CF01 Termination of patent right due to non-payment of annual fee