CN100386849C - Process for preparing mesoporous metal counter electrode for dye-sensitized solar cell - Google Patents

Process for preparing mesoporous metal counter electrode for dye-sensitized solar cell Download PDF

Info

Publication number
CN100386849C
CN100386849C CNB2005101056772A CN200510105677A CN100386849C CN 100386849 C CN100386849 C CN 100386849C CN B2005101056772 A CNB2005101056772 A CN B2005101056772A CN 200510105677 A CN200510105677 A CN 200510105677A CN 100386849 C CN100386849 C CN 100386849C
Authority
CN
China
Prior art keywords
mesoporous
electrode
mesoporous metal
metal
dssc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005101056772A
Other languages
Chinese (zh)
Other versions
CN1770401A (en
Inventor
林红
林春富
王宁
李建保
杨晓战
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CNB2005101056772A priority Critical patent/CN100386849C/en
Publication of CN1770401A publication Critical patent/CN1770401A/en
Application granted granted Critical
Publication of CN100386849C publication Critical patent/CN100386849C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hybrid Cells (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

The present invention discloses a method for preparing a mesoporous metal counter electrode for a dye-sensitized solar cell. Mesoporous metal materials with a nanometer structure and a large specific surface area are deposited on base materials for preparing the mesoporous metal counter electrode by an electrodeposition method for a nonionic surface active agent, an electrodeposition method for a cationic surfactant or a chemical method, and the mesoporous metal electrode can be used as a counter electrode for a dye-sensitized solar cell; therefore, the photoelectric conversion efficiency of the cell can be increased, the cost of the cell can be decreased, and the commercialization of the cell can be promoted. Compared with a traditional evaporation coating electrode, the solar cell can increase the photoelectric conversion efficiency by about 20 percent, and reduce the manufacturing cost.

Description

Be used for the preparation method of the mesoporous metal of DSSC to electrode
Technical field
The present invention relates to solar battery technology, particularly relate to the mesoporous metal that is used for DSSC preparation method electrode.
Background technology
DSSC preparation with low cost, easy is considered to the strongest replacer of silicon solar cell.This battery is with I 3 -/ I -Oxidation-reduction pair transmits electric charge as media at the light anode with between to electrode.In the circulation of this media regeneration, oxidized material (I 2Or I 3 -) on to electrode, be reduced to I again -Reduce since above-mentioned reduction reaction to exist in the energy consumption on the electrode be very necessary.Therefore, as the important component part of battery, to the electrocatalysis characteristic of electrode photoelectric conversion efficiency important influence to entire cell.Mesoporous material is nanostructure, and its specific area is very big.Big specific area helps improving the catalytic performance of mesoporous material, reduces battery to the energy consumption on the electrode, thereby improves the photoelectric conversion efficiency of battery.Simultaneously,, can reduce use amount, thereby reduce production cost of cells electrode material because the mesoporous material specific area is very big.In addition, electrodeposition process and chemical method device therefor are simple, and operation is simple, and the production efficiency height also can reduce production cost of cells.In sum, adopt mesoporous metal by the mesoporous metal material preparation, can improve the photoelectric conversion efficiency of battery and reduce production cost of cells, thereby help promoting the commercialization of battery electrode.
Summary of the invention
The object of the present invention is to provide a kind of mesoporous metal of DSSC that is used for to electrode preparation method.For achieving the above object, technical solution of the present invention is: the mesoporous metal material of nanostructure, bigger serface is deposited on the base material, and the preparation mesoporous metal is to electrode, and mesoporous metal can adopt following 3 kinds of methods to the preparation of electrode:
1) non-ionic surface active agent electrodeposition process.Earlier nonionic surface active agent and metal precursor solution are mixed with uniform liquid crystalline phase mixed solution, wherein nonionic surface active agent accounts for the 30-65wt% of mixed solution, and surplus is the metal precursor solution of 0.0001-2mol/L concentration; With this mixed solution is electroplate liquid, and the electroplating voltage of employing-0.2-0.2V is a template with the liquid crystalline phase, deposits mesoporous metal on base material, can obtain the mesoporous metal film with the deionized water wash products to remove surfactant again.
2) cationic surfactant electrodeposition process, similar with first method, different is, do not adopt nonionic surfactant, and the cationic surfactant lauryl sodium sulfate SDS of the 0.01-5wt% of employing mixed solution, form the aggregate of organic surface active agent-inorganic matter in the self assembly of the interface of base material and electroplate liquid, and be template electric-sedimentation mesoporous metal film.
3) chemical method uses with method 1) mixed solution, add NaBH then 4Or formaldehyde restores metal as reducing agent, obtains the mesoporous metal particle; With the mesoporous metal particle is raw material, preparation mesoporous metal film; Concrete grammar: a small amount of mesoporous metal particle is placed on the base material, can on base material, forms the mesoporous metal film with base material and the violent friction of mesoporous metal particle.
The described mesoporous metal that is used for DSSC is the alloy that one or more metals of Pt, Pd, Rh, Ru, Os, Ir, Cu, Ag, Au, Zn, Fe, Co, Ni, Sc, Ti, V, Cr, Mn, Cd, Y, Zr, Nb, Mo, Tc and Re are formed to the metal of electrode.
The alloy that the described mesoporous metal that is used for DSSC is formed with one or more metals of Pt, Pd, Rh, Ru, Os and Ir the metal of electrode is commonly used.
Described nonionic surface active agent is hexadecanol polyoxyethylene ten ethers, octodecyl alcohol polyoxyethylene ten ethers, octodecyl alcohol polyoxyethylene 20 ethers, hexadecanol polyoxyethylene eight ethers or lauryl alcohol polyoxyethylene eight ethers.
Described mesoporous be order mesoporous and unordered mesoporous.
Described order mesoporous be hexagonal mesoporous, cubic mesoporous or layered mesoporous.
Described order mesoporous aperture is 2-5nm, and pore wall thickness is 2-5nm.
The scope of described specific area is 10-100m 2/ g, particularly 20-50m 2/ g.
Described base material is transparent conducting glass, metallic substrates, the substrate of raw material of wood-charcoal material or polyethylene, polystyrene or polyester macromolecule substrate.
Beneficial effect of the present invention: adopt mesoporous metal electrode as DSSC to electrode, the mesoporous metal specific area is big, can improve catalytic effect greatly, can reduce this battery greatly to the energy loss on the electrode, improve the photoelectric conversion efficiency of this battery and the production cost of this battery of reduction, help promoting the industrialization of this battery.Compare with traditional evaporation Pt electrode, improved about 20% and reduce production cost of cells based on the photoelectric conversion efficiency of the DSSC of mesoporous Pt electrode.
Description of drawings
Fig. 1 is the SEM photo of mesoporous Pt electrode;
Fig. 2 is the TEM photo of mesoporous Pt;
Fig. 3 for adopt (a) mesoporous Pt electrode and (b) electroplate the Pt electrode and (c) evaporation Pt electrode as to the DSSC of electrode at AM1.5-100mW/cm 2Photovoltaic property curve under the light intensity.
Embodiment
The invention provides a kind of mesoporous metal of DSSC that is used for to electrode preparation method.Technical solution of the present invention is: the mesoporous metal material of nanostructure, bigger serface is deposited on the base material, and the preparation mesoporous metal is to electrode, and mesoporous metal can adopt following 3 kinds of methods to the preparation of electrode:
1) nonionic surface active agent electrodeposition process.Earlier nonionic surface active agent and metal precursor solution are mixed with uniform liquid crystalline phase mixed solution, wherein nonionic surface active agent accounts for the 30-65wt% of mixed solution, and surplus is the metal precursor solution of 0.0001-2mol/L concentration; With this mixed solution is electroplate liquid, the electroplating voltage of employing-0.2-0.2V, with the liquid crystalline phase is template, is to deposit mesoporous metal on the transparent conducting glass work electrode at base material, can obtain the mesoporous metal film with the deionized water wash products to remove surfactant again.
2) cationic surfactant electrodeposition process, similar with first method, different is, do not adopt nonionic surfactant, and the cationic surfactant lauryl sodium sulfate SDS of the 0.01-5wt% of employing mixed solution, at base material is the aggregate that the interface self assembly of transparent conducting glass work electrode and electroplate liquid forms organic surface active agent-inorganic matter, and be template electric-sedimentation mesoporous metal film.
3) chemical method uses with method 1) mixed solution, add NaBH then 4Or formaldehyde restores metal as reducing agent, obtains the mesoporous metal particle; With the mesoporous metal particle is raw material, preparation mesoporous metal film; Concrete grammar: it is on the transparent conducting glass that a small amount of mesoporous metal particle is placed on base material, can form the mesoporous metal film with base material and the violent friction of mesoporous metal particle on base material.
The described mesoporous metal that is used for DSSC is the alloy that one or more metals of Pt, Pd, Rh, Ru, Os, Ir, Cu, Ag, Au, Zn, Fe, Co, Ni, Sc, Ti, V, Cr, Mn, Cd, Y, Zr, Nb, Mo, Tc and Re are formed to the metal of electrode.
The alloy that the described mesoporous metal that is used for DSSC is formed with one or more metals of Pt, Pd, Rh, Ru, Os and Ir the metal of electrode is commonly used.
Described nonionic surface active agent is hexadecanol polyoxyethylene ten ethers, octodecyl alcohol polyoxyethylene ten ethers, octodecyl alcohol polyoxyethylene 20 ethers, hexadecanol polyoxyethylene eight ethers or lauryl alcohol polyoxyethylene eight ethers.
Described mesoporous be order mesoporous or unordered mesoporous.
Described order mesoporous be hexagonal mesoporous, cubic mesoporous or layered mesoporous.
Described order mesoporous aperture is 2-5nm, and pore wall thickness is 2-5nm.
The scope of described specific area is 10-100m 2/ g, particularly 20-50m 2/ g.
Described base material comprises transparent conducting glass, metallic substrates, the substrate of raw material of wood-charcoal material or polyethylene, polystyrene or polyester macromolecule substrate.
Embodiment 1
The concrete preparation process of mesoporous Pt electrode is as follows:
1) be to add 0.5g H in the beaker of 40ml at capacity 2PtCl 65H 2O, 14.5g H 2O and 11g hexadecanol polyoxyethylene ten ethers (Brij56) are heated to 80 ℃, stir to make it to mix, and 80 ℃ of insulations;
2) adopting saturated calomel electrode is reference electrode, 2 * 2cm 2The Pt sheet be to electrode, 1.0 * 1.2cm 2Transparent conducting glass as work electrode, reference electrode is close to work electrode but discord work electrode contact is 1.5cm to the distance between electrode and the work electrode;
3) adopt the CHI600B electrochemical workstation, select electroplating voltage to be-0.1V;
4) product is soaked 24h in deionized water, during the compartment time change deionized water one time.The product that obtains abbreviates " mesoporous Pt electrode " as.
The SEM photo of mesoporous Pt electrode is seen Fig. 1, and the TEM photo of mesoporous Pt electrode is seen Fig. 2.Is that the Pt nano particle of 3-4nm is formed from Fig. 1 and the mesoporous as can be seen Pt electrode surface of Fig. 2 by diameter, is no ordered meso-porous structure.
With mesoporous Pt electrode use as the dye sensitization of solar electrode to electrode, its photovoltaic property curve is seen Fig. 3.Its photoelectric conversion efficiency is 8.30%.
Embodiment 2
The cationic surface active agent electrodeposition process preparation process of mesoporous Pd electrode is as follows:
1) in being the beaker of 20ml, capacity adds 0.5g (NH 4) 2PdCl 4, 10g H 2O and 0.01g SDS, stirring makes it to mix;
2) adopting saturated calomel electrode is reference electrode, 2 * 2cm 2The Pt sheet be to electrode, 1.0 * 1.2cm 2Transparent conducting glass as work electrode, reference electrode is close to work electrode but discord work electrode contact is 1.5cm to the distance between electrode and the work electrode;
3) adopt the CHI600B electrochemical workstation, the selection electroplating voltage is 1V;
4) use the deionized water wash products, get final product mesoporous Pd electrode.
Embodiment 3
The chemical method preparation process of mesoporous Ru electrode is as follows:
1) be to add 1.5g RuCl in the beaker of 20ml at capacity 4, 3g H 2O and 4.5g Brij56 (hexadecanol polyoxyethylene ten ethers) are heated to 80 ℃, stir to make it to mix, and 80 ℃ of insulations; 2) add 0.1g NaBH 4After leave standstill 2h, the centrifugal filtration of resulting mesoporous Ru particle is come out; 3) a small amount of mesoporous Ru particle is placed on the plate glass, acutely rubbing with substrate and mesoporous metal particle forms mesoporous Ru film in substrate.
Embodiment 4
The nonionic surface active agent electrodeposition process preparation process of mesoporous Os-Ir alloy electrode is as follows:
1) be to add 0.5g OsCl in the beaker of 20ml at capacity 4, 0.5g IrCl 4, 10g H 2O and 11g hexadecanol polyoxyethylene ten ethers are heated to 80 ℃, stir to make it to mix, and 80 ℃ of insulations;
2) adopting saturated calomel electrode is reference electrode, 2 * 2cm 2The Pt sheet be to electrode, 1.0 * 1.2cm 2Transparent conducting glass as work electrode, reference electrode is close to work electrode but discord work electrode contact is 1.5cm to the distance between electrode and the work electrode;
3) adopt the CHI600B electrochemical workstation, the selection electroplating voltage is 0.1V;
4) product is soaked 24h in deionized water, during the compartment time change deionized water one time, can obtain mesoporous Os-Ir alloy electrode.
Comparative example 1
As a comparison, we have also prepared plating Pt electrode.The preparation process of electroplating the Pt electrode is similar to mesoporous Pt electrode, and difference is not add in the electroplate liquid surfactant.Use electrolyte and the test condition identical with embodiment 1.With electroplate the Pt electrode use as DSSC to electrode, its photovoltaic property curve is seen Fig. 3.Its photoelectric conversion efficiency is 7.62%.
Comparative example 2
As a comparison, we have also prepared evaporation Pt electrode with vacuum deposition method.Evaporation Pt electrode be present people generally adopt to electrode.Use electrolyte and the test condition identical with embodiment 1.With evaporation Pt electrode use as DSSC to electrode, its photovoltaic property curve is seen Fig. 3.Its photoelectric conversion efficiency is 6.83%.And the photoelectric conversion efficiency that adopts the DSSC of mesoporous Pt electrode is 8.30%.Therefore, adopt the photoelectric conversion efficiency ratio of the DSSC of mesoporous Pt electrode to adopt the high by 21.5% of traditional evaporation Pt electrode.

Claims (10)

1. a mesoporous metal that is used for DSSC is deposited on mesoporous metal material nanostructure, bigger serface on the base material electrode preparation method; It is characterized in that: described mesoporous metal is to adopt the preparation of nonionic surface active agent electrodeposition process to the preparation of electrode, earlier nonionic surface active agent and metal precursor solution are mixed with uniform liquid crystalline phase mixed solution, with this mixed solution is electroplate liquid, wherein nonionic surface active agent accounts for the 30-65wt% of mixed solution, and surplus is the metal precursor solution of 0.0001-2mol/L concentration; The electroplating voltage of employing-0.2-0.2V is a template with the liquid crystalline phase, deposits mesoporous metal on base material, can obtain the mesoporous metal film with the deionized water wash products to remove surfactant again.
According to the described mesoporous metal that is used for DSSC of claim 1 to electrode preparation method, it is characterized in that: described base material is the polymer-based end of transparent conducting glass, metallic substrates, the substrate of raw material of wood-charcoal material or polyethylene, polystyrene or polyester.
According to the described mesoporous metal that is used for DSSC of claim 1 to electrode preparation method, it is characterized in that: described nonionic surface active agent is hexadecanol polyoxyethylene ten ethers, octodecyl alcohol polyoxyethylene ten ethers, octodecyl alcohol polyoxyethylene 20 ethers, hexadecanol polyoxyethylene eight ethers or lauryl alcohol polyoxyethylene eight ethers.
According to the described mesoporous metal that is used for DSSC of claim 1 to electrode preparation method, it is characterized in that: the described mesoporous metal that is used for DSSC is the alloy that one or more metals of Pt, Pd, Rh, Ru, Os, Ir, Cu, Ag, Au, Zn, Fe, Co, Ni, Sc, Ti, V, Cr, Mn, Cd, Y, Zr, Nb, Mo, Tc and Re are formed to the mesoporous metal material of electrode.
According to the described mesoporous metal that is used for DSSC of claim 1 to electrode preparation method, it is characterized in that: the alloy that the described mesoporous metal that is used for DSSC is formed with one or more metals of Pt, Pd, Rh, Ru, Os and Ir the mesoporous metal material of electrode is commonly used.
According to claim 1, the 4 or 5 described mesoporous metals that are used for DSSC to electrode preparation method, it is characterized in that: described mesoporous metal mesoporous for order mesoporous or unordered mesoporous.
According to the described mesoporous metal that is used for DSSC of claim 6 to electrode preparation method, it is characterized in that: described order mesoporous for hexagonal mesoporous, cubic mesoporous or layered mesoporous; This order mesoporous aperture is 2-5nm, and pore wall thickness is 2-5nm.
According to the described mesoporous metal that is used for DSSC of claim 1 to electrode preparation method, it is characterized in that: the scope of described specific area is 10-100m 2/ g.
9. a mesoporous metal that is used for DSSC is to electrode preparation method, mesoporous metal material nanostructure, bigger serface is deposited on the base material, it is characterized in that: described mesoporous metal is to adopt the preparation of cationic surfactant electrodeposition process to the preparation of electrode, earlier cationic surfactant and metal precursor solution are mixed with uniform liquid crystalline phase mixed solution, wherein cationic surfactant lauryl sodium sulfate SDS accounts for the 0.01-5wt% of mixed solution, and surplus is the metal precursor solution of 0.0001-2mol/L concentration; With this mixed solution is electroplate liquid, forms the aggregate of organic surface active agent-inorganic matter in the self assembly of the interface of base material and electroplate liquid, and be template electric-sedimentation mesoporous metal film.
10. a mesoporous metal that is used for DSSC is to electrode preparation method, mesoporous metal material nanostructure, bigger serface is deposited on the base material, it is characterized in that: described mesoporous metal is to adopt the chemical method preparation to the preparation of electrode, earlier nonionic surface active agent and metal precursor solution are mixed with uniform liquid crystalline phase mixed solution, wherein nonionic surface active agent accounts for the 30-65wt% of mixed solution, surplus is the metal precursor solution of 0.0001-2mol/L concentration, adds NaBH then 4Or formaldehyde restores metal as reducing agent, obtains the mesoporous metal particle; With the mesoporous metal particle is raw material, and a small amount of mesoporous metal particle is placed on the base material, makes substrate and the violent friction of mesoporous metal particle can form the mesoporous metal film on base material.
CNB2005101056772A 2005-09-30 2005-09-30 Process for preparing mesoporous metal counter electrode for dye-sensitized solar cell Expired - Fee Related CN100386849C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005101056772A CN100386849C (en) 2005-09-30 2005-09-30 Process for preparing mesoporous metal counter electrode for dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005101056772A CN100386849C (en) 2005-09-30 2005-09-30 Process for preparing mesoporous metal counter electrode for dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
CN1770401A CN1770401A (en) 2006-05-10
CN100386849C true CN100386849C (en) 2008-05-07

Family

ID=36751561

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101056772A Expired - Fee Related CN100386849C (en) 2005-09-30 2005-09-30 Process for preparing mesoporous metal counter electrode for dye-sensitized solar cell

Country Status (1)

Country Link
CN (1) CN100386849C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694813B (en) * 2009-09-30 2012-07-18 中国科学院等离子体物理研究所 Liquid crystal electrolyte solution for dye-sensitized nano film solar battery
CN101807625B (en) * 2010-02-26 2012-05-09 华南师范大学 Manufacturing method of grid array electrode of crystalline silicon solar cell
CN103189131A (en) * 2010-08-06 2013-07-03 台达电子工业股份有限公司 Process for manufacturing porous material
TWI426617B (en) * 2010-12-22 2014-02-11 Univ Nat Cheng Kung Dye-sensitized solar cell and method for manufacturing the same
CN103400700B (en) * 2013-08-08 2016-05-04 中国海洋大学 DSSC based on the low platinum alloy of binary to electrode and its preparation method and application
CN111063805B (en) * 2019-11-11 2021-06-22 上海大学 Organic-inorganic perovskite solar cell and preparation and recovery method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1624837A (en) * 2004-10-28 2005-06-08 复旦大学 Quasi-solid-state dye sensitized nano crystal salar battery and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1624837A (en) * 2004-10-28 2005-06-08 复旦大学 Quasi-solid-state dye sensitized nano crystal salar battery and manufacturing method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
纳晶敏化太阳能电池中铂修饰对电极的一种新制法. 陈今茂,马玉涛,王桂强,王正平,周晓文,林原,李学萍,肖绪瑞.科学通报,第50卷第1期. 2005
纳晶敏化太阳能电池中铂修饰对电极的一种新制法. 陈今茂,马玉涛,王桂强,王正平,周晓文,林原,李学萍,肖绪瑞.科学通报,第50卷第1期. 2005 *

Also Published As

Publication number Publication date
CN1770401A (en) 2006-05-10

Similar Documents

Publication Publication Date Title
Thalluri et al. Strategies for semiconductor/electrocatalyst coupling toward solar‐driven water splitting
Tang et al. Smoothing surface trapping states in 3D coral-like CoOOH-wrapped-BiVO4 for efficient photoelectrochemical water oxidation
Wu et al. Non-noble bimetallic NiMoO4 nanosheets integrated Si photoanodes for highly efficient and stable solar water splitting
CN101332425B (en) Nano porous gold-loaded ultrathin platinum metallic film catalyst and preparation method thereof
Zhu et al. Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition
CN102251266B (en) Method for preparing nano platinum/titanium dioxide nanotube electrode by pulse electrodeposition
CN100386849C (en) Process for preparing mesoporous metal counter electrode for dye-sensitized solar cell
CN100531914C (en) solid phase reduction preparation method for platinum, carbon catalyst of fuel cell
Bai et al. Fabrication of Zn-MOF decorated BiVO4 photoanode for water splitting
Duan et al. Self-assembly of Au–Pt core–shell nanoparticles for effective enhancement of methanol electrooxidation
Zhang et al. Construction of graphene-wrapped Pd/TiO2 hollow spheres with enhanced anti-CO poisoning capability toward photoassisted methanol oxidation reaction
CN105845948B (en) A kind of preparation method of flower-shaped copper/cupric oxide Micron-nano composites carried noble metal fuel-cell catalyst
CN105734606A (en) Structure of ultrathin membrane electrode for SPE water electrolysis and preparation and application of structure
CN105297107A (en) Method for preparing nanometer platinum nickel/titanium dioxide nanotube electrode by cyclic voltammeter electrodeposition
Li et al. Fabrication of a three-dimensional bionic Si/TiO2/MoS2 photoelectrode for efficient solar water splitting
CN102881916A (en) Gas diffusion electrode carried with double-shell core-shell catalyst and preparation and application thereof
CN101113525A (en) Pt-TiO2/Ti combination electrode and method for making same
CN103028396A (en) Preparation method of Pd@Pt core-shell structural catalyst for low-temperature fuel cell
CN102703953B (en) Method for preparing nanometer platinum/titanium dioxide nanotube electrode through cyclic voltammetry electrodeposition
CN102703942A (en) Method for preparing nano-platinum/palladium titanium dioxide nanotube composite electrode by pulse electrodeposition
Haider et al. Surface and bulk modification for advanced electrode design in photoelectrochemical water splitting
CN104888769A (en) Preparation method of charcoal-supported palladium-silver nanometer composite catalyst for direct methanol fuel cells
CN104022295A (en) Direct methanol fuel cell PdAg/TiO2 nanotube electrode and preparation method thereof
Duan et al. Improving PEC performance of BiVO4 by introducing bulk oxygen vacancies by He+ ion irradiation
Kempler et al. Spontaneous Formation of> 90% Optically Transmissive, Electrochemically Active CoP Films for Photoelectrochemical Hydrogen Evolution

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080507

Termination date: 20170930